Том 28, № 3 (2020)

О скорости сходимости одного класса марковских цепей с групповым обслуживанием требований

Крюкова А.Л.

Аннотация

Существует множество систем массового обслуживания, которые принимают единичные требования, накапливают их и обслуживают только как группу. Примеры таких систем можно найти в различных областях человеческой жизни от трафика транспортных перевозок до обработки запросов в компьютерных сетях. Этим обуславливается актуальность нашего исследования. В этой статье изучается некоторый класс конечных марковских моделей массового обслуживания с одиночным прибытием и групповым обслуживанием. Рассмотрена прямая система Колмогорова для соответствующего класса цепей Маркова. Метод определения границ сходимости, основанный на понятии логарифмической нормы, здесь не применим. Такой подход даёт точные оценки для моделей, для которых матрица соответствующей системы существенно неотрицательна, но в нашем случае это не так. Здесь мы использовали новый метод «дифференциальных неравенств» для получение оценки скорости сходимости для этого класса конечных марковских моделей. Кроме того, мы получили оценки скорости сходимости и вычислили предельные характеристики и для соответствующей нестационарной модели. Заметим, что результаты могут быть успешно применены для моделирования сложных биологических систем, в которых возможны рождения новых особей только по одной и гибель групп.

Discrete and Continuous Models and Applied Computational Science. 2020;28(3):205-215
pages 205-215 views

Применение средств компьютерной алгебры к вычислению амплитуды \(\pi\pi\)-рассеяния

Калиновский Ю.Л., Фризен А.В., Рогожина Е.Д., Голяткина Л.И.

Аннотация

Целью данной работы является разработка программ для расчёта амплитуды рассеяния элементарных частиц, а также автоматизация таких расчётов с использованием систем компьютерной алгебры (Mathematica, Form, Cadabra). В статье рассматривается процесс рассеяния пиона на пионе в рамках эффективной КХД-мотивированной модели Намбу-Иона-Лазинио с двумя ароматами кварков. Для расчёта амплитуды рассеяния (начиная с расчёта Фейнмановских диаграмм и заканчивая вычислением Фейнмановских интегралов в однопетлевом приближении) использовался пакет  Package-X для Mathematica. Интегралы Фейнмана в однопетлевом приближении вычислялись для случая общей кинематики. В Package-X в основе вычисления интегралов лежит метод Фейнмановской параметризации с последующей пространственной регуляризацией. Для проверки корректности вычислений был произведён расчёт длин рассеяния \(a_0 = 0.147\) и \(a_2 = -0.0475\) для случая нулевой температуры, и было построено полное сечение рассеяния как функции \(s\). Полученные результаты сравнивались с другими моделями и экспериментальными данными.

Discrete and Continuous Models and Applied Computational Science. 2020;28(3):216-229
pages 216-229 views

Асимптотическое решение задачи Штурма-Лиувилля с периодическими граничными условиями для релятивистского конечно-разностного уравнения Шрёдингера

Амирханов И.В., Колосова И.С., Васильев С.А.

Аннотация

Описание взаимодействия релятивистских частиц в рамках квазипотенциального подхода широко применяется в современной физике. Этот подход основан на так называемой ковариантной формулировке квантовой теории поля, в которой эта теория рассматривается на пространственно-подобной трёхмерной гиперповерхности в пространстве Минковского. Особое внимание в этом подходе уделяется методам построения различных квазипотенциалов, а также использованию квазипотенциального подхода для описания характеристик связанных состояний в кварковых моделях, таких как амплитуды адронного упругого рассеяния, масс-спектры и ширины распадов мезонов, сечения глубокого неупругого рассеяния лептонов на адронах.

В настоящей работе сформулированы задачи Штурма–Лиувилля с периодическими граничными условиями на отрезке и на положительной полупрямой для усечённого релятивистского конечно-разностного уравнения Шрёдингера (уравнение Логунова–Тавхелидзе–Кадышевского, LTKT-уравнение) с малым параметром при старшей производной.

Целью работы является построение асимптотических решений (собственных функций и собственных значений) в виде регулярных и погранслойных частей решений для этой сингулярно возмущённой задачи Штурма–Лиувилля. Основная задача исследования состоит в асимптотическом анализе поведенческих решений рассматриваемой задачи в случае ε→0 и m→∞. Нами был предложен метод построения асимптотических решений (собственных функций и собственных значений), который является обобщением асимптотических методов решения сингулярно возмущённых задач, представленных в работах А. Н. Тихонова, А. Б. Васильевой и В. Ф. Бутузова. Основной результат данной работы — доказанные теоремы об асимптотической сходимости решений сингулярно возмущённой задачи к решениям вырожденной задач при ε→0 и сходимости решений усечённого LTKT-уравнения в случае m→∞. Кроме того, в статье нами рассматривается задача Штурма–Лиувилля на положительной полуоси для LTKT-уравнения 4-го порядка с периодическими граничными условиями для квантового гармонического осциллятора. Для этой задачи построены асимптотические приближения собственных функций и собственных значений и показана их сходимость к решению вырожденной задачи.

Discrete and Continuous Models and Applied Computational Science. 2020;28(3):230-251
pages 230-251 views

Асимптотический метод построения модели адиабатических волноводных мод плавно-нерегулярных интегрально-оптических волноводов

Севастьянов А.Л.

Аннотация

В работе рассмотрен класс плавно нерегулярных интегрально-оптических многослойных волноводов, свойства которых определяют характерные черты волноводного распространения в них монохроматического поляризованного света. Предложен асимптотический подход к описанию данного вида электромагнитного излучения, в результате которого решения системы уравнений Максвелла редуцируется к такому виду, который выражается через решения системы четырёх обыкновенных дифференциальных уравнений и двух алгебраических уравнений для шести компонент электромагнитного поля в нулевом приближении. Градиент фазового фронта адиабатической волноводной моды удовлетворяет уравнению эйконала относительно эффективного показателя преломления волновода относительно данной моды.Многослойная структура волноводов позволяет произвести ещё один этап редукции системы уравнений модели к однородной системе линейных алгебраических уравнений, условие нетривиальной разрешимости которой задаёт связь градиента фазового фронта излучения с градиентами поверхностей раздела между тонкими однородными слоями.В завершающей части работы сформулированы задачи (дифференциальная и алгебраическая) на собственные значения и собственные векторы для описания адиабатических волноводных мод. Приведена также формулировка задачи описания одномодового режима распространения адиабатических волноводных мод, подчёркивающая адиабатический характер описываемого приближенного решения уравнений Максвелла.

Discrete and Continuous Models and Applied Computational Science. 2020;28(3):252-273
pages 252-273 views

Модель квантовых измерений Курышкина-Вудкевича для атомов щелочных металлов

Зорин А.В.

Аннотация

Конструктивная форма модели квантовых измерений Курышкина-Водкевича ранее была подробно разработана для квантовой задачи Кеплера. Для более сложных квантовых объектов такая конструкция неизвестна. В то же время стандартная (неконструктивная) модель квантовых измерений Холево-Хелстрома подходит для любого квантового объекта. В данной работе конструктивная модель квантовых измерений обобщена на более широкий класс квантовых объектов, то есть на оптический спектр атомов и ионов с одним валентным электроном. Анализ основан на экспериментальных данных об энергетическом упорядочении электронов в атоме по правилу Клечковского-Маделунга и на обосновании одночастичной потенциальной модели для описания энергетического спектра оптических электронов в атомах щелочных металлов. Представление возмущения одночастичного потенциала в виде свертки потенциала электрона в атоме водорода с функцией Вигнера некоторого эффективного состояния остова в представлении атома щелочного металла позволяет редуцировать все алгоритмы расчета для щелочных металлов к соответствующим алгоритмам для атома водорода.
Discrete and Continuous Models and Applied Computational Science. 2020;28(3):274-288
pages 274-288 views

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах