Lagrangian Representations for Linear and Nonlinear Transport

Cover Page

Cite item

Abstract

In this note we present a unifying approach for two classes of first order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.

About the authors

Stefano Bianchini

S.I.S.S.A

Email: bianchin@sissa.it
via Bonomea 265, 34136 Trieste, Italy

Paolo Bonicatto

S.I.S.S.A

Email: paolo.bonicatto@sissa.it
via Bonomea 265, 34136 Trieste, Italy

Elio Marconi

S.I.S.S.A

Email: elio.marconi@sissa.it
via Bonomea 265, 34136 Trieste, Italy

References

  1. Alberti G., Bianchini S., Crippa G. Structure of level sets and Sard-type properties of Lipschitz maps// Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). - 2013. - 12, № 4. - C. 863-902.
  2. Alberti G., Bianchini S., Crippa G. A uniqueness result for the continuity equation in two dimensions// J. Eur. Math. Soc. (JEMS). - 2014. - 16, № 2. - C. 201-234.
  3. Ambrosio L. Transport equation and Cauchy problem for BV vector fields// Invent. Math. - 2004. - 158, № 2. - C. 227-260.
  4. Ambrosio L., Fusco N., Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. - Oxford: Clarendon Press, 2000.
  5. Bardos C., le Roux A. Y., Ne´de´lec J.-C. First order quasilinear equations with boundary conditions// Commun. Part. Differ. Equ. - 1979. - 4. - C. 1017-1034.
  6. Bianchini S., Bonicatto S. A uniqueness result for the decomposition of vector fields in Rd// Preprint SISSA 15/2017/MATE.
  7. Bianchini S., Bonicatto A., Gusev N. A. Renormalization for autonomous nearly incompressible BV vector fields in two dimensions// SIAM J. Math. Anal. - 2016. - 48, № 1. - C. 1-33.
  8. Bianchini S., Gusev N. A. Steady nearly incompressible vector fields in two-dimension: chain rule and renormalization// Arch. Ration. Mech. Anal. - 2016. - 222, № 2. - C. 451-505.
  9. Bianchini S., Marconi E. On the concentration of entropy for scalar conservation laws// Discrete Contin. Dyn. Syst. Ser. S. - 2016. - 9.- C. 73-88.
  10. Bianchini S., Marconi E. On the structure of L∞ entropy solutions to scalar conservation laws in one-space dimension// Arch. Ration. Mech. Anal. - 2017. - 226, № 1. - C. 441-493.
  11. Bianchini S., Marconi E., Bonicatto S. A Lagrangian approach to multidimensional scalar conservation laws// Preprint SISSA 36/2017/MATE.
  12. Bianchini S., Modena S. Quadratic interaction functional for general systems of conservation laws// Commun. Math. Phys. - 2015. - 338, № 3. - C. 1075-1152.
  13. Bianchini S., Yu L. Structure of entropy solutions to general scalar conservation laws in one space dimension// J. Math. Anal. Appl. - 2015. - 428, № 1. - C. 356-386.
  14. Bressan A. An ill posed Cauchy problem for a hyperbolic system in two space dimensions// Rend. Semin. Mat. Univ. Padova. - 2003. - 110. - C. 103-117.
  15. Cheng K. S. A regularity theorem for a nonconvex scalar conservation law// J. Differ. Equ. - 1986. - 61. - C. 79-127.
  16. Dafermos C. M. Continuous solutions for balance laws// Ric. Mat. - 2006. - 55, № 1. - C. 79-92.
  17. Dafermos C. M. Hyperbolic Conservation Laws in Continuum Physics. - Berlin-Heidelberg: Springer, 2010.
  18. de Lellis C. Notes on hyperbolic systems of conservation laws and transport equations// Handb. Differ. Equ. - 2007. - 3. - C. 277-382.
  19. de Lellis C., Riviere T. Concentration estimates for entropy measures// J. Math. Pures Appl. (9). - 2003. - 82. - C. 1343-1367.
  20. DiPerna R. J., Lions P.-L. Ordinary differential equations, transport theory and Sobolev spaces// Invent. Math. - 1989. - 98, № 3. - C. 511-547.
  21. Ole˘ınik O. A. Discontinuous solutions of non-linear differential equations// Am. Math. Soc. Transl. Ser. 2. - 1963. - 26. - C. 95-172.
  22. Otto F. Initial-boundary value problem for a scalar conservation law// C. R. Math. Acad. Sci. Paris. - 1996. - 322, № 8. - C. 729-734.

Copyright (c) 2019 Contemporary Mathematics. Fundamental Directions

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies