Simulation of an incomplete algebraic problem of eigenvalues and vectors by the method of frequency-dynamic condensation based on FEM in the form of the classical mixed method

Cover Page


Relevance . Dynamic analysis of complex structures using numerical methods leads to the solution of the algebraic problem of eigenvalues and the corresponding eigenvectors of high orders. The solution of this problem for high order matrices is performed using reduction methods. One of the most effective methods is the method of sequential frequency-dynamic condensation, which allows partial consideration of the dynamic properties of the structure in the minor degrees of freedom. This allows for more accurate results compared to static condensation. Frequency-dynamic condensation is traditionally used to reduce frequency equations derived from the finite element method in the form of the displacement method or the force method. Methods. The authors have developed an algorithm for the frequency-dynamic condensation method for the frequency equation obtained on the basis of the FEM in the form of the classical mixed method. That allows to obtain not only the spectrum of the lower vibration frequencies, but also the corresponding vibration modes and the stress-strain state of the structure. Results . This article describes the algorithm and its practical implementation in the problem of dynamic analysis of a rectangular plate. The results of the numerical analysis of the problem are presented. An assessment of the accuracy of the method and recommendations for its use are given.

About the authors

Alexander V Ignatyev

Volgograd State Technical University

Author for correspondence.
SPIN-code: 9405-9800
28 Lenin Ave., Volgograd, 400005, Russian Federation

PhD in Technical Sciences, Associate Professor, Department of Automated Systems Software

Artem V Chumakov

Volgograd State Technical University

28 Lenin Ave., Volgograd, 400005, Russian Federation

master student of the Department of Software of Automated Systems

Vadim V Gilka

Volgograd State Technical University

28 Lenin Ave., Volgograd, 400005, Russian Federation

master student of the Department of Software of Automated Systems


  1. Choi J.H., Kim H., Cho M. (2008). Iterative method for dynamic condensation combined with substructuring scheme. Journal of Sound and Vibration, 317(1), 199–218.
  2. Vol'mir A.S., Terskih V.N. (1979). Issledovanie dinamiki konstrukcij iz kompozitnyh materialov na osnove metoda superehlementov [The investigation of the dynamics of structures made of composite materials based on the super-elements method]. Mekhanika kompozitnyh materialov [Mechanics of composite materials], (4), 652– 655. (In Russ.)
  3. Vol'mir A.S., Kuranov B.A., Turbaivskij A.T. (1989). Statika i dinamika slozhnyh struktur: prikladnye mnogourovnevye metody issledovanij [Statics and dynamics of complex structures: Applied multilevel research methods]. Moscow: Mashinostroenie Publ., 248. (In Russ.)
  4. Tyuhanov V.V. (2011). Metod resheniya zadach dinamiki plastinok slozhnoj formy [The method of solving problems of dynamics of plates of complex shape] // Izvestiya Tul'skogo gosudarstvennogo universiteta. Estestvennye nauki [Natural sciences. Journal of fundamental and applied researches], (1), 138–144. (In Russ.)
  5. Ignat'ev V.A., Romashkin V.N. (2014). Opredelenie reducirovannogo spektra chastot i form svobodnyh kolebanij sistem s bol'shim chislom stepenej svobody na osnove splajn-kollokacionnoj kondensacii [Determination of the reduced frequency spectrum and forms of free vibrations of systems with a large number of degrees of freedom based on spline-collocation condensation]. Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture, 35(54), 140–152. (In Russ.)
  6. Karpov D.V. (2002). Razvitie metoda reducirovannyh ehlementov dlya rascheta regulyarnyh sterzhnevyh sistem i analiza ploskih temperaturnyh polej (dis.. kand. tekhn. nauk) [Development of the reduced elements method for regular core systems and plane temperature fields analysis (PhD thesis)]. Vladivostok, 209. (In Russ.)
  7. Hurty W.C. (1965). Dynamic analysis of structural systems using component modes. AIAA Journal, 3(4), 678–685.
  8. Craig R., Bampton M. (1968). Coupling of Substructures for Dynamic Analysis. Am. Inst. Aero. Astro. J., 6(7), 1313–1319.
  9. Craig R.R. (1995). Substructure method in vibration. J. Vib. Acoust., 117(B), 207–213.
  10. Papadimiriou C., Papadioti D.C. (2013). Component mode synthesis technique for finite element model updating. Comput. Struct., (126), 15–28.
  11. Hou G., Maroju V. (1995). Component mode synthesis-based design optimization method for local structural modification. Struct. Optim., (10), 128–136.
  12. Lall S., Marsden J. E., Glavaski S. (2002). A subspace approach to balanced truncation for model reduction of nonlinear control system. Int. J. Robust. Nonlinear Control., 12(6), 519–535.
  13. Bourquin F. (1990). Analysis and comparison of several component mode synthesis methods on one dimensional domains. Numer. Math., 58(1), 11–33.
  14. Kim J.G., Lee P.S. (2015). A posteriori error estimation method for the flexibility-based component mode synthesis. AIAA J., 53(10), 2828–2837.
  15. Bennighof J.K., Lehoucq R.B. (2004). An automated multi-level substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput., 25(6). 2084–2106.
  16. Kim J.G., Lee P.S. (2015). An enhanced Craig – Bampton method. Intl. J. Numer. Methods Eng., (103), 79–93.
  17. Kim J.G., Boo S.H., Lee P.S. (2015). An enhanced AMLS method and its performance. Comput. Methods Appl. Mech. Eng., (287), 90–111.
  18. Rabczuk T., Belytschko T. (2005). Adaptivity for structured meshfree particle methods in 2D and 3D. Intl. J. Numer. Methods Eng., 63(11), 1559–1582.
  19. Belostockij A.M., Dubinskij S.I., Potapenko A.L. (2006). Metody dinamicheskogo sinteza podkonstrukcij v zadachah modelirovaniya slozhnyh inzhenernyh system [Dynamic synthesis Methods of substructures in the problems of modeling complex engineering systems]. Stroitel'naya mekhanika i raschet sooruzhenij [Structural Mechanics and Analysis of Constructions], (10), 99–110. (In Russ.)
  20. Belostockij A.M., Potapenko A.L. (2011). Submodeling and dynamic synthesis of substructures methods realizations in multipurposes and objectoriented program packages. Int. Jorn. for Computational Civil and Structural Engineering, 7(1), 76–83. (In Russ.)
  21. Ignatyev V.A. (1992). Redukcionnye metody rascheta v statike i dinamike plastinchatyh sistem [Reduction analysis methods in statics and dynamics of plate systems]. Saratov: SGU Publ., 142. (In Russ.)
  22. Ignatyev V.A., Romashkin V.N. (2010). Posledovatel'naya chastotno-dinamicheskaya kondensaciya. Materialy nauch.-tekhn. internet-konferencii [Sequential frequencydynamic condensation. Materials of scientific and technical Internet conference]. Volgograd: VolgGASU Publ., 63–87. (In Russ.)
  23. Ignatyev V.A. (2011). Modificirovannyj metod posledovatel'noj chastotno-dinamicheskoj kondensacii [Modified method of sequential frequency-dynamic condensation]. Academia. Arhitektura i stroitel'stvo, (2), 100–103. (In Russ.)
  24. Ignatyev V.A., Chanturidze A.U. (2011). Metod chastotno-dinamicheskoj kondensacii [Modified method of sequential frequency-dynamic condensation]. Vestnik VolgGASU, 24(43), 46–53. (In Russ.)
  25. Romashkin V.N. (2013). Superehlementnaya formulirovka metoda chastotno-dinamicheskoj kondensacii. Internet-vestnik VolgGASU. Seria Multitematiceskaa, 1(25). (In Russ.)
  26. Guyan R. J. (1965). Reduction of Stiffness and Mass Matrices. AIAA Journal, 3(2), 380.
  27. Ignatyev V.A., Ignatyev A.V., Zhidelev A.V. (2006). Smeshannaya forma metoda konechnyh ehlementov v zadachah stroitel'noj mekhaniki [Mixed form of the finite element method in problems of structural mechanics]. Volgograd: VolgGASU Publ., 171. (In Russ.)
  28. Gabova V.V. (2011). Primenenie smeshannoj formy MKEH k raschetam sterzhnevyh sistem (Dis. …kand. tekhn. nauk) [Application of the mixed form of the FEM to analysis of truss structures (PhD thesis)]. Institute of Architecture and Civil Engineering of Volgograd State Technical University. (In Russ.)
  29. Ignatyev V.A. (1973). Raschet regulyarnyh sterzhnevyh system [Design of regular truss systems]. Saratov: Rotaprint SVVU Publ., 433. (In Russ.)



Abstract - 258

PDF (Russian) - 231




Copyright (c) 2019 Ignatyev A.V., Chumakov A.V., Gilka V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies