Quadratic Interaction Estimate for Hyperbolic Conservation Laws: an Overview
- Authors: Stefano M.1
-
Affiliations:
- S.I.S.S.A
- Issue: Vol 59, No (2016)
- Pages: 148-172
- Section: Articles
- URL: https://journals.rudn.ru/CMFD/article/view/32580
Cite item
Full Text
Abstract
The aim of this paper is to provide the reader with a proof of such quadratic estimate in a simpli ed setting, in which: - all the main ideas of the construction are presented; - all the technicalities of the proof in the general setting [8] are avoided.
About the authors
Modena Stefano
S.I.S.S.A
Email: smodena@sissa.it
Via Bonomea 265, 34136 Trieste, TS, Italy
References
- Ancona F., Marson A. Sharp convergence rate of the Glimm scheme for general nonlinear hyperbolic systems// Commun. Math. Phys. - 2011. - 302. - C. 581-630.
- Baiti P., Bressan A. The semigroup generated by a Temple class system with large data// Di er.Integr. Equ. - 1997. - 10. - C. 401-418.
- Bianchini S. The semigroup generated by a Temple class system with nonconvex ux function// Di er.Integr. Equ. - 2000. - 13 (10-12). - C. 1529-1550.
- Bianchini S.Interaction estimates and Glimm functional for general hyperbolic systems// Discrete Contin. Dyn. Syst. - 2003. - 9. - C. 133-166.
- Bianchini S., Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems// Ann. Math. (2). - 2005. - 161. - C. 223-342.
- Bianchini S., Modena S. On a quadratic functional for scalar conservation laws//j. Hyperbolic Di er. Equ. - 2014. - 11 (2). - C. 355-435.
- Bianchini S., Modena S. Quadratic interaction functional for systems of conservation laws: a case study// Bull. Inst. Math. Acad. Sin. (N.S.). - 2014. - 9 (3). - C. 487-546.
- Bianchini S., Modena S. Quadratic interaction functional for general systems of conservation laws// Commun. Math. Phys. - 2015. - 338, № 3. - С. 1075-1152.
- Bressan A. Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. - Oxford University Press, 2000.
- Bressan A., Marson A. Error bounds for a deterministic version of the Glimm scheme// Arch. Ration. Mech. Anal. - 1998. - 142. - C. 155-176.
- Dafermos C. Hyberbolic conservation laws in continuum physics. - Springer, 2005.
- Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations// Commun. Pure Appl. Math. - 1965. - 18. - C. 697-715.
- Lax P. D. Hyperbolic systems of conservation laws. II// Commun. Pure Appl. Math. - 1957. - 10.- C. 537-566.
- Lax P. D. Shock waves and entropy// В сб.: Contribution to nonlinear functional analysis. - New York: Academic Press, 1971. - С. 603-634.
- Liu T. P. The Riemann problem for general 2 × 2 conservation laws// Trans. Am. Math. Soc. - 1974. - 199. - C. 89-112.
- Liu T. P. The Riemann problem for general systems of conservation laws//j. Di er. Equ. - 1975. - 18.- C. 218-234.
- Liu T. P. The deterministic version of the Glimm scheme// Commun. Math. Phys. - 1977. - 57. - C. 135- 148.
- Temple B. Systems of conservation laws with invariant submanifolds// Trans. Am. Math. Soc. - 1983. - 280. - C. 781-795.