DEVELOPMENT OF TECHNOLOGY FOR SUPPORTING MINE WORKINGS UNDER CONDITIONS OF INTENSE OXIDATION OF SULFIDE ORES AT THE ORLOVSKY MINE

Cover Page

Abstract


Goal. Metal frame supports SVP-22 with round timber lagging and backfilling of the voidsof unsupported space with chock support is used in the workings of unstable ores and rocks at the Orlovsky mine. When filling the voids with a chock supportmanually, people are located in an unsupported part of the working, therefore this operation is hazardous and laborious. The purpose of the work is to select and test the backfill material for voids of unsupported space, which ensures a decrease in diffusion and oxygen seepage to the centers of spontaneous ignition of the ore bodies under conditions of intense oxidation of sulphide ores at the Orlovsky deposit. Methods. Foaming non-combustible materials (“Blockfil” phenolic two-component resins) were tested in the experimental works at the Orlovsky mine for backfilling the voids when supporting the mine workings by metal frame supports with a round timber lagging. Results. It has been established that the use of phenolic resins as backfilling will reduce the intensity of the oxidation reaction and prevent self-heating of the ore to critical temperatures, and also prevent or slow down the process of heating ofmine air from the heated surface of the ore body to temperatures exceeding the design values. Conclusions. The use of phenolic resin “Blockfil” to fill the voids ensured the absence of deformation of the elements of the metal frame support and the safety of mining, and also allowed to reduce the intensity of the oxidation reaction and prevent self-heating from the ore to critical temperatures and prevent or slow down the process of heating the mine air from the heated surface of the ore body to temperatures, exceeding the design values.


Full Text

Орловское колчеданно-полиметаллическое месторождение, расположенное на востоке Казахстана, характеризуется сложными горно-геологическими и горнотехническими условиями. Устойчивость пород резко понижается в зонах выветривания, тектонических нарушений и на участках гидротермального изменения пород, мощность которых колеблется от нескольких метров до 100-150 м. Породы околорудных зон весьма неустойчивые из-за многочисленных разнонаправленных микротрещин, заполненных кальцитом, пиритом, и многочисленных зеркал скольжения. При обнажении, снятии больших нагрузок и увлажнении такие породы разуплотняются и обрушаются в горные выработки. Руды месторождения относятся к пожароопасным (содержание пиритной серы более 35%) [1]. Приуроченность рудных зон месторождения к области мощного межслоевого тектонического нарушения типа сдвига, которому сопутствуют зоны интенсивного дробления и рассланцевания вмещающих пород, облегчающие доступ кислорода, увеличивает пожароопасность месторождения. На пожароопасность Орловского месторождения существенно влияют пострудные дизъюнктивные тектонические нарушения типа сбросов, которым сопутствуют зоны мелкораздробленной перетертой руды мощностью до 3-4 м [2]. Мелкораздробленная и перетертая руда окисляется значительно интенсивнее, чем монолитная, так как является более проницаемой по отношению к окисляемым образованиям и имеет большую поверхность для окисления. Аналогичное влияние на пожароопасность месторождения оказывает трещинная тектоника. В настоящее время при проведении выработок в неустойчивых рудах и породах на Орловской шахте в качестве крепи используются металлические рамные крепи СВП-22 с накатником из круглого леса и забучиванием пустот закрепного пространства костровой крепью. При забучивании пустот костровой крепью изза того, что забутовка пустот костровой крепью не подведена вплотную к обнажению горного массива по кровле и бортам выработки, не обеспечивается надежный контакт «крепь - горный массив». При отслоении горного массива с кровли при некачественной забутовке происходит нарушение рам СВП, т.е. крепь не гарантирует поддержание кровли в устойчивом состоянии на участках очень слабого горного массива. Наличие незаполненных пустот за верхняками рам металлической крепи является причиной неудовлетворительного управления горным давлением в выработках [3]. Известно, что незаполненные пустоты в своде выработок снижают несущую способность рамной металлической крепи в 2,0-2,5 раза за счет увеличенных изгибающих моментов в криволинейной части арок, неравномерности распределения нагрузки по их периметру, возможности смещения рам к одному из боков или вдоль выработки [4]. Несущая способность крепи СВП-22 - не менее 330 кН/раму, сопротивление - не менее 260 кН/раму1. В ранее выполненных работах было установлено, что тщательная забутовка исключает динамические нагрузки и способствует более равномерному их распределению по периметру рам [5-10]. При этом чем плотнее забутовка, тем равномернее по контуру крепи распределяется внешняя нагрузка. Увеличение жесткости забутовки приводит к уменьшению изгибающих моментов в элементах крепи. Кроме того, при «кострении» лесом закрепных пустот вручную люди на- 1 ГОСТ Р 51748-2001. Крепи металлические податливые рамные. Крепь арочная. Общие технические условия. ходятся в незакрепленной части выработки, в связи с чем данная операция является довольно травмоопасной и трудоемкой. Повышение плотности забутовки приводит к более равномерному распределению внешней нагрузки по контуру [3], а увеличение жесткости забутовки приводит к уменьшению изгибающих моментов в элементах крепи. Для повышения работоспособности рамных крепей необходимо, чтобы податливый слой (забутовка) деформировался по мере смещения контура пород выработки от нагрузки, не превышающей прочности рамной конструкции с учетом податливости рамных металлических крепей в замковых соединениях [11]. Запас на смещения контура выработки задается параметрами податливого слоя и запасом податливости рамных металлических крепей в замковых соединениях. В нормативных документах отмечено, что не допускается закладка пустот лесом при креплении горных выработок несгораемыми материалами1. Смещения, компенсируемые за счет сжатия забутовочного материала, зависят от сжимаемости материала, толщины забутовочного слоя и расчетной нагрузки на крепь и определяются опытным путем2. Для исключения притока кислорода к очагу эндогенного пожара на Орловской шахте выработанное пространство в районе очага должно быть изолировано путем установки изолирующих перемычек или покрытия подходных выработок пленкообразующим компонентом, обеспечивающим уменьшение диффузии и просачивание кислорода к очагам самовозгорания сульфидных руд в виде утечек воздуха, который фильтруется через тело перемычки и трещины во вмещающих выработку породах. Таким образом, при выборе забутовочного материала при проходке горных выработок на Орловской шахте необходимо учитывать следующие факторы: 1. материал, толщина и прочность забутовки выбираются таким образом, чтобы сформировать плотный и непосредственный контакт с вмещающими породами, а также обеспечить несущую способность возведенной рамной крепи, соответствующую существующим значениям горного давления и конвергенции вмещающих пород и не допустить существенного возрастания сосредоточенных случайных нагрузок на крепь, что резко снижает ее несущую способность, ведет к деформациям ее элементов, поломкам и даже завалам выработки; 2. материал забутовки пустот закрепного пространства должен обеспечивать уменьшение диффузии и просачивание кислорода к очагам самовозгорания сульфидных руд. При этом забутовку необходимо возводить как можно раньше, чтобы она могла воспринять нагрузки, вызванные деформациями массива горных пород на ранних стадиях и предупредить быстрое формирование зоны разрушенных пород. В рамках опытно-промышленных работ на Орловской шахте в качестве забутовки пустот закрепного пространства при креплении горных выработок метал- 1 Правила обеспечения промышленной безопасности для опасных производственных объектов, ведущих горные и геологоразведочные работы. Утверждены Приказом Министра по инвестициям и развитию Республики Казахстан от 30 декабря 2014 года № 352. 2 Руководство по проектированию подземных горных выработок и расчету крепи // ВНИМИ, ВНИИОМШС Минуглепрома СССР. М.: Стройиздат, 1983. 272 с. лической рамной крепью с накатником из круглого леса были испытаны вспенивающиеся негорючие материалы (фенольные двухкомпонентные смолы «Блокфил»). Фенольная смола «Блокфил» содержит формальдегид - 0,01 мг/м3; метиловый спирт - 0,5 мг/м3; аммиак - 0,04 мг/м3; фенол - 0,003 мг/м3. Опыт работ по забутовке пустот закрепного пространства фенольной смолой «Блокфил» при проходке выработок на Орловской шахте показал, что после производства буровзрывных работ в забое выработки при расстоянии около 1,5 м от забутовки до груди забоя разрушение забутовочного материала из смолы «Блокфил» не происходило (рис. 1). Прочность на сжатие при 10% деформации затвердевшей смолы «Блокфил» по данным компании ТОО «ДСИ Техно» составляет 0,02 МПа. В ходе опытно-промышленных испытаний были отмечены случаи отставания по времени забутовки пустот закрепного пространства вспенивающимися материалами, что в конечном итоге приводило к полной деформации элементов рамной крепи из-за высокого горного давления. Так, на слоевом штреке блока 12 с на нижнем горизонте Орловской шахты была апробирована технология забутовки пустот закрепного пространства вспенивающимися материалами. Закрепные пустоты заполнялись фенольной смолой «Блокфил». Однако в дальнейшем при проходке данной выработки было выставлено шесть рам без забутовки пустот фенольной смолой. Вероятно, частично забутовка все-таки была выполнена из костровой крепи, что необходимо для поддержания накатника на рамной крепи. Однако плотного контакта обнажений вмещающих пород с забутовкой на было. Рис. 1. Состояние забутовки пустот закрепного пространства из фенольной смолы «Блокфил» после проведения буровзрывных работ, вид со стороны забоя при отставании крепления от груди забоя 4 м [Fig. 1. The state of backfilling of the voids of the unsupported roof space from the phenolic resin “Blockfil” after drilling and blasting operations, the view from the side of the face when the supports are 4 m from the face] В последующем в результате отслоений горной массы рамы были полностью деформированы, в связи с чем для приведения выработки в безопасное состояние необходимо было перекреплять аварийный участок выработки. Руководством шахты было принято решение об остановке работ на слоевом штреке блока 12с и дальнейшем заполнении его бетонной закладкой. При этом смежные рамы с аварийным участком, пустоты закрепного пространства которых были забутованы фенольной смолой, не были деформированы. Теплопроводность образца фенольной смолы «Блокфил» определена в Институте нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН на измерителе теплопроводности сканирующем на эталонах полиметилметакриата методом игольчатого зонда. Однако в силу того, что нижний предел эталонов в Институте нефтегазовой геологии и геофизики СО РАН представлен относительно высоким значением теплопроводности 0,194 Вт/м·°К, полученный с помощью измерителя теплопроводности результат при использовании эталонов с более высоким значением, чем у образца, имеет более завышенные показатели. Поэтому измерения коэффициента теплопроводности были продублированы с помощью абсолютного метода (игольчатого зонда), результаты которого являются более достоверными (λ = 0,026 Вт/м·°К). В работе [2] были определены теплофизические показатели руд и вмещающих пород Орловского месторождения (табл. 1). Таблица Теплофизические показатели руд и вмещающих пород Орловского месторождения [Table. Thermophysical parameters of ores and enclosing rocks of Orlovsky mine] Тип породы [Rock type] Коэффициент теплопроводности λ, Вт/м·°К [Thermal conduction coefficient λ, W/m·°К] Сплошная полиметаллическая руда [Massive polymetallic ore] 5,5-5,9 Сплошная барит-полиметаллическая руда [Massive barite-polymetallic ore] 4,88-7,44 Сплошная медно-цинковая руда [Massive copper-zinc ore] 3,4-11,3 Сплошная медно-колчеданная руда [Massive copper-sulphide ore] 4,21-4,204 Алевролит [Siltst one] 0,4-3,8 Аргиллит [Argillite] 0,2-3,0 Глинистый сланец [Argillaceous slate] 0,2-3,0 Известняк влажный [Wet limestine] 0,9-4,4 Песчаник плотный [Tight sandstone] 2,33 Сравнение полученных значений коэффициента теплопроводности руд, вмещающих пород Орловского месторождения и фенольной смолы показывают, что она вполне может выполнять роль изоляционного материала при забутовке закрепных пустот при проходке горных выработок в условиях наличия очагов самонагревания рудного массива при интенсивном окислении сульфидных руд. Кроме того, забутовка закрепных пустот вспенивающими материалами позволит исключить или существенно снизить контакт обнаженной поверхности рудного массива с кислородом рудничного воздуха, а при контакте руды с кислородом рудничного воздуха разогрев поверхности рудного массива в течение года может достигнуть 200-260 °С [2], что близко к температуре самовозгорания пиролизированной древесины, что подтверждается замерами, выполненными пылевентиляционной службой Орловской шахты, показывающими, что температура рудничного воздуха в горных выработках в результате окисления и самонагревания руды может превысить 100 °С. Таким образом, применение в качестве забутовки закрепного пространства фенольной смолы позволит снизить интенсивность реакции окисления и предотвратить самонагревание руды до критических температур, а также предотвратить или замедлить процесс нагревания рудничного воздуха от разогретой поверхности рудного массива до температур, превышающих нормативные значения. К недостаткам использования в качестве забутовки закрепного пространства фенольной смолы можно отнести невозможность охлаждения поверхности прогретого рудного массива за счет контакта с рудничным воздухом. Однако охлаждение поверхности прогретой выработки (массива) в условиях контакта с сухим рудничным воздухом (λ = 0,034 Вт/м·°К) при скорости потока порядка 0,1-0,5 м/с и с температурой, близкой к температуре прогретого массива, проходит очень медленно, при этом температура поверхности может снизиться до 55-60 °С в течение 2,5-3,0 лет. Удельные затраты на забутовку закрепного пространства вспенивающимися материалами в сравнении с забутовкой пустот «костровой» крепью довольно высоки (рис. 2). Удельные затраты на забутовку, долл. США/п.м. 1400 1200 1000 800 600 400 200 0 забутовка вспенивающимися материалами забутовка костровой крепью Рис. 2. Удельные затраты на забутовку закрепного пространства вспенивающимися материалами и «костровой» крепью на 1 п.м. выработки сечением Sпр = 16,0 м2 [Fig. 2. Specific costs for backfilling of unsupported roof space with foaming materials and chock support for 1 m. ofoutput withsection Spr = 16.0 m2] По данным [12], температура термической деструкции фенольной смолы «Блокфил» составляет около 700 °С, при этом потеря массы образца составляет всего 21,7%. Фенольная смола «Блокфил» по классу опасности материала по значению показателя токсичности продуктов горения относится к высокоопасным, по группе горючести материала - к трудногорючим. Контакт продукции с кожей может привести к сильному раздражению, ожогам. Пары продукции в концентрациях, превышающих ПДК для воздуха рабочей зоны, раздражают верхние дыхательные пути и слизистые оболочки глаз, оказывают воздействие на центральную нервную систему (ЦНС), печень, почки. Входящие в состав вещества способны вызывать аллергические заболевания в производственных условиях (при контакте с кожей), канцерогенны. Контроль воздуха рабочей зоны необходимо осуществлять по гидроксибензолу, серной кислоте, фосфорной кислоте, формальдегиду, 4-гидроксибензолсульфокислоте. Анализ проведенных исследований и опытно-промышленных работ на Орловской шахте свидетельствует о том, что применение в качестве забутовки пустот закрепного пространства негорючими вспенивающимися материалами при креплении горных выработок металлической рамной крепью обеспечивает сохранность проводимых горных выработок и позволяет предотвратить самонагревание руды до критических температур, замедлить процесс нагревания рудничного воздуха от разогретой поверхности рудного массива до температур, превышающих нормативные значения.

About the authors

Yuriy N Shaposhnik

N.A. Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: shaposhnikyury@mail.ru
54, Krasny Prospect, Novosibirsk, 630091, Russian Federation

Doctor of Technical Sciences, leading research associate, laboratory of engineering physics geotechnologies, N.A. Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences. Research interests: geomechanics, mechanical properties and destruction of geomaterials and mountain massifs, problems of geotechnology and mineral processing

Anton I Konurin

N.A. Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences

Email: akonurin@yandex.ru
54, Krasny Prospect, Novosibirsk, 630091, Russian Federation

Candidate of Technical Sciences, research associate, laboratory of engineering physics geotechnologies, N.A. Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences. Research interests: mechanical properties and failure of geomaterials and rock bodies, modern geodynamics, modeling of geodynamic processes

Denis A Shokarev

Expert PRO

Email: denshok82@mail.ru
47, Protozanov A.K. str., Ust-Kamenogorsk, 070004, Republic of Kazakhstan

CEO “Expert PRO”. Research interests: problems of geotechnology and mineral processing, modern geodynamics, modeling of geodynamic processes

Sergey N Shaposhnik

East Kazakhstan State Technical University (EKSTU)

Email: shaposhniksergey@mail.ru
69, Protozanov A.K. str.,Ust-Kamenogorsk, 070004, Republic of Kazakhstan

Doctor of Technical Sciences, Professor at the Department of Geology and Mining, East Kazakhstan State Technical University (EKSTU). Research interests: seismology, seismic waves, problems of geotechnology and mineral processing

References

  1. Khodzhaev R.R., Gabaidullin R.I., Asainov S.T., Pobedinskaya I.V. Issledovanie pozharoopasnosti pri dobyche sul’fidnykh rud podzemnym sposobom [The study of fire danger in the extraction of sulphide ores by an underground method]. Tez. dokl. XXIX mezhdunarodnoi nauchnoprakticheskoi konferentsii, posvyashchennoi 80-letiyu FGBU VNIIPO MChS Rossii [Abstracts of XXIX International Scientific and Practical Conference, dedicated to the 80th anniversary of the FGB VNIIPO EMERCOM of Russia]. Balashikha, 2017. 205—208. (In Russ.)
  2. Nurgalieva A.D., Rakhimberlina A.A., Kakenova M.Zh., Gabaidullin R.I. Pozharoopasnost’ Orlovskogo mestorozhdeniya [On the fire hazard of the Orlovsky deposit]. Trudy mezhdunarodnoi nauchno-prakticheskoi konferentsii «Integratsiya nauki, obrazovaniyai proizvodstva — osnova realizatsii plana natsii» (Saginovskiechteniya № 7). Ch. 2 [Proceedings of international scientific and practical conference “Integration of science, education and production — the basis for the implementation of the national plan” (Saginov Readings No. 7). Part 2]. Karaganda State Technical University. Karaganda: KARGTU Publ., 2015. 187—189. (In Russ.)
  3. Erofeev L.M., Miroshnikova L.A. Povysheniye na dezhnosti podderzhki gornykh vyrabotok [Increasing the reliability ofmine workings supports]. Moscow: Nedra Publ., 1988. 245 p. (In Russ.)
  4. Martynenko I.I., MartynenkoI.A., Minakova Zh.A. Vliyaniye zapolneniya fiksirovannogo prostranstva na krepirovaniye [Influence of unsupported spacefilling on support strength]. GIAB, 2005. P. 160—163. (In Russ.)
  5. Maksimov A.P., ShashenkoA.N.,RozhkoA.N. Vliyaniye kachestva zasypki na nesushchuy usposobnost’ oporymetallicheskoydugi [Influence of the quality of backfill on the bearing capacity of metal arc support]. Shakhtnoe stroitel’stvo [Mine Construction]. 1987. P. 21—23. (In Russ.)
  6. Martynenko I.I., Martynenko I.A., Minakova Zh.A. Vliyaniye zapolneniy azakrepnogo prostranstvana rabotu krepi [Influence of unsupported space filling on support strength]. Mining Informational and Analytical Bulletin. 2005. No. 8. 160—163. (In Russ.)
  7. Veliky I.G., Cheretyanko V.I., Cherkasov V.V., Lyubashevskaya N.V., Shapovalov Yu.S. O vybore zabutovochnogo materiala dlya ZZP gornykh vyrabotok [On selectingbackfill material for filling voids of unsupported space in mine workings]. Shakhtnoe stroitel’stvo [Mine Construction]. 1978. No. 9. P. 12—14. (In Russ.)
  8. Galushko P.Ya. Vliyaniye shirinysloyai sostava zasypki na vzaimodeystviye porodi krepi [Influence of layer width and composition of backfill on the interaction of rocks and supports]. Ugol’ Ukrainy [Coal of Ukraine]. 1977. No. 4. P. 6—8. (In Russ.)
  9. Zaslavsky I.Ya. Nesushchaya sposobnost’ arochnoi krepi pri TZP [Strength of arch support with thermal protection coating]. Shakhtnoe stroitel’stvo [Mine Construction]. 1987. No. 10. P. 11—13. (In Russ.)
  10. Simanovich G.A. O prochnosti tamponazhnogo rastvora v zakrepnom prostranstve gornykh vyrabotok [On the strength of cement mortar in unsupported space of mine workings]. Shakhtnoe stroitel’stvo [Mine Construction]. 1987. No. 12. P. 10—13. (In Russ.)
  11. Solodyankin A.V., Gapeev S.N. Chislennoe modelirovanie vliyaniya parametrov podatlivoi zabutovki na napryazhenno-deformirovannoe sostoyanie vmeshchayushchego vyrabotku massiva [Numerical modeling of effect of flexible backfill parameters on stress-strain state of ore containing rock body]. Materialy IV mezhdunarodnoi nauchno-prakticheskoi konferentsii «Problemy gornogo delaiekologiigornogoproizvodstva» [Proceedings of the IV International Scientific and Practical Conference “Problems of Mining and Ecology of Mining Industry”]. Antratsit. 2009. P. 115—123. (In Russ.)
  12. Uvarova V.A. Metodologicheskiye osnovy kontrolya pozharoopasnykh i toksicheskikh svoystv shahtnykh polimernykh materialov. Dokt. Diss. [Methodological fundamentals of control of firehazardous and toxic properties of mine polymeric materials. Doct. Diss.]. Moscow, 2016. 300 p. (In Russ.)

Statistics

Views

Abstract - 258

PDF (Russian) - 246

Cited-By


PlumX


Copyright (c) 2018 Shaposhnik Y.N., Konurin A.I., Shokarev D.A., Shaposhnik S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies