Symmetric Spaces of Measurable Functions: Old and New Advances

Cover Page

Cite item

Abstract

The article is an extensive review in the theory of symmetric spaces of measurable functions. It contains a number of new (recent) and old (known) results in this field. For the most of the results, we give their proofs or exact references, where they can be found. The symmetric spaces under consideration are Banach (or quasi-Banach) latices of measurable functions equipped with symmetric (rearrangement invariant) norm (or quasinorm). We consider symmetric spaces E = E(Ω, Fμ, μ) ⊂ L0 (Ω, Fμ, μ) on general measure spaces (Ω, Fμ, μ), where the measures μ are assumed to be finite or infinite σ-finite and nonatomic, while there are no assumptions that (Ω, Fμ, μ) is separable or Lebesgue space. In the first section of the review, we describe main classes and basic properties of symmetric spaces, consider minimal, maximal, and associate spaces, the properties (A), (B), and (C), and Fatou’s property. The list of specific symmetric spaces we use includes Orlicz LΦ(Ω, Fμ, μ), Lorentz ΛW (Ω, Fμ, μ), Marcinkiewicz MV (Ω, Fμ, μ), and Orlicz-Lorentz LW,Φ (Ω, Fμ, μ) spaces, and, in particular, the spaces Lp (w), Mp(w), Lp,q, and L∞(U ). In the second section, we deal with the dilation (Boyd) indexes of symmetric spaces and some applications of classical Hardy-Littlewood operator H. One of the main problems here is: when H acts as a bounded operator on a given symmetric space E(Ω, Fμ, μ)? A spacial attention is paid to symmetric spaces, which have Hardy-Littlewood property (HLP) or weak Hardy-Littlewood property (WHLP). In the third section, we consider some interpolation theorems for the pair of spaces (L1 , L∞) including the classical Calderon-Mityagin theorem. As an application of general theory, we prove in the last section of review Ergodic Theorems for Cesaro averages of positive contractions in symmetric spaces. Studying various types of convergence, we are interested in Dominant Ergodic Theorem (DET ), Individual (Pointwise) Ergodic Theorem (IET ), Order Ergodic Theorem (OET ), and also Mean (Statistical) Ergodic Theorem (MET ).

About the authors

M. A. Muratov

V.I. Vernadsky Crimean Federal University

Author for correspondence.
Email: mamuratov@gmail.com
Simferopol, Russia

B.-Z. A. Rubshtein

Ben-Gurion University of the Negev

Email: benzion@math.bgu.ac.il
Beer-Sheva, Israel

References

  1. Браверман М. Ш., Меклер А. А. О свойстве Харди-Литтлвуда для симметричных пространств// Сиб. мат. ж. - 1977. - 18, № 3. - С. 522-540.
  2. Векслер А. С. Эргодическая теорема в симметричных пространствах// Сиб. мат. ж. - 1985. - 26, № 4. - С. 189-191.
  3. Векслер А. С. Статистические эргодические теоремы в симметричных пространствах. - Ташкент: Lambert Academic Publishing, 2018.
  4. Векслер А. С., Федоров А. Л. Статистическая эргодическая теорема в несепарабельных симметричных пространствах функций// Сиб. мат. ж. - 1989. - 29, № 3. - С. 183-185.
  5. Векслер А. С., Федоров А. Л. Симметричные пространства и статистические эргодические теоремы для автоморфизмов и потоков. - Ташкент: ФАН, 2016.
  6. Винокуров В. Г., Рубштейн Б. А., Федоров А. Л. Пространство Лебега и его измеримые разбиения. - Ташкент: ТашГУ, 1986.
  7. Лозановский Г. Я. О банаховых структурах Кальдерона// Докл. АН СССР. - 1967. - 172, № 5. - С. 1018-1020.
  8. Меклер А. А. Об усредненной мажоризации функций с помощью перестановок// Тр. ЛИАП. - 1974. - 84.
  9. Меклер А. А. Промежуточные пространства и бистохастические проекторы// Мат. исслед. - 1975. - 10, № 1. - С. 270-275.
  10. Меклер А. А. Усредняющие операторы над σ-подалгебрами на идеалах в L1(μ)// Дисс. к.ф.-м.н. - Л., 1977.
  11. Митягин Б. С. Интерполяционная теорема для модулярных пространств// Мат. сб. - 1965. - 66.- С. 473-482.
  12. Муратов М. А., Пашкова Ю. С. Доминантная эргодическая теорема в пространствах Орлича измеримых функций на полуоси// Тавр. вестн. информ. и мат. - 2006. - № 2. - С. 47-59.
  13. Муратов М. А, Пашкова Ю. С., Рубштейн Б. А. Доминантная эргодическая теорема в симметричных пространствах измеримых функций для последовательности абсолютных сжатий// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. - 2003. - 17, № 2. - С. 36-48.
  14. Муратов М. А, Пашкова Ю. С., Рубштейн Б. А. Доминантная эргодическая теорема в пространствах Лоренца// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. - 2009. - 22, № 1. - С. 86-92.
  15. Муратов М. А, Рубштейн Б. А., Векслер А. С. Сходимость с регулятором в эргодических теоремах// Уч. зап. Тавр. нац. ун-та им. В. И. Вернадского. - 2011. - 24, № 1. - С. 23-34.
  16. Рохлин В. А. Об основных понятиях теории меры// Мат. сб. - 1949. - 25, № 1. - С. 107-150.
  17. Рохлин В. А. Метрическая классификация измеримых функций// Усп. мат. наук. - 1957. - 12.- С. 169-174.
  18. Руссу Г. И. Симметричные пространства функций, не обладающие свойством мажорантности// Мат. исслед. - 1969. - 4. - С. 82-93.
  19. Семенов Е. М. Об одной шкале пространств с интерполяционным свойством// Докл. АН СССР. - 1963. - 148, № 5. - С. 1038-1041.
  20. Семенов Е. М. Теоремы вложения для банаховых пространств измеримых функций// Докл. АН СССР. - 1964. - 156, № 6. - С. 1292-1295.
  21. Aaronson J. An introduction to infinite ergodic theory. - Providence: AMS, 1997.
  22. Agora E., Antezana J., Carro M. J., Soria J. Lorentz-Shmogaki an Boyd theorems for weighted Lorentz spaces// J. London Math. Soc. - 2014. - 89. - С. 321-336.
  23. Aoki T. Locally bounded linear topological spaces// Proc. Imp. Acad. Tokyo. - 1947. - 18. - С. 588-594.
  24. Astashkin S. V. On the normability of Marcinkiewicz classes// Math. Notes. - 2007. - 81. - С. 429-431.
  25. Bennett C., Sharpley R. Interpolation of operators. - Boston, etc.: Academic Press, 1988.
  26. Birkhof G. D. Proof of the ergodic theorem// Proc. Natl. Acad. Sci. USA. - 1931. - 17. - С. 656-660.
  27. Boyd D. V. Indices of function spaces and their relationship to interpolation// Can. J. Math. - 1969. - 21. - С. 1245-1254.
  28. Braverman M., Rubshtein B-Z., Veksler A. Dominated ergodic theorems in rearrangement invariant spaces// Stud. Math. - 1998. - 128. - С. 145-157.
  29. Calderon A. P. Spaces between L1 and L∞ and the theorem of Marcinkewicz// Stud. Math. - 1966. - 26. - С. 273-299.
  30. Calderon A. P., Zygmund A. On the existence of certain singular integrals// Acta Math. - 1952. - 88.- С. 85-139.
  31. Carro M. J., Soria J. Weighted Lorentz spaces and Hardy operator// J. Funct. Anal. - 1993. - 112.- С. 480-494.
  32. Cerda J., Hudzik H., Kaminska A., Mastylo M. Geometric properties of symmetric spaces with applications to Orlicz-Lorentz spaces// Positivity. - 1998. - 2. - С. 311-337.
  33. Chilin V. I., Krygin A. V., Sukochev F. A. Extreme points of convex fully symmetric sets of measurable operators// Integral Equ. Oper. Theory. - 1992. - 15. - С. 186-226.
  34. Chilin V., Litvinov S. Almost uniform and strong convergence in ergodic theorems for symmetric spaces// Acta Math. Hungar. - 2019. - 157. - С. 229-253.
  35. Cwicel M., Kaminska A., Maligranda L., Pick L. Are generalized Lorentz “spaces” really spaces?// Proc. Am. Math. Soc. - 2003. - 132. - С. 3615-3625.
  36. Dodds P. G., De Pagter B., Semenov E. M., Sukochev F. A. Symmetric functionals and singular traces// Positivity. - 1998. - 2.- С. 47-75.
  37. Dodds P. G., Sukochev F. A., Schlichtermann G. Weak compactness criteria in symmetric spaces of measurable operators// Math. Proc. Cambridge Philos. Soc. - 2001. - 131. - С. 363-384.
  38. Dunford N., Schwartz J. Linear Operators. Part 1. - New York: Interscience, 1958.
  39. Edgar G. A., Sucheston L. Stopping Times and Directed Processes. - Cambridge: Cambridge University Press, 1992.
  40. Edmunds D. E., Evans W. D. Hardy Operators, Function Spaces and Embeddings. - Berlin: Springer, 2004.
  41. Florenza A., Krbec M. Indices of Orlicz spaces and some applications// Comment. Math. Univ. Carolin. - 1997. - 38. - С. 433-451.
  42. Fremlin D. H. Measure Theory. Vol. 2. Broad Foundation. - Colchester: Torres Fremlin, 2003.
  43. Grabarnik G. Ya., Rubshtein B.-Z. A. On the Marcinkiewicz classes. - Preprint, 2020.
  44. Hardy G. H., Littlewood J. E. A maximal theorem with function-theoretic application// Acta Math. - 1930. - 54. - С. 81-116.
  45. Harjulehto P., Ha¨ sto¨ P. Orlicz Spaces and Generalized Orlicz Spaces. - Cham: Springer, 2019.
  46. Hopf E. On the ergodic theorem for positive linear operators// J. Reine Angew. Math. - 1960. - 295.- С. 101-106.
  47. Hudzik H., Kaminska A., Mastylo M. Geometric properties of some Calderon-Lozanovskii and Orlicz- Lorentz spaces// Houston J. Math. - 1996. - 22. - С. 639-663.
  48. Hudzik H., Kaminska A., Mastylo M. Geometric properties of Orlicz-Lorentz spaces// Can. Math. Bull. - 1997. - 40. - С. 316-329.
  49. Hudzik H., Kaminska A., Mastylo M. On the dual of Orlicz-Lorentz spaces// Proc. Am. Math. Soc. - 2003. - 130. - С. 1645-1654.
  50. Hunt R. On L(p, q)-spaces// L’Eins. Math. - 1966. - 12. - С. 249-276.
  51. Kakutani Sh. Iterations of linear operator in complex Banach spaces// Proc. Imp. Acad. Tokyo. - 1938. - 14. - С. 295-300.
  52. Kalton N. J. Convexity, type and the three space problem// Stud. Math. - 1980. - 69. - С. 247-287.
  53. Kalton N. J. Linear operators on Lp, 0 < p № 1// Trans. Am. Math. Soc. - 1980. - 259. - С. 319-355.
  54. Kalton N. J. Convexity conditions for non-locally convex lattices// Glasgoo Math. J. - 1984. - 25.- С. 141-152.
  55. Kalton N. J. Banach envelopes of non-locally convex spaces// Can. J. Math. - 1986. - 38. - С. 65-86.
  56. Kalton N. J. Quasi-Banach spaces// В сб.: «Handbook of the Geometry of Banach spaces». - Amsterdam: North-Holland, 2003. - С. 1099-1106.
  57. Kalton N. J., Kaminska A. Type and order convexity of Marcinkiewicz and Lorentz spaces and applications// Glasgow Math. J. - 2005. - 47. - С. 123-137.
  58. Kalton N. J., Sedaev A., Sukochev F. A. Fully symmetric functionals on a Marcinkiewicz space and Dixmier traces// Adv. Math. - 2011. - 226. - С. 3540-3549.
  59. Kalton N. J., Sukochev F. A. Rearrangement-invariant functionals with application to traces on symmetrically normed ideals// Can. Math. Bull. - 2008. - 51.- С. 67-80.
  60. Kalton N. J., Sukochev F. A. Symmetric norms and spaces of operators// J. Reine Angew. Math. - 2008. - 621.- С. 81-121.
  61. Kalton N. J., Sukochev F. A., Zanin D. Orbits in symmetric spaces. II// Stud. Math. - 2010. - 197.- С. 257-274.
  62. Kaminska A. Extreme points in Orlicz-Lorentz spaces// Arch. Math. - 1990. - 55. - С. 173-180.
  63. Kaminska A. Some remarks on Orlicz-Lorentz spaces// Math. Nachr. - 1990. - 147. - С. 29-38.
  64. Kaminska A. Uniform convexity of generalized Lorentz spaces// Arch. Math. - 1991. - 56. - С. 181-188.
  65. Kaminska A., Han Ju Lee. M -ideal property in Marcinkiewicz spaces// Ann. Soc. Math. Pol., Ser. I, Commentat. Math. - 2004. - 44, № 1. - С. 123-144
  66. Kaminska A., Lin P. K., Sun H. Uniformly normal structure of Orlicz-Lorentz spaces// В сб.: «Interaction between Functional Analysis, Harmonic Analysis, and Probability». Proc. conf. Univ. Missouri, Columbia, USA, May 29-June 3, 1994. - New York: Marcel Dekker, 1996. - С. 229-238.
  67. Kaminska A., Maligranda L. Order convexity and concavity of Lorentz spaces Λp.w, 0 < p < ∞// Stud. Math.- 2004.- 160, № 3. - С. 267-287.
  68. Kaminska A., Maligranda L., Persson L. E. Indices, covexity and concavity of Calderon-Lozanovskii spaces// Math. Scand. - 2003. - 92. - С. 141-160.
  69. Kaminska A., Zyluk M. Local geometric properties in quasi-normed Orlicz spaces// Arxiv. - 2019. - 1911.10256v1 [Math.FA].
  70. Kantorovich L. V., Akilov G. V. Functional Analysis. - Oxford, etc.: Pergamon Press, 1982.
  71. Koshi Sh., Shimogaki T. On quasi-modular spaces// Stud. Math. - 1961. - 21.- С. 15-36.
  72. Krasnoselskii M. A., Rutitzkii Ya. B. Convex Functions and Orlicz Spaces. - Groningen-The Netherlands: P. Noordhoff, 1961.
  73. Krbec M., Lang J. Embeddings between weighted Orlicz-Lorentz spaces// Georg. Math. J. - 1997. - 4. - С. 117-128.
  74. Krein S. G., Petunin Yu. I., Semenov E. M. Interpolation of Linear Operators. - Providence: AMS, 1982.
  75. Krengel U. Ergodic Theorems. - Berlin: De Gruyter, 1985.
  76. Lin P. K., Sun H. Some geometric properties of Orlicz-Lorentz spaces// Arch. Math. - 1995. - 64.- С. 500-511.
  77. Lindenstrauss J., Tzafriri L. Classical Banach Spaces I. Sequence Spaces. - Berlin-Heidelberg-New York: Springer, 1977.
  78. Lindenstrauss J., Tzafriri L. Classical Banach Spaces II. Function Spaces. - Berlin-Heidelberg-New York: Springer, 1979.
  79. Lord S., Sedaev A., Sukochev F. Dixmier traces as singular symmetric functionals and applications to measurable operators// J. Funct. Anal. - 2005. - 224. - С. 72-206.
  80. Lord S., Sukochev F., Zanin Z. Singular Traces. Theory and Applications. - Berlin: de Gruyter, 2013.
  81. Lorentz G. G. Some new functional spaces// Ann. Math. - 1950. - 51. - С. 37-55.
  82. Lorentz G. G. On the theory of spaces Λ// Pacific J. Math. - 1951. - 1. - С. 411-429.
  83. Lorentz G. G. Majorants in spaces of integrable function// Amer. J. Math. - 1955. - 77. - С. 484-492.
  84. Lorentz G. G., Shimogaki T. Majorants for interpolation theorems// Publ. Ramanujan Inst. - 1969. - 1.- С. 115-122.
  85. Lozanovskii G. Ya. On some Banach lattices II// Sib. Math. J. - 1971. - 12.- С. 397-401.
  86. Luxemburg W. A. J. Rearrangement invariant Banach function spaces// Queen’s Papers in Pure Appl. Math. - 1967. - 10. - С. 83-144.
  87. Luxemburg W. A. J., Zaanen A. C. Riesz Spaces. Vol. I. - Amsterdam-London: North-Holland, 1971.
  88. Matuszewska W., Orlicz W. On certain properties of φ-functions// Bull. Acad. Polon. Sci. - 1960. - 8.- С. 439-443.
  89. Matuszewska W., Orlicz W. On some classes of functions with regarg to their order of growth// Stud. Math. - 1965. - 26. - С. 11-24.
  90. Mekler A. A. On rearrangement invariant and majorant hulls of averages of rearrangement invariant and majorant ideals// J. Math. Anal. Appl. - 1992. - 171. - С. 555-566.
  91. Mekler A. A. On averaging of rearrangement ideals of the space L1(Ω, Σ, μ) by non-atomic σ-subalgebras of Σ// Positivity. - 2010. - 14. - С. 191-214
  92. Mekler A. A. Conditianal expectations and interpolation of linear operators on ordered ideals between L1(0, 1) and L1(0, 1)// ArXiv. - 2018. - 1803.09796v1
  93. Montgomery-Smith S. J. Orlicz-Lorentz spaces// Proc. of the Orlicz Mem. Conf., Oxford, USA, March 21-23, 1991. - Oxford: Univ. Mississippi, 1991. - Exp. № 6. - С. 1-11
  94. Montgomery-Smith S. J. Comparison of Orlicz-Lorentz spaces// Stud. Math. - 1992. - 103. - С. 161-189
  95. Montgomery-Smith S. J. Boyd indices of Orlicz-Lorentz spaces// Proc. Second Conf. Function Spaces, Edwardsville, USA, May 24-28, 1994. - New York: Marcel Dekker, 1995. - С. 321-334
  96. Montgomery-Smith S. J. The Hardy operator and Boyd indices// Proc. Conf. «Interaction between functional Analysis, Harmonic Analysis, and Probability», Columbia, USA, May 29-June 3, 1994. - New York: Marcel Dekker, 1996. - С. 359-364
  97. Mori T., Amemiya I., Nakano H. On the reflexivity of semi-continuous norms// Proc. Jap. Acad. - 1955. - 31. - С. 684-685
  98. Muratov M. A., Pashkova J. S., Rubshtein B.-Z. A. Order convergence ergodic theorems in rearrangement invariant spaces// Oper. Theory Adv. Appl. - 2013. - 227. - С. 123-142
  99. Muratov M. A., Rubshtein B.-Z. A. Main embedding theorems for symmetric spaces of measurable functions// Proc. 8th Int. Conf. «Topological Algebras and Their Applications», Playa de Villas de Mar Beach, Dominican Republic, May 26-30, 2014. - Berlin: De Gruyter, 2018. - С. 176-192
  100. Muratov M. A., Rubshtein B.-Z. A. Equimeasurable symmetric spaces of measurable functions// ArXiv. - 2020. - 2006.15702v1 [math.FA].
  101. Musielak J. Orlicz Spaces and Modular Spaces. - Berlin, etc.: Springer, 1983.
  102. Nakano H. Modular Semiordered Linear Spaces. - Tokyo: Maruzen, 1950.
  103. Orlicz W. U¨ ber eine gewisse Klasse von Ra¨umen von Typus B// Bull. Int. Acad. Polon. Sci. Ser. A. - 1932. - № 8-9. - С. 207-220.
  104. Orlicz W. U¨ ber Ra¨ume (LM )// Bull. Int. Acad. Polon. Sci. Ser. A. - 1936. - 1936.- С. 93-107.
  105. Ornstein D. S. A remark on the Birkhoff ergodic theorem// Illinois J. Math. - 1971. - 15. - С. 77-79.
  106. Rao M. M. Theory of Orlicz Spaces. - New York: M. Dekker, 1991.
  107. Rao M. M., Ren Z. D. Applications of Orlicz Spaces. - New York: M. Dekker, 2002.
  108. Riesz F. Some mean ergodic theorems// J. London Math. Soc. - 1938. - 13. - С. 274-278.
  109. Rolewicz S. On a certain class of metric linear spaces// Bull. Acad. Pol. Sci. Cl. III. - 1957. - 5.- С. 471-473.
  110. Rolewicz S. Metric Linear Spaces. - Warsaw: PWM, 1972.
  111. Rubshtein B.-Z. A., Grabarnik G. Ya., Muratov M. A., Pashkova Yu. S. Foundations of Symmetric Spaces of Measurable Functions. Lorentz, Marcinkiewicz and Orlicz Spaces. - Cham: Springer, 2016
  112. Ryff J. V. Orbits of L1-functions under doubly stochastic operators// Trans. AMS. - 1965. - 117.- С. 92- 100.
  113. Ryff J. V. Measure preserving transformation and rearrangements// J. Math. Anal. Appl. - 1970. - 31, № 2. - С. 449-458.
  114. Sawyer E. T. Boundedness of classical operators in classical Lorentz spaces// Stud. Math. - 1990. - 96.- С. 145-158.
  115. Shimogaki T. Hardy-Littlewood majorants in function spaces// J. Math. Soc. Japan. - 1965. - 17.- С. 365-375.
  116. Shimogaki T. On the complete continuity of operators in an interpolation theorem// J. Funct. Anal. - 1968. - 2.- С. 31-51.
  117. Shimogaki T. A note on norms of compression operators// Proc. Jap. Acad. - 1970. - 46. - С. 239-249.
  118. Sine R. C. A mean ergodic theorem// Proc. Am. Math. Soc. - 1970. - 24. - С. 438-439.
  119. Soria J. Lorentz spaces of weak type// Quart. J. Math. Oxford. - 1998. - 46.- С. 93-103.
  120. Stein E. M., Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. - Princeton: Princeton Univ. Press, 1971.
  121. Sukochev F. A., Veksler A. S. The mean ergodic theorem in symmetric spaces// Stud. Math. - 2019. - 245. - С. 229-253
  122. Sukochev F. A., Zanin D. Orbits in symmetric spaces// J. Funct. Anal. - 2009. - 257.- С. 194-218.
  123. Sukochev F. A., Zanin D. Traces on symmetrically normed operator ideals// J. Reine Ang. Math. - 2013. - 678. - С. 163-299.
  124. Yosida K. Mean ergodic theorems in Banach spaces// Proc. Imp. Acad. Tokyo. - 1938. - 14. - С. 292- 294.
  125. Yosida K., Kakutani Sh. Operator-theoretical treatment of Markoff’s process and mean ergodic theorems// Anal. Math. - 1941. - 42. - С. 188-228.
  126. Zaanen A. C. Integration. - Amsterdam: North-Holland, 1967.
  127. Zaanen A. C. Riesz Spaces II. - Amsterdam-New York-Oxford: North-Holland, 1983.
  128. Zanin D. Orbits and Khinchine-type inequalities in symmetric spaces// Ph.D. Thesis. - Flinders Univ., 2011.
  129. Zippinn M. Interpolation of operators of weak type between rearrangement invariant spaces// J. Funct. Anal.- 1971.- 7. - С. 267-284.

Copyright (c) 2020 Contemporary Mathematics. Fundamental Directions

License URL: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies