Some Free Boundary Problems Arising in Rock Mechanics
- Authors: Meirmanov AM1,2, Galtsev OV2, Galtseva OA2
-
Affiliations:
- Yachay Tech University
- Belgorod State University
- Issue: Vol 64, No 1 (2018): Differential and Functional Differential Equations
- Pages: 98-130
- Section: New Results
- URL: https://journals.rudn.ru/CMFD/article/view/22264
- DOI: https://doi.org/10.22363/2413-3639-2018-64-1-98-130
Cite item
Full Text
Abstract
В этой статье мы рассматриваем несколько физических процессов в механике горных пород, которые описываются задачами со свободной границей. Некоторые из них известны (задачи Муската), другие совершенно новые (подземное выщелачивание и динамика трещин в подземных горных породах).
About the authors
A M Meirmanov
Yachay Tech University; Belgorod State University
Email: anvarbek@list.ru
Yachay, Ecuador; Belgorod, Russia
O V Galtsev
Belgorod State University
Email: galtsev_o@bsu.edu.ru
Belgorod, Russia
O A Galtseva
Belgorod State University
Email: galtseva@bsu.edu.ru
Belgorod, Russia
References
- Ладыженская О. А. Математические вопросы динамики вязкой несжимаемой жидкости. - М.: Наука, 1970.
- Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. - М.: Наука, 1967.
- Рубинштейн Л. И. Проблема Стефана. - Рига: Звайгзне, 1967.
- Жиков В. В., Козлов С. М., Олейник О. А. Усреднение дифференциальных операторов. - М.: Физматлит, 1993.
- Anderson T. L. Fracture mechanics. Fundamentals and applications. - Boca Raton: CRC Press, 1995.
- Antontsev S. N., Kazhikhov A. V., Monakhov V. N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. - Amsterdam-NewYork-Oxford-Tokyo: North-Holland, 1990.
- Antontsev S., Meirmanov A., Yurinsky V. A free boundary problem for Stokes equations: classical solutions// Interfaces Free Bound. - 2000. - 2. - C. 413-424.
- Bo¨hm M. On a nonhomogeneous Bingham fluid// J. Differ. Equ. - 1985. - 60. - C. 259-284.
- Brady P. V., House W. A. Surface-controlled dissolution and growth of minerals// В сб.: «Physics and chemistry of mineral surfaces». - Boca Raton: CRC Press, 1996. - C. 225-306.
- Burridge R., Keller J. B. Poroelasticity equations derived from microstructure// J. Acoustic Soc. Amer. - 1981. - 70. - C. 1140-1146.
- Cohen C. E., Ding D., Quintard M., Bazin B. From pore scale to wellbore scale: Impact of geometry on wormhole growth in carbonate acidization// Chem. Eng. Sci. - 2008. - 63. - C. 3088-3099.
- Colding T. N., Minicozzi II W. P., Pedersen E. K. Mean Curvature Flow// Bull. Am. Math. Soc. (N.S.). - 2015. - 52. - C. 297-333.
- Ferna´ ndez-Cara E., Guille´n F., Ortega R. R. Some theoretical results for visco-plastic and dilatant fluids with variable density// Nonlinear Methods Appl. - 1997. - 28. - C. 1079-1100.
- Freidman A. Variational principles and free-boundary problems. - New York: John Wiley & Sons Inc., 1982.
- Giga Y., Takahashi S. On global weak solutions of the nonstationary two-phase Stokes flow// SIAM J. Math. Anal. - 1994. - 25. - C. 876-893.
- Golfier F., Zarcone C., Bazin B., Lenormand R., Lasseux D., Quintard M. On the ability of a Darcyscale model to capture wormhole formation during the dissolution of a porous medium// J. Fluid Mech. - 2002. - 457. - C. 213-254.
- Kalia N., Balakotaiah V. Effect of medium heterogeneities on reactive dissolution of carbonates// Chem. Eng. Sci. - 2009. - 64. - C. 376-390.
- Kasahara K. Earthquake mechanics. - Cambridge: Cambridge University Press, 1981.
- Kenneth W. W., Raymond E. D., Larry M. P., Stanley G. G. Chemistry. - Belmont: Brooks, 2014.
- Lukkassen D., Nguetseng G., Wall P. Two-scale convergence// Int. J. Pure Appl. Math. - 2002. - 2.- C. 35-86.
- Malvern L. E. Introduction to Mechanics of a Continuum Medium. - Englewood Cliffs: Prentice-Hall Inc., 1969.
- Meirmanov A. The Stefan problem. - Berlin-New York: Walter de Gruyter, 1992.
- Meirmanov A. The Muskat problem for a viscoelastic filtration// Interfaces Free Bound. - 2011. - 13.- C. 463-484.
- Meirmanov A. M. Mathematical models for poroelastic flows. - Paris: Atlantis Press, 2013.
- Meirmanov A., Galtsev O. Displacement of oil by water in a single elastic capillary// Boundary Value Problems. - 2017. - 2017. - C. 1-26.
- Meirmanov A., Galtsev O. Dynamics of cracks in rocks// Int. J. Evol. Equ. - 2017. - 10. - C. 214-227.
- Meirmanov A., Zimin R., Shiyapov K. The Muskat problem at the microscopic level for a single capillary// Bound. Value Probl. - 2015. - 71.- C. 1-8.
- Monakhov V. N. Boundary-value problems with free boundaries for elliptic systems of equations. - Providence: AMS, 1983.
- Nguetseng G. A general convergence result for a functional related to the theory of homogenization// SIAM J. Math. Anal. - 1989. - 20. - C. 608-623.
- Nguetseng G. Asymptotic analysis for a stiff variational problem arising in mechanics// SIAM J. Math. Anal.- 1990.- 21. - C. 1394-1414.
- Nouri A., Poupaud F. An existence theorem for the multifluid Navier-Stokes problem// J. Differ. Equ. - 1995. - 13. - C. 463-484.
- Panga M. K. R., Ziauddin M., Balakotaiah V. Two-scale continuum model for simulation of wormholes incarbonate acidization// A.I.Ch.E. Journal. - 2005. - 51. - C. 3231-3248.
- Sanchez-Palencia E. Non-homogeneous media and vibration theory. - Berlin: Springer, 1980.
- Solonnikov V. A., Ladyzhenskaya O. A. On unique solvability of an initial-boundary value problem for viscous nonhomogeneous fluids// J. Soviet Math. - 1978. - 9. - C. 697-749.
- Solonnikov V. A., Padula M. On the local solvability of free boundary problem for the Navier-Stokes equations// J. Math. Sci. - 2010. - 170. - doi: 10.1007/s10958-010-0099-3.
- Solonnikov V. A., Tani A. Free boundary problem for the Navier-Stokes equations for a compressible fluid with a surface tension// J. Soviet Math. - 1992. - 62. - C. 2814-2818.
- Whitham G. B. Linear and nonlinear waves. - New York: Willey, 1999.