Quadratic Interaction Estimate for Hyperbolic Conservation Laws: an Overview


Cite item

Abstract

The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simpli ed setting, in which: - all the main ideas of the construction are presented; - all the technicalities of the proof in the general setting [8] are avoided.

About the authors

Modena Stefano

S.I.S.S.A

Email: smodena@sissa.it
Via Bonomea 265, 34136 Trieste, TS, Italy

References

  1. Ancona F., Marson A. Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems// Commun. Math. Phys. - 2011. - 302. - C. 581-630.
  2. Baiti P., Bressan A. The semigroup generated by a Temple class system with large data// Di er.Integr. Equ. - 1997. - 10. - C. 401-418.
  3. Bianchini S. The semigroup generated by a Temple class system with nonconvex ux function// Di er.Integr. Equ. - 2000. - 13 (10-12). - C. 1529-1550.
  4. Bianchini S.Interaction estimates and Glimm functional for general hyperbolic systems// Discrete Contin. Dyn. Syst. - 2003. - 9. - C. 133-166.
  5. Bianchini S., Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems// Ann. Math. (2). - 2005. - 161. - C. 223-342.
  6. Bianchini S., Modena S. On a quadratic functional for scalar conservation laws//j. Hyperbolic Di er. Equ. - 2014. - 11 (2). - C. 355-435.
  7. Bianchini S., Modena S. Quadratic interaction functional for systems of conservation laws: a case study// Bull. Inst. Math. Acad. Sin. (N.S.). - 2014. - 9 (3). - C. 487-546.
  8. Bianchini S., Modena S. Quadratic interaction functional for general systems of conservation laws// Commun. Math. Phys. - 2015. - 338, № 3. - С. 1075-1152.
  9. Bressan A. Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. - Oxford University Press, 2000.
  10. Bressan A., Marson A. Error bounds for a deterministic version of the Glimm scheme// Arch. Ration. Mech. Anal. - 1998. - 142. - C. 155-176.
  11. Dafermos C. Hyberbolic conservation laws in continuum physics. - Springer, 2005.
  12. Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations// Commun. Pure Appl. Math. - 1965. - 18. - C. 697-715.
  13. Lax P. D. Hyperbolic systems of conservation laws. II// Commun. Pure Appl. Math. - 1957. - 10.- C. 537-566.
  14. Lax P. D. Shock waves and entropy// В сб.: Contribution to nonlinear functional analysis. - New York: Academic Press, 1971. - С. 603-634.
  15. Liu T. P. The Riemann problem for general 2 × 2 conservation laws// Trans. Am. Math. Soc. - 1974. - 199. - C. 89-112.
  16. Liu T. P. The Riemann problem for general systems of conservation laws//j. Di er. Equ. - 1975. - 18.- C. 218-234.
  17. Liu T. P. The deterministic version of the Glimm scheme// Commun. Math. Phys. - 1977. - 57. - C. 135- 148.
  18. Temple B. Systems of conservation laws with invariant submanifolds// Trans. Am. Math. Soc. - 1983. - 280. - C. 781-795.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies