Optimal Difference Formulas in the Sobolev Space

Cover Page

Cite item

Abstract

Optimization of computational methods in functional spaces is one of the main problems of computational mathematics. In this paper, algebraic and functional assertions for the problem of difference formulas are discussed. For optimization of difference formulas, i.e., for construction of optimal difference formulas in functional spaces, an important role is played by the extremal function of the given difference formula. In this work, we explicitly find in Sobolev spaces the extremal function of the difference formula and compute the norm of the error functional of the difference formula. Furthermore, we prove existence and uniqueness of the optimal difference formula.

About the authors

Kh. M. Shadimetov

Tashkent State Transport University

Author for correspondence.
Email: kholmatshadimetov@mail.ru
Tashkent, Uzbekistan

R. N. Mirzakabilov

Romanovskiy Institute of Mathematics

Email: ravshan.m.n@mail.ru
Tashkent, Uzbekistan

References

  1. Бабушка И., Прагер М., Витасек Э. Численные процессы решения дифференциальных уравнений. - М.: Мир, 1969.
  2. Соболев С. Л. Введение в теорию кубатурных формул. - М.: Наука, 1974.
  3. Соболев С. Л., Васкевич В. Л. Кубатурные формулы. - Новосибирск: Ин-т мат., 1996.
  4. Шадиметов Х. М. Весовые оптимальные кубатурные формулы в периодическом пространстве Соболева// Сиб. ж. выч. мат. - 1999. -2, № 2. - С. 185-195.
  5. Шадиметов Х. М. Об оптимальных решетчатых квадратурных и кубатурных формулах// Докл. РАН. - 2001. -376, № 5. - С. 597-599.
  6. Шадиметов Х. М. Функциональная постановка задач оптимальных разностных формул// Узб. мат. ж. - 2015. - № 4. - С. 179-183.
  7. Akhmedov D. M., Hayotov A. R., Shadimetov Kh. M. Optimal quadrature formulas with derivatives for Cauchy type singular integrals// Appl. Math. Comput. - 2018. - 317. - С. 150-159.
  8. Babuskaˇ I., Sobolev S. Optimization of numerical methods// Apl. Mat. - 1965. -10. - С. 9-170.
  9. Boltaev N. D., Hayotov A. R., Shadimetov Kh. M. Construction of optimal quadrature formula for numerical calculation of Fourier coefficients in Sobolev space L2(1)// Am. J. Numer. Anal. - 2016. -4, № 1. - С. 1-7.
  10. Dahlquist G. Convergence and stability in the numerical integration of ordinary differential equations// Math. Scand. - 1956. - 4. - С. 33-52.
  11. Dahlquist G. Stability and error bounds in the numerical integration of ordinary differential equations. - Stockholm: Almqvist & Wiksell, 1958.
  12. Henrici P. Discrete variable methods in ordinary differential equations. - New York-London: John Wiley & Sons, 1962.
  13. Shadimetov Kh. M., Hayotov A. R. Optimal quadrature formulas in the sense of Sard in W2(m,m-1) space// Calcolo. - 2014. -51. - С. 211-243.
  14. Shadimetov Kh. M., Hayotov A. R., Akhmedov D. M. Optimal quadrature formulas for Cauchy type singular integrals in Sobolev space// Appl. Math. Comput. - 2015. -263. - С. 302-314.
  15. Shadimetov Kh. M., Mirzakabilov R. N. The problem on construction of difference formulas// Probl. Comput. Appl. Math. - 2018. -5, № 17. - С. 95-101.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies