O nekotorykh vyrozhdennykh ellipticheskikh uravneniyakh, voznikayushchikh v geometricheskikh zadachakh


Cite item

Abstract

Мы рассматриваем некоторые вполне нелинейные вырожденные эллиптические операторы и исследуем справедливость определенных свойств, связанных с принципом максимума. В частности, мы устанавливаем эквивалентность между свойством распространения знака и строгой положительностью подходящим образом определенного обобщенного главного собственного значения. Также мы показываем, что даже в вырожденном случае, рассмотренном в настоящей работе, хорошо известное условие на член нулевого порядка, введенное Келлером-Оссерманом, является необходимым и достаточным для существования целых слабых субрешений.

References

  1. Ambrosio L., Soner H. M. Level set approach to mean curvature ow in arbitrary codimension// J. Di er. Geom. - 1996. - 43. - C. 693-737.
  2. Amendola M. E., Galise G., Vitolo A. Riesz capacity, maximum principle and removable sets of fully nonlinear second order elliptic operators// Di er. Integr. Equ. - 2013. - 26. - C. 845-866.
  3. Amendola M. E., Galise G., Vitolo A. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations// Discrete Contin. Dyn. Syst. - 2013. - 2013, Suppl. - С. 771-780.
  4. Armstrong S. N. Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations// J. Di er. Equ. - 2009. - 246, № 7. - C. 2958-2987.
  5. Bao J., Ji X. Necessary and su cient conditions on solvability for Hessian inequalities// Proc. Am. Math. Soc. - 2010. - 138. - C. 175-188.
  6. Bao J., Ji X. Existence and nonexistence theorem for entire subsolutions of k-Yamabe type equations// J. Di er. Equ. - 2012. - 253. - C. 2140-2160.
  7. Barles G., Burdeau J. The Dirichlet problem for semilinear second-order degenerate elliptic equatiions and applications to stochastic exit time control problems// Commun. Part. Di er. Equ. - 1995. - 20, № 1-2. - C. 129-178.
  8. Berestycki H., Capuzzo Dolcetta I., Porretta A., Rossi L. Maximum principle and generalized principal eigenvalue for degenerate elliptic operators// J. Math. Pures Appl. - 2015. - 103, № 5. - C. 1276-1293.
  9. Berestycki H., Nirenberg L., Varadhan S. R. S. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains// Commun. Pure Appl. Math. - 1994. - 47, № 1. - C. 47-92.
  10. Berestycki H., Rossi L. Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains// Commun. Pure Appl. Math. - 2015. - 68, № 6. - С. 1014-1065.
  11. Birindelli I., Demengel F. First eigenvalue and Maximum principle for fully nonlinear singular operators// Adv. Di er. Equ. - 2006. - 11, № 1. - C. 91-119.
  12. Birindelli I., Demengel F. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators// Commun. Pure Appl. Anal. - 2007. - 6, № 2. - C. 335-366.
  13. Boccardo L., Gallouet T., Vazquez J. L. Nonlinear elliptic equations in RN without growth restriction on the data// J. Di er. Equ. - 1993. - 105, № 2. - C. 334-363.
  14. Boccardo L., Gallouet T., Vazquez J. L. Solutions of nonlinear parabolic equations without growth restrictions on the data// Electron. J. Di er. Equ. - 2001. - 2001, № 60. - C. 1-20.
  15. Brezis H. Semilinear equations in Rn without conditions at in nity// Appl. Math. Optim. - 1984. - 12.- C. 271-282.
  16. Ca arelli L. A., Cabre´ X. Fully nonlinear elliptic equations. - Providence: Am. Math. Soc., 1995.
  17. Ca arelli L. A., Li Y. Y., Nirenberg L. Some remarks on singular solutions of nonlinear elliptic equations. III: Viscosity solutions, including parabolic operators// Commun. Pure Appl. Math. - 2013. - 66.- С. 109-143.
  18. Cannarsa P., Da Prato G., Frankowska H. Invariant measures associated to degenerate elliptic operators// Indiana Univ. Math. J. - 2010. - 59, № 1. - C. 53-78.
  19. Capuzzo Dolcetta I., Leoni F., Vitolo A. Entire subsolutions of fully nonlinear degenerate elliptic equations// Bull. Inst. Math. Acad. Sin. (N.S.) - 2014. - 9. - C. 147-161.
  20. Capuzzo Dolcetta I., Leoni F., Vitolo A. On the inequality F (x, D2u) f (u) + g(u)|Du|q .- arXiv:1501.06836 [math.AP], 2014.
  21. Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial di erential equations// Bull. Am. Math. Soc. (N.S.) - 1992. - 27, № 1. - C. 1-67.
  22. D’Ambrosio L., Mitidieri E. A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities// Adv. Math. - 2010. - 224. - C. 967-1020.
  23. Diaz G. A note on the Liouville method applied to elliptic eventually degenerate fully nonlinear equations governed by the Pucci operators and the Keller-Osserman condition// Math. Ann. - 2012. - 353.- C. 145-159.
  24. Esteban M. J., Felmer P. L., Quaas A. Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data// Proc. Edinb. Math. Soc. (2) - 2010. - 53, № 1. - C. 125-141.
  25. Fichera G. Sulle equazioni di erenziali lineari ellittico-paraboliche del secondo ordine// Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8). - 1956. - 5. - C. 1-30.
  26. Franchi B., Lanconelli E. Une me´trique associe´e a` une classe d’ope´rateurs elliptiques de´ge´ne´re´s// Rend. Semin. Mat. Univ. Politec. Torino. - 1983. - Proc. Conf. on Linear partial and pseudodi erential operators (Torino, 1982). - С. 105-114.
  27. Friedman A., Pinsky M. A. Asymptotic stability and spiraling properties for solutions of stochastic equations// Trans. Am. Math. Soc. - 1973. - 186. - C. 331-358.
  28. Galise G., Vitolo A. Viscosity solutions of uniformly elliptic equations without boundary and growth conditions at in nity// Int. J. Di er. Equ. - 2011. - 2011. - 453727.
  29. Giga Y. Surface evolution equations. A level set approach. - Basel: Birkha¨user, 2006.
  30. Harvey F. R., Lawson H. B. мл. Existence, uniqueness and removable singularities for nonlinear partial di erential equations in geometry// В сб. Surveys in Di erential Geometry, 18. - Somerville: International Press, 2013. - С. 102-156.
  31. Harvey F. R., Lawson H. B. мл. Removable singularities for nonlinear subequations// Indiana Univ. Math. J. - 2014. - 63. - C. 1525-1552.
  32. Harvey F. R., Lawson H. B. мл. Characterizing the strong maximum principle. - 2014, препринт. - http://arxiv-web3.library.cornell.edu/abs/1309.1738.
  33. Hayman N. K., Kennedy P. B. Subharmonic functions. Vol. I. - London: Academic Press, 1976.
  34. Ikoma N., Ishii H. Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls// Ann. Inst. H. Poincare´ Anal. Non Line´aire - 2012. - 29. - C. 783-812.
  35. Ishii H. Perron’s method for Hamilton-Jacobi equations// Duke Math. J. - 1987. - 55, № 2. - C. 369-384.
  36. Jin Q., Li Y. Y., Xu H. Nonexistence of positive solutions for some fully nonlinear elliptic equations// Methods Appl. Anal. - 2005. - 12. - C. 441-449.
  37. Keller J. B. On solutions of Δu = f (u)// Commun. Pure Appl. Math. - 1957. - 10. - C. 503-510.
  38. Landkof N. S. Foundations of modern potential theory. - Heidelberg-New York: Springer, 1972.
  39. Leoni F. Nonlinear elliptic equations in RN with “absorbing zero order terms// Adv. Di er. Equ. - 2000. - 5. - C. 681-722.
  40. Leoni F., Pellacci B. Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data// J. Evol. Equ. - 2006. - 6. - C. 113-144.
  41. Lions P. L. Bifurcation and optimal stochastic control// Nonlinear Anal. - 1983. - 7, № 2. - C. 177-207.
  42. Oberman A., Silvestre L. The Dirichlet problem for the convex envelope// Trans. Am. Math. Soc. - 2011. - 363, № 11. - C. 5871-5886.
  43. Oleınik O. A., Radkevicˇ E. V. Second order equations with nonnegative characteristic form. - New York: Plenum Press, 1973.
  44. Osserman R. On the inequality Δu f (u)// Paci c J. Math. - 1957. - 7. - C. 1141-1147.
  45. Protter M. H., Weinberger H. F. Maximum principles in di erential equations. - Englewood Cli s: Prentice-Hall, 1967.
  46. Quaas A., Sirakov B. Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators// Adv. Math. - 2008. - 218, № 1. - С. 105-135.
  47. Sha J.-P. p-convex Riemannian manifolds// Invent. Math. - 1986. - 83. - C. 437-447.
  48. Suzuki K. The rst boundary value and eigenvalue problems for degenerate elliptic equations// Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A. - 1968. - 4, № 1. - C. 179-200.
  49. Wu H. Manifolds of partially positive curvature// Indiana Univ. Math. J. - 1987. - 36. - C. 525-548.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies