Расчет кольцевой пластины в криволинейных неортогональных координатах с помощью уравнений теории оболочек

Обложка

Цитировать

Полный текст

Аннотация

В основу исследования положена полная система 20 уравнений в криволинейных неортогональных координатах линейной теории тонких оболочек, ранее использованная при статическом расчете длинного развертывающегося геликоида. В статье эта система применена для определения напряженно-деформированного состояния кольцевой и круглой пластин при внешней осесимметричной поверхностной нагрузке, действующей как в плоскости пластин, так и из их плоскости. Полученные результаты для кольцевой пластины в неортогональных координатах расширяют класс задач, которые теперь можно решить аналитически. Они могут быть использованы в качестве первых членов рядов разложения искомых перемещений в случае применения метода малого параметра применительно к длинному развертывающемуся геликоиду.

Полный текст

1. Introduction It is known, that the simplest equations of theory of thin shells are turned out for middle shell surfaces given in principle curvatures. But sometimes, it is very difficult to set a surface in principle curvatures and one must use governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates. The complete system of equations in curvilinear non-orthogonal coordinates was proposed by A.L. Goldenveizer [1]. This system contains internal “pseudoforces”, “pseudomoments”, and Christoffel’s symbols. The system of equations, presented by Ya.M. Grigorenko and A.M. Timonin [2], is written in tensor form. The system, proposed by the author, contains internal forces and moments usual for engineers and is free from Christoffel’s symbols [3]. Hereinafter, the equations presented in a paper [3] will be used. 2. An aim of investigation Having the systems of the governing equations of a theory of thin shells, set by different scientists, it is desirable to use them for solution of problems of bending of plates and for solution of plane problems of their analysis, or to apply the governing equations of a theory of thin shells for solution of test examples of analysis of plane elements. This approach is illustrated by an example of reducing of general equations of a theory of thin shells in curvilinear arbitrary coordinates to the equations for analysis of tangential developable helicoid, and after for analysis of annular plates under action of axisymmetric uniform load of two types. 3. Methods of investigation 3.1. Governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates A system of the governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates, proposed by the author, has the following form [3]: - six equilibrium equations: (1) where X, Y, Z - external uniform surface load in the direction of mobile orthogonal axes x, y, z, and the х-axis coincides with the tangent to the u-coordinate line; - six geometrical equations suggested by A.L. Goldenveizer and presented in a monography [1], the first three of which after submission of Christoffel’s symbols in them can be expressed as [3] (2) Remaining three equations for the determination of change of curvatures κu and κv and torsion κuv have rather complex form, for example, for shallow shells (3) Eight physical equations connecting internal forces Nu, Nv, Su, Sv, Qu, Qv and moments Mu, Mv, Muv, Mvu and components of tangential and bending deformations between themselves can be written as [3] (4) where χ ≠ π/2 is the angle between the coordinate lines u and v; ν = Poisson’s ratio; h = thickness of shell. A vector of displacements can be written as Figure. The forces (a) and moments (b), per unit length, needed for equilibrium The forces and moments, per unit length, needed for equilibrium are shown in Figure and are positive as shown. 3.2. Developable helicoid Parametric equations of evolvent (developable) helicoid can be written as (5) where b is the lead of a helix u = 0 (cuspidal edge); v is an angle measured from an axis Ох; a is a radius of a cylinder on which the helical cuspidal edge is lying. In this case, coefficients of the fundamental forms of the surface (5) and its principal curvatures (ku; kv) can be written as A = 1; F = m; B2 = m2 + u2a2/m2; N = uab/m2; L = M = 0; ku = 0; kv = N/B2, (6) and also (7) The u-coordinate lines coincide with the straight generatrixes of the helicoid but the v-lines are co-axis helixes. The formulae (6) show that conjugated (M = 0) non-orthogonal (F ≠ 0) system of curvilinear coordinates is used. For a developable helicoid (5) with coefficients of the fundamental forms (6), the equations (1)-(3) become simpler. Substituting the geometrical equations (2), (3) into the formulae of Hooke’s law (4) but the results into the equilibrium equations (1) one can obtain a system of three differential equations in partial derivatives of the 8th order. This was made in a monograph [3]. But this system of equations was not solved analytically. A system of three differential equations in partial derivatives of the 8th order, presented in a work [4], was reduced to a system of three ordinary differential equations of the 8th order for a long developable helicoid. It was assumed that all components of stress-strain state of a long developable helicoid depend only on the u-coordinate, i. e. all derivatives with respect to parameter v are equal to zero. In this case, a problem of determination of components of stress-strain state yields to analytical solution. With the help of small parameter method, it was solved in works [4; 5]. With the help of asymptotic semianalytical method, it was solved in a work [6]. Analogous approach was used in a paper [7] for analysis of a long right helicoid. Two methods of analysis of thin elastic open helicoidal shells were used in a manuscript [8] where the equations of A.L. Goldenveizer [1] and the equations (1)-(4) were applied. Now five types of helicoidal shells are known [9]. All these shells can be analyzed with the help of presented equations (1)-(4) [10; 11]. 3.3. Governing equations for thin annular plates in curvilinear non-orthogonal coordinates For annular plates, we have b = 0, therefore, formulae (1)-(7) are simplified and become m = a; A = 1; F = a; B2 = a2 + u2; N = L = M = 0; ku = 0; kv = 0; (8) Substituting the values (8) into formulae (1)-(7) gives the possibility easily to obtain corresponding governing equations for annular plate or its fragment subjected to arbitrary uniform surface load or to linear load along contour of the plate acting in the plane of the plate. One can obtain a system of three differential equations in partial derivatives in displacements and reduce them to a system of two differential equations in displacements of the same order. But to solve analytically the obtained systems it is not possible yet. Of course, this problem can be solved with the help of FEM [12]. Assume that an annular plate is subjected to an axisymmetric load. Then, all parameters of stress-strain state of the plate will not depend on the v-coordinate, i. e. Hence, the system of equations (1)-(4) becomes: - equilibrium equations: (9) - geometrical equations: (10) - physical equations: (11) New notations were introduced in formulae (10) and (11): (12) 4. Results 4.1. Applied load is perpendicular to the middle surface of the plate Assume that an annular plate subjected to constant surface load Z = const. It means that applied load is perpendicular to the middle surface of the plate. This assumption eliminates the need to consider in-plane membrane forces that are not considered in the classical theory of bending of thin plates. So, integrating the third equation of equilibrium (9), we determine (13) where is the unknown constant of the integration. Substituting the values of the shear force Qv, obtained from the fourth equation of equilibrium (9), into the fifth equation of equilibrium, gives Taking into account expressions (11), the obtained equation can be written as or with the help of an equality (13) we get Integration of the last expression gives (14) where С1, С2, С3, С4 are the unknown constants of the integration, that can be determined after satisfaction of boundary conditions. Substituting a value of displacement (14) in the expression for the determination of BQu gives i. e. At last, we can find 4.2. Applied load is in the plane of the plate Examine loading annular or circular plate (a = 0) by axisymmetric load acting in the plane of the plate. In this case, we use the first two equations of equilibrium (9). After substitution the first fourth physical equations in them and after some transformations, equations (9) take the following form: Integration of two last expressions gives (15) where D1, D2, D3, D4 are the unknown constants of the integration. The last two equations give the possibility to find parameters of deflections (12). Substituting these parameters into the physical equations (11) one can find the internal forces and moments in an annular or circular plate subjected to an external uniform axisymmetric load acting in the plane of the plate. Assume that X = Y = 0 then from the last two expressions we determine The last expression can be applied if uniform loads X, Y are absent, but displacements given in advance or external moments or forces given in advance are known on the plate edges. In a paper [13], the analogous axisymmetric problem was solved by using finite difference method. 5. Conclusion If one assumes that a radius of the inner edge of the annular plate a = 0 then B = u, χ = π/2 and the well-known equations for circular plate in the polar coordinates would be obtained [14]. It shows that governing equations of a shell theory (1)-(4) assumed as a basis of presented investigation are correct. The results obtained for annular plate in non-orthogonal coordinates widen a class of problems which now can be solved analytically. Examining a long tangential developable helicoid with the help of a small parameter method [15], it is possible to use the solutions (14) and (15) as the first terms of series of expansion of displacements of degrees of the small parameter. Using equations (8)-(15) it is possibly to obtain analytical solutions for plates with different axisymmetric static load and support conditions presented in a paper [16]. The additional information on the application of annular and circular plates and on numerical and analytical analysis of thin and thick plates is given in manuscripts [17-20].

×

Об авторах

Сергей Николаевич Кривошапко

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: sn_krivoshapko@mail.ru

профессор департамента строительства Инженерной академии, доктор технических наук, профессор

Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6

Список литературы

  1. Goldenveizer A.L. Theory of Elastic Thin Shells. New York: Pergamon Press, 1961.
  2. Григоренко Я.М., Тимонин А.М. Об одном подходе к численному решению краевых задач теории оболочек сложной геометрии в неортогональных криволинейных системах координат // Доклады Академии наук Украинской ССР. 1991. № 4. Вып. 9. С. 41–44.
  3. Кривошапко С.Н. Два вида расчетных уравнений для оболочек в произвольных криволинейных координатах // Строительная механика инженерных конструкций и сооружений. 2017. № 1. С. 15–22. URL: http://journals.rudn.ru/ structural-mechanics/article/view/15201 (дата обращения: 12.08.2020).
  4. Кривошапко С.Н. Геометрия линейчатых поверхностей с ребром возврата и линейная теория расчета торсовых оболочек: монография. М.: РУДН, 2009. 357 с.
  5. Krivoshapko S.N. Static analysis of shells with developable middle surfaces // Applied Mechanics Reviews. 1998. Vol. 51. Issue 12. Part 1. Pp. 731–746.
  6. Баджория Г.Ч. Расчет длинного развертывающегося геликоида по моментной теории в перемещениях // Строительная механика и расчет сооружений. 1985. № 3. С. 22–24.
  7. Рынковская M.И. К вопросу о расчете на прочность тонких линейчатых винтовых оболочек // Строительная механика инженерных конструкций и сооружений. 2015. № 6. С. 13–15. URL: http://journals.rudn.ru/structural-mechanics/ article/view/10871 (дата обращения: 12.08.2020).
  8. Krivoshapko S.N., Gbaguidi-Aïssè G. Two methods of analysis of thin elastic open helicoidal shells // International Journal of Research and Reviews in Applied Sciences. 2012. Vol. 2(12). Issue 3. Pp. 382–390.
  9. Krivoshapko S.N., Rynkovskaya M. Five types of ruled helical surfaces for helical conveyers, support anchors and screws // MATEC Web of Conferences. 2017. Vol. 95. Article number 06002. http://dx.doi.org/10.1051/matecconf/20179506002
  10. Rynkovskaya M., Ivanov V. Analytical method to analyze right helicoid stress-strain // Advanced Structured Materials. 2019. Vol. 92. Pp. 157–171.
  11. Тупикова Е.М. Полуаналитический расчет длинного пологого косого геликоида в неортогональной несопряженной системе координат // Строительная механика инженерных конструкций и сооружений. 2016. № 3. С. 3–8. URL: http://journals.rudn.ru/structural-mechanics/article/view/11254 (дата обращения: 12.08.2020).
  12. Hayder Abdulameer Mehdi. Derivation of Annular Plate Sector Element for General Bending Analysis // Journal of Engineering and Sustainable Development. 2015. Vol. 19. Issue 1. Pp. 14–30.
  13. Noh S., Abdalla M.M., Waleed W.F. Buckling analysis of isotropic circular plate with attached annular piezoceramic plate // Malaysian Journal of Mathematical Sciences. 2016, February. Vol. 10(S). Pp. 443–458. URL: http://einspem.upm.edu.my/journal (accessed: 12.08.2020).
  14. Jawad M.H. Design of Plate & Shell Structures. New York: ASME Press, 2004.
  15. Кривошапко С.Н. Применение асимптотического метода малого параметра для аналитического расчета тонких упругих торсов-геликоидов // Пространственные конструкции зданий и сооружений. 2004. Вып. 9. С. 36–44.
  16. Civalek Ö., Çatal H.H. Linear static and vibration analysis of circular and annular plates by the harmonic differential quadrature (HDQ) method // Eng. & Arch. Fac. Osmangazi University. 2003. Vol. XVII. No. 1. Pp. 43–71.
  17. Shariyat M., Mohammadjani R. Three-dimensional compatible finite element stress analysis of spinning two-directional FGM annular plates and disks with load and elastic foundation non-uniformities // Latin American Journal of Solids and Structures. 2013. Vol. 10. No. 5. Pp. 859–890. http://dx.doi.org/10.1590/S1679-78252013000500002
  18. Mattikalli A.C., Kurahatti R.V. Analysis of annular plate by using numerical method // International Journal of Innovative Science, Engineering & Technology. 2018. Vol. 5. Issue 1. URL: http://ijiset.com/vol5/v5s1/IJISET_V5_I01_01.pdf (accessed: 12.08.2020).
  19. Zietlow D.W., Griffin D.C., Moore T.R. The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary // AIP Advances. 2012. Vol. 2. Issue 4. https://doi.org/10.1063/1.4757928
  20. Zenkour A.M. Bending of a sector shaped annular plate with continuous thickness variation along the radial direction // Quarterly Journal of Mechanics and Applied Mathematics. 2004, May. Vol. 57. Issue 2. Pp. 205–223. doi: 10.1093/qjmam/57.2.205.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Кривошапко С.Н., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.