Algorithm for the Numerical Solution of the Stefan Problem and Its Application to Calculations of the Temperature of Tungsten under Impulse Action

Cover Page

Cite item

Abstract

In this paper, we present the numerical solution of the Stefan problem to calculate the temperature of the tungsten sample heated by the laser pulse. Mathematical modeling is carried out to analyze field experiments, where an instantaneous heating of the plate to 9000 K is observed due to the effect of a heat flow on its surface and subsequent cooling. The problem is characterized by nonlinear coefficients and boundary conditions. An important role is played by the evaporation of the metal from the heated surface. Basing on Samarskii’s approach, we choose to implement the method of continuous counting considering the heat conductivity equation in a uniform form in the entire domain using the Dirac delta function. The numerical method has the second order of approximation with respect to space, the interval of smoothing of the coefficients is 5 K. As a result, we obtain the temperature distributions on the surface and in the cross section of the sample during cooling.

About the authors

D. E. Apushkinskaya

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: apushkinskaya_de@pfur.ru
Moscow, Russia

G. G. Lazareva

Peoples’ Friendship University of Russia (RUDN University)

Email: lazareva_gg@pfur.ru
Moscow, Russia

References

  1. Арутюнян Р. В. Интегральные уравнениязадачи Стефана и их приложение при моделировании оттаиваниягрунта// В сб.: «Наука и образование: научное издание МГТУ им. Н. Э. Баумана». - М.: МГТУ, 2015. - № 10. - C. 347-419.
  2. Бреславский П. В., Мажукин В. И. Алгоритм численного решениягидродинамического варианта задачи Стефана при помощи динамически адаптирующихся сеток// Мат. модел. - 1991. - 3, № 10. - С. 104- 115.
  3. Будак Б. М., Соловьева Е. Н., Успенский А. Б. Разностный метод со сглаживанием коэффициентов для решения задач Стефана// Журн. выч. мат. и мат. физ. - 1965. - 5, № 5. - С. 828-840.
  4. Лаевский М. Ю., Калинкин А. А. Двухтемпературная модель гидратосодержащей породы// Мат. модел. - 2010. - 22, № 4. - С. 23-31.
  5. Самарский А. А., Вабищевич П. Н. Вычислительнаятеплопередача. - М.: Едиториал УРСС, 2003.
  6. Самарский А. А., Моисеенко Б. Д. Экономичная схема сквозного счета для многомерной задачи Стефана// Журн. выч. мат. и мат. физ. - 1965. - 5, № 5. - C. 816-827.
  7. Талуц С. Г. Экспериментальное исследование теплофизических свойств переходных металлов и сплавов на основе железа при высоких температурах// Дисс. д.ф.-м.н. - Екатеринбург, 2001.
  8. Яненко Н. Н. Метод дробных шагов решения многомерных задач математической физики. - Новосибирск: Наука, 1967.
  9. Apushkinskaya D. Free boundary problems. Regularity properties near the fixed boundary. - Cham: Springer, 2018.
  10. Arakcheev A. S., Apushkinskaya D. E., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Lazareva G. G., Maksimova A. G., Popov V. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N. Two-dimensional numerical simulation of tungsten melting under pulsed electron beam// Fusion Eng. Design. - 2018. - 132.- С. 13-17.
  11. Caffarelli L. A. The smoothness of the free surface in a filtration problem// Arch. Ration. Mech. Anal. - 1976. - 63. - C. 77-86.
  12. Caffarelli L. A. The regularity of elliptic and parabolic free boundaries// Bull. Am. Math. Soc. - 1976. - 82. - C. 616-618.
  13. Caffarelli L. A. The regularity of free boundaries in higher dimensions// Acta Math. - 1977. - 139, № 34. - C. 155-184.
  14. Chen H., Min C., Gibou F. A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate// J. Comp. Phys. - 2009. - 228. - С. 5803-5818.
  15. Duvaut G. Re´solution d’un proble`me de Stefan (fusion d’un bloc de glace a` ze´ro degre´)// C. R. Math. Acad. Sci. Paris. - 1973. - 276.- С. 1461-1463.
  16. Davis J. W., Smith P. D. ITER material properties handbook// J. Nucl. Mater. - 1996. - 233.- С. 1593- 1596.
  17. Duvaut G. Two phases Stefan problem with varying specific heat coefficients// An. Acad. Brasil. Cieˆnc. - 1975. - 47. - C. 377-380.
  18. Friedman A., Kinderlehrer D. A one phase Stefan problem// Indiana Univ. Math. J. - 1975. - 25, № 11. - С. 1005-1035.
  19. Groot R. Second order front tracking algorithm for Stefan problem on a regular grid// J. Comp. Phys. - 2018. - 372. - С. 956-971.
  20. Ho C. Y., Powell R. W., Liley P. E. Thermal conductivity of elements// J. Phys. Chem. Ref. Data. - 1972. - 1. - С. 279.
  21. Huang J. M., Shelley M., Stein D. A stable and accurate scheme for solving the Stefan problem coupled with natural convection using the immersed boundary smooth extension method// J. Comp. Phys. - 2021. - 432. - 110162.
  22. Ichikawa Y., Kikuchi N. A one-phase multi-dimensional Stefan problem by the method of variational inequalities// Internat. J. Numer. Methods Engrg. - 1979. - sl 14. - C. 1197-1220.
  23. Ichikawa Y., Kikuchi N. Numerical methods for a two-phase Stefan problem by variational inequalities// Internat. J. Numer. Methods Engrg. - 1979. - sl 14. - C. 1221-1239.
  24. Lame´ G., Clapeyron B. P. Me´moire sur la solidification parrefroidissement d’um globe solide// Ann. Chem. Phys. - 1831. - 47. - С. 250-256.
  25. Lazareva G. G., Arakcheev A. S., Kandaurov I. V., Kasatov A. A., Kurkuchekov V. V., Maksimova A. G., Popov V. A., Shoshin A. A., Snytnikov A. V., Trunev Yu. A., Vasilyev A. A., Vyacheslavov L. N. Calculation of heat sink around cracks formed under pulsed heat load// J. Phys. Conf. Ser. - 2017. - 894. - 012120.
  26. Oberman A. M., Zwiers I. Adaptive finite difference methods for nonlinear elliptic and parabolic partial defferential equations with free boundaries// J. Sci. Comput. - 2012. - 68. - С. 231-251.
  27. Pottlacher G. Thermal conductivity of pulse-heated liquid metals at melting and in the liquid phase// J. Non-Crystal. Solids. - 1999. - 250. - С. 177-181.
  28. Stefan J. U¨ ber die Theorie der Eisbildung, insbesondere u¨ ber die Eisbildung im Polarmeere// Sitzungsber. Osterreich. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2, Math. Astron. Phys. Meteorol. Tech. - 1889. - 98.- С. 965-983.
  29. Vyacheslavov L., Arakcheev A., Burdakov A., Kandaurov I., Kasatov A., Kurkuchekov V., Mekler K., Popov V., Shoshin A., Skovorodin D., Trunev Y., Vasilyev A. Novel electron beam based test facility for observation of dynamics of tungsten erosion under intense ELM-like heat loads// AIP Conf. Proc. - 2016. - 1771. - 060004.
  30. Wu Z.-C., Wang Q.-C. Numеrical approach to Stefan problem in a two-region and limited space// Thermal Sci. - 2012. - 16, № 5. - C. 1325-1330.

Copyright (c) 2021 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies