Large-sized transformable space antenna reflector made оf composite materials dynamic modeling process

Cover Page


Large space structures (LSS) occupy a special place among other objects of space technology. Due to their large size, these structures are compactly stowed under the fairings of the launch vehicles or in the cargo compartments of the Space Shuttle type spacecraft. After launch into the working orbit, they are deployed automatically into the predetermined configuration with the help of transformable elements, which act both as the load-bearing frame and actuators. The deployment should be carried out within the specified time and should not negatively affect the strength, shape or spatial orientation of the structure. To meet these requirements, it is necessary to theoretically investigate the deployment dynamics of the LSS under consideration. This paper aims to find the optimal design and engineering solutions of an ultralight transformable reflector for a space antenna made of metal mesh with load-bearing elements in the form of telescopic hollow rods made from carbon fiber reinforced plastic. The deployment dynamics of the load-bearing elements with the mesh attached was modeled using the Russian-made software package EULER 10.25. The modeling allowed us to estimate the effect of the tensile load from the mesh on the deployment process. With the elastic load from mesh accounted for, the stability and rigidity of the load-bearing elements will be ensured and the accuracy of the mesh tension will be increased.

About the authors

Sergey V Reznik

Bauman Moscow State Technical University (National Research University)

Author for correspondence.
SPIN-code: 1000-3828
5 2-nd Baumanskaya St., bldg. 1, Moscow, 105005, Russian Federation

Doctor of Sciences (Techn.), Professor, Head of the Department SM-13 Rocket and Space Composite Structures

Dmitriy E Chubanov

Bauman Moscow State Technical University (National Research University)

5 2-nd Baumanskaya St., bldg. 1, Moscow, 105005, Russian Federation

Master of Engineering and Technologies, graduated in 2018 the Department SM-13 Rocket and Space Composite Structures


  1. Sokolov A.G., Gvamichava A.S. Resheniya inzhenernyh konstrukcij kosmicheskih radioteleskopov [Solutions of the engineering constructions of space radiotelescopes]. Antennas. Iss. 29, 2—10. Moscow: Radio i svyaz’ Publ., 1981. (In Russ.)
  2. Bojkov V.G. Programmnyj kompleks avtomatizirovannogo dinamicheskogo analiza mnogokomponentnyh mekhanicheskih system EULER [Software package for automated dynamic analysis of EULER multicomponent mechanical systems]. SAPR i grafika [SAPR and Graphics], 2000, No. 9, 17—20. (In Russ.)
  3. Usyukin V.I., Arhipov Yu.M. Modelirovanie statiki i dinamiki krupnogabaritnyh reflektorov kosmicheskih antenn: uchebnoe posobie [Modeling of statics and dynamics of large-sized reflectors of space antennas: a manual]. Мoscow: Bauman MSTU Publ., 2015, 56. Available from: http:// (accessed: 11.08.2018). (In Russ.)
  4. Meshkovskij V.E. Geometricheskaya model’ raskryvayushchejsya krupnogabaritnoj kosmicheskoj konstrukcii fermennogo tipa [Geometric model of a large-scale open space construction of a truss type]. Herald of the Bauman Moscow State Technical University. Series: Natural Sciences, 2009, No. 4, 56—71. (In Russ.)
  5. Kuznecova A.O. Issledovanie dinamiki dvizheniya raskryvayushchihsya mekhanicheskih sistem s uprugimi svyazyami [Investigation of the dynamics of the motion of unfolding mechanical systems with elastic bonds]. Vestnik SibGAU [Vestnik SibSAU. Aerospace technologies and control systems], 2005, No. 3, 135—138. (In Russ.)
  6. Zimin V.N., Meshkovskij V.E. Dinamika krupnogabaritnyh raskryvayushchihsya kosmicheskih konstrukcij [Dynamics of large-sized unfolding space structures]. Proceedings of the 2nd International Conference “Rocket and Space Technology: Fundamental and Applied Problems” (November 18—21, 2003, Moscow). Part II. Moscow: Bauman MSTU Publ., 2005, 27—32. (In Russ.)
  7. Smirnov A.V., Baryshev A., Pilipenko S.V. et al. Space mission Millimetron for terahertz astronomy. Proceedings of SPIE, 21 September 2012, Vol. 8442, 9 p. doi: 10.1117/12.927184
  8. Banichuk N.V., Karpov N.I., Klimov D.I., Markeev A.P., Sokolov B.N., Sharanyuk A.V. Mekhanika bol’shih kosmicheskih konstrukcij. Moscow: Factorial Publ., 1997, 302. (In Russ.)
  9. Zimin V.N. Razrabotka metodov analiza dinamiki i ocenki rabotosposobnosti raskryvayushchihsya krupnogabaritnyh kosmicheskih konstrukcij fermennogo tipa [Development of methods for analyzing the dynamics and assessing the operability of large-scale open space structures of the truss type]: Dissertation. Мoscow: Bauman MSTU Publ., 2008, 309. (In Russ.)
  10. Arhipov M.Yu., Telepnev P.P. Kompleks rabot po chislennomu modelirovaniyu dinamiki konstrukcii kosmicheskogo radioteleskopa proekta “Radioastron”. Kosmicheskie issledovaniya [Cosmic Research], 2014, Vol. 52, No. 5, 418—422. (In Russ.)
  11. Golubev E.S., Galinovskij A.L., Arhipov M.Yu. Modelirovanie i analiz dinamicheskih harakteristik konstrukcii krupnogabaritnyh teplozashchitnyh ehkranov kosmicheskogo teleskopa [Modeling and analysis of the dynamic design characteristics of the large-size heat shields of the space telescope]. Izvestiya vysshih uchebnyh zavedenij. Seriya: Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2016, No. 2, 76—84. doi: 10.18698/0536-1044-20162-76-84 (In Russ.)
  12. Imbriale W. Spaceborne antennas for planetary exploration. N.Y.: John Wiley and Sons, 2006, 592.
  13. Kurkov C.B., Gutovskij I.E. Modelirovanie dinamiki processa raskrytiya kosmicheskogo apparata metodom konechnyh ehlementov XX Mezhdunarodnaya konferentciya “BEM & FEM”. [Conference proceedigs]. Saint Petersburg, 2003, 41—48. (In Russ.)
  14. Krylov A.V., Churilin S.A. Modelirovanie razvertyvaniya mnogozvennyh zamknutyh kosmicheskih konstrukcij [Modeling the deployment of multi-tier closed space structures]. Inzhenernyj zhurnal: nauka i innovacii [Engineering Journal: Science and Innovation], 2012, No. 8(8). doi: 10.18698/23086033-2012-8-449 (In Russ.)
  15. Usyukin V.I. Stroitel’naya mekhanika konstrukcij kosmicheskoj tekhniki [Construction mechanics of space technology constructions]. Moscow: Mashinostroenie Publ., 1988. 392. (In Russ.)
  16. Reznik S.V., Prosuntsov P.V., Mikhailovsky K.V., Shafikova I.R. Material science problems of building space antennas with a transformable reflector 100 m in diameter. IOP Conf. Series: Materials Science and Engineering, 2016, 153 012001. doi: 10.1088/1757-899X/153/1/012001
  17. Yudincev V.V. Modelirovanie processov raskrytiya mnogoehlementnyh konstrukcij kosmicheskih apparatov [Modeling of the processes of disclosure of multi-element structures of space vehicles]. Polyot [Flight], 2012, No. 5, 28—33. (In Russ.)
  18. Lyannoj E.G., Kurkov S.V., Gutovskij I.E. Ispol’zovanie matematicheskih modelej dlya ocenki i obespecheniya bezopasnyh zon raskrytiya transformiruemoj fermy. Trudy XXV Rossijskoj shkoly i XXXV Ural’skogo seminara po problemam nauki i tekhnologij [Conference proceedigs]. Moscow: Mezhregional’nyj sovet po nauke i tekhnologiyam, 2005, 78—87.(In Russ.)
  19. Dement’ev G.P., Zaharov A.G., Kazarov Yu.K., et al. Fiziko-tekhnicheskie osnovy primeneniya i sozdaniya kosmicheskih apparatov [Physicotechnical foundations of the application and creation of space vehicles]. Moscow: Mashinostroenie Publ., 1987, 264. (In Russ.)
  20. Andreeva E.A., Blinov A.F., Gimmel’man V.G., Fedorov Ya.Yu., Shesnyak S.S. Transformirue maya shtanga krupnogabaritnogo reflektora [Transformable rod of large reflector]. Materialy XIX Reshetnevskih chtenij [Conference proceedigs], 2015, Vol. 1, No. 19, 65—67. (In Russ.)
  21. Bushuev A.Yu., Farafonov B.A. Matematicheskoe modelirovanie processa raskrytiya solnechnoj batarei bol’shoj ploshchadi [Mathematical modeling of the process of opening a large solar battery]. Matematicheskoe Modelirovanie i Chislennye Metody [Mathematical modeling and numerical methods], 2014, No. 2, 101—114. (In Russ.)



Abstract - 468

PDF (Russian) - 370



Copyright (c) 2018 Reznik S.V., Chubanov D.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies