Эффект от применения 3D-печатной оболочки для армирования сверхвысокопрочного бетона

Обложка

Цитировать

Полный текст

Аннотация

Объект исследования - это сверхвысокопрочный бетон с оболочечной 3D-печатной полимерной арматурой. Экспериментально исследованы механические свойства полимерно-армированного бетона. 3Dпечатные арматурные оболочки были созданы в 3D Max и Rhino 6, изготовлены методом наплавленного осаждения и помещены в кубические, цилиндрические и призматические опалубочные формы. Экспериментально исследована прочность на сжатие, растяжение и изгиб. Прочности армированных образцов оказалась меньше, чем неармированных, но включение 3D-печатной арматуры изменило механизм разрушения бетона с хрупкого на вязкий.

Об авторах

Хематибахар Мохаммад

Московский государственный строительный университет

Автор, ответственный за переписку.
Email: eng.m.hematibahar1994@gmail.com
ORCID iD: 0000-0002-0090-5745

аспирант кафедры железобетонных и каменных конструкций

Москва, Российская Федерация

Николай Иванович Ватин

Санкт-Петербургский политехнический университет Петра Великого; Российский университет дружбы народов

Email: vatin@mail.ru
ORCID iD: 0000-0002-1196-8004

доктор технических наук, профессор высшей школы промышленно-гражданского и дорожного строительства

Санкт-Петербург, Российская Федерация; Москва, Российская Федерация

Тахери Джафари Хамид

Рамсарский архитектурный университет Азад

Email: hamidtahery2002@yahoo.co.uk
ORCID iD: 0009-0009-5816-3009

научный сотрудник департамента гражданского строительства

Рамсар, Иран

Тесфалдет Хадгембес Гебре

Российский университет дружбы народов

Email: tesfaldethg@gmail.com
ORCID iD: 0000-0002-7168-5786

кандидат технических наук, ассистент департамента строительства инженерной академии

Москва, Российская Федерация

Список литературы

  1. Xu Y., Šavija B. Development of strain hardening cementitious composite (SHCC) reinforced with 3D printed polymeric reinforcement: Mechanical properties. Composites Part B: Engineering. 2019;(174):107011. https://doi.org/10.1016/j.compositesb.2019.107011
  2. Jaimes W., Maroufi S. Sustainability in steel making. Current opinion in green and sustainable chemistry. 2020; (24):42-47. https://doi.org/10.1016/j.cogsc.2020.01.002
  3. Hasanzadeh A., Vatin N.I. Hematibahar M., Kharun M. Shooshpasha I. Prediction of the mechanical properties of basalt fiber reinforced high-performance concrete using machine learning techniques. Materials. 2022;(15):7165. https://doi.org/10.3390/ma15207165
  4. Ji Y., Xu W., Sun Y., Ma Y., He Q., Xing Z. Grey correlation analysis of the durability of steel fiber-reinforced concrete under environmental action. Materials. 2022;(15):4748. https://doi.org/10.3390/ma15144748
  5. Mu Y., Xia H., Yan Y., Wang Z., Guo R. Fracture behavior of basalt fiber-reinforced airport pavement concrete at different strain rates. Materials. 2022;(15):7379. https://doi.org/10.3390/ma15207379
  6. Mohtasham Moein M., Saradar A., Rahmati K., Shirkouh A.H. Sadrinejad I., Aramali V., Karakouzian, M. Investigation of impact resistance of high-strength portland cement concrete containing steel fibers. Materials. 2022;(15): 7157. https://doi.org/10.3390/ma15207157
  7. Eskandarinia M., Esmailzade M., Hojatkashani A., Rahmani A., Jahandari S. Optimized alkali-activated slag-based concrete reinforced with recycled tire steel fiber. Materials 2022(15);6623: https://doi.org/10.3390/ma15196623
  8. Hematibahar M., Vatin N.I., Alaraza H.A.A., Khalilavi A., Kharun M. The prediction of compressive strength and compressive stress-strain of basalt fiber reinforced high-performance concrete using classical programming and logistic map algorithm. Materials 2022;19:6975. https://doi.org/10.3390/ma15196975
  9. Hasanzadeh A., Shooshpasha I. A study on the combined effects of silica fume particles and polyethylene terephthalate fibres on the mechanical and microstructural characteristics of cemented sand. International Journal of Geosynthetics and Ground. 2021;(7):98. https://doi.org/10.1007/s40891-021-00340-4
  10. Hasanzadeh A., Shooshpasha I. Influences of silica fume particles and polyethylene terephthalate fibers on the mechanical characteristics of cement-treated sandy soil using ultrasonic pulse velocity. Bulletin of Engineering Geology and the Environment. 2022;(81)14. https://doi.org/10.1007/s10064-021-02494-x
  11. Stähli P., Van Mier J.G. Manufacturing fibre anisotropy and fracture of hybrid fibre concrete. Engineering Fracture Mechanics. 2007;(74):223-242. https://doi.org/10.1016/j.engfracmech.2006.01.028
  12. Kim T.G., Shin G.Y., Shim D.S. Study on the interfacial characteristics and crack propagation of 630 stainless steel fabricated by hybrid additive manufacturing (additional DED building on L-PBFed substrate). Materials Science and Engineering. 2022;(835):142657. https://doi.org/10.1016/j.msea.2022.142657
  13. Ning X., Liu T., Wu C., Wang C. 3D printing in construction: current status implementation hindrances and development agenda. Advances in Civil Engineering. 2021;(2):6665333. https://doi.org/10.1155/2021/6665333
  14. Tan W., Wang P. Experimental study on seepage properties of jointed rock-like samples based on 3D printing techniques. Advances in Civil Engineering. 2020:9403968. https://doi.org/10.1155/2020/9403968
  15. Boparai K.S., Singh R., Singh H. Development of rapid tooling using fused deposition modeling: a review. Rapid Prototyping Journal. 2016;(22):281-299. https://doi.org/10.1108/RPJ-04-2014-0048
  16. Mansouri A., Binali A., Aljawi A., Alhammadi A., Almir K., Alnuaimi E., Alyousuf H., Rodriguez-Ubinas E. Thermal modeling of the convective heat transfer in the large air cavities of the 3D concrete printed walls. Cogent Engineering. 2022;9(1):2130203. https://doi.org/10.1080/23311916.2022.2130203
  17. Qin S., Cao S., Yilmaz E., Li J. Influence of types and shapes of 3D printed polymeric lattice on ductility performance of cementitious backfill composites. Construction and Building Materials. 2021;307:124973. https://doi.org/ 10.1016/j.conbuildmat.2021.124973
  18. Farina I., Fabbrocino F., Carpentieri G., Modano M., Amendola A., Goodall R., Feo L., Fraternali F. On the reinforcement of cement mortars through 3D printed polymeric and metallic fibers. Composites Part B: Engineering. 2016;(90): 76-85. http://doi.org/10.1016/j.compositesb.2015.12.006
  19. Meurer M., Classen M., Mechanical properties of hardened 3D printed concretes and mortars-development of a consistent experimental characterization strategy. Materials. 2021;14(4):752. https://doi.org/10.3390/ma14040752
  20. Hambach M., Volkmer D. Properties of 3D-printed fiber-reinforced portland cement paste. Cement and Concrete Composites. 2017;79:62-70. https://doi.org/10.1016/j.cemconcomp.2017.02.001
  21. Hambach M., Möller H., Neumann T., Volkmer D. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (>100MPa). Cement and Concrete Research. 2016;89:80-86. https://doi.org/10.1016/ j.cemconres.2016.08.011
  22. Medicis C., Gonzalez S., Alvarado Y.A., Vacca H.A., Mondragon I.F., Garcia R., Hernandez G. Mechanical performance of commercially available premix UHPC-based 3D printable concrete. Materials. 2022;15:6326. https://doi. org/10.3390/ma15186326
  23. Rehman A.U., Kim J.H. 3D Concrete printing: A systematic review of rheology mix designs mechanical microstructural and durability characteristics. Materials. 2021;(14):3800. https://doi.org/10.3390/ma14143800
  24. Pham L., Tran P. Sanjayan J. Steel fibres reinforced 3D printed concrete: influence of fibre sizes on mechanical performance. Construction and Building Materials. 2020;(250):118785. https://doi.org/10.1016/j.conbuildmat.2020.118785
  25. Arunothayan A.R., Nematollahi B., Ranade R., HauBong S., Sanjayan J.G., Khayat K.H. Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement and Concrete Research. 2021;(143);106384. https://doi. org/10.1016/j.cemconres.2021.106384
  26. Nam Y.J., Hwang Y.K., Park J.W., Lim Y.M. Feasibility study to control fiber distribution for enhancement of composite properties via three-dimensional printing. Mechanics of Advanced Materials and Structures. 2019;(26):465-469. https://doi.org/10.1080/15376494.2018.1432809
  27. Rosewitz J.A., Choshali H.A., Rahbar N. Bioinspired design of architected cement-polymer composites. Cement and Concrete Composites. 2019;(96):252-265. https://doi.org/10.1016/j.cemconcomp.2018.12.010
  28. Katzer J., Szatkiewicz T. Effect of 3D printed spatial reinforcement on flexural characteristics of conventional mortar. Materials. 2020;(13):3133. https://doi.org/10.3390/ma13143133
  29. Salazar B., Aghdasi P., Williams I.D., Ostertag C.P., Taylor H.K. Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design. 2020;(196):109184. https://doi.org/10.1016/j.matdes.2020.109184
  30. Liu Y., Zwingmann B., Schlaich M. Carbon fiber reinforced polymer for cable structures-a review. Polymers. 2015;(7):2078-2099. https://doi.org/10.3390/polym7101501
  31. Wittbrodt B., Pearce J.M. The Effects of PLA Color on Material Properties of 3-D Printed Components. Additive Manufacturing. 2015;(8):110-116. http://doi.org/10.1016/j.addma.2015.09.006
  32. Hasanzadeh A., Shooshpasha I. Effects of silica fume on cemented sand using ultrasonic pulse velocity. Journal of Adhesion Science and Technology. 2019;(33):1184-1200. https://doi.org/10.1080/01694243.2019.1582890
  33. Hasanzadeh A., Shooshpasha I. Influence of silica fume on the geotechnical characteristics of cemented sand. Geotechnical and Geological Engineering. 2020;(38):6295-6312. https://doi.org/10.1007/s10706-020-01436-w
  34. Chen Y., Matalkah F., Soroushian P.,Weerasiri R., Balachandra A. Optimization of ultra-high performance concrete quantification of characteristic features. Cogent Engineering. 2019;(6):1558696. https://doi.org/ 10.1080/23311916.2018.1558696
  35. Shihada S., Arafa M. Effects of silica fume ultrafine and mixing sequences on properties of ultra high performance concrete. Asian Journal of Materials Science. 2010;(2):137-146. http://doi.org/10.3923/ajmskr.2010.137.146
  36. Zhang H., Cao C., Yilmaz E. Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill. Construction and Building Materials. 2022;(343):128137. http://doi.org/10.1016/j.conbuildmat.2022.128137
  37. Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Füssel U. 3D-printed steel reinforcement for digital concrete construction - Manufacture mechanical properties and bond behaviour. Construction and Building Materials. 2018;(179):125-137. https://doi.org/10.1016/j.conbuildmat.2018.05.202
  38. Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F., Thorpe T. Hardened properties of high-performance printing concrete. Cement and Concrete Research. 2012;(42):558-566. https://doi.org/10.1016/j.cemconres.2011. 12.003
  39. Xu Y., Zhang H., Gan Y., Šavija B. Cementitious composites reinforced with 3D printed functionally graded polymeric lattice structures: Experiments and modelling. Additive Manufacturing. 2021;(39):101887. https://doi.org/10.1016/j.addma.2021.101887

© Мохаммад Х., Ватин Н.И., Хамид Т.Д., Гебре Т.Х., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах