Интервальные модели неравновесных физико-химических процессов

Обложка

Цитировать

Полный текст

Аннотация

В данной работе рассматривается применение алгоритма адаптивной инетрполяции к задачам химической кинетики и газовой динамики с интервальными неопределенностями констант скоростей реакций. Значения функций, описывающих скорость реакции, могут значительно различаться, если они были получены разными исследователями. Разница может достигать десятков или сотен раз. Для учета данных различий в моделях предлагается использовать интервальные неопределенности. Решение таких задач с интервальными параметрами выполняется с помощью ранее разработанного алгоритма адаптивной интерполяции. На примере моделирования горения смеси водорода и кислорода демонтируется влияние неопределенностей на процесс протекания реакций. Моделируется одномерное неравновесное течение в сопле ракетного двигателя с разной формой сопла, включая сопло с двумя сужениями, в котором может возникать стоячая детонационная волна. Выполняется численное исследование влияния неопределенностей на структуру детонационной волны, а так же на параметры установившегося течения, такие как время задержки воспламенения и концентрация вредных веществ на выходе из сопла.

Полный текст

1. Introduction In order to simulate gas-phase chemical transformations it is necessary to know the kinetic mechanism and the rates of the reactions taking place. As a rule, the dependences that describe the rates are obtained experimentally, often giving only approximate values [1]. The values of the functions approximating the rate of the same reaction, but obtained by different researchers, may differ by tens or hundreds of times. To account for these differences, we propose to use the interval apparatus [2-5]. In this case interval parameters are introduced into the model and simulation results are interval estimates for the values of interest. The previously developed adaptive interpolation algorithm [6-9] is used to solve such problems with interval parameters. The algorithm belongs to the methods that determine an explicit dependence of the solution of the problem on the values of interval parameters. Two subgroups can be distinguished in this group: methods using symbolic expressions [10-12] and methods representing the solution as a polynomial with respect to interval parameters [13, 14]. The adaptive interpolation algorithm belongs to the latter subgroup. This algorithm has a theoretical justification. It consists in constructing a polynomial for each moment of time which interpolates the dependence of the problem solution on the values of the parameters in a given area of uncertainty. The interpolation polynomial is constructed on the basis of a set of nodes that form a grid. At each step of the algorithm, values in the nodes of the grid are updated, and then adaptation is made depending on the interpolation error. New nodes are added in places with a large error, and nodes are removed in places with a small error. The classical version of the algorithm uses interpolation on complete meshes, which limits its application to systems with a small number of interval parameters. However, two approaches, sparse meshes [15-17] and tensor trains [18, 19], have been applied in [20-22], which extend the application of the algorithm to dynamic systems with a large number of interval parameters. The paper deals with the problems of chemical kinetics and gas dynamics. The simulation of combustion of a mixture of hydrogen and oxygen in the presence of interval uncertainties in the reaction rate constants has been carried out. A one-dimensional mathematical model describing chemical nonequilibrium flows in a nozzle of a given shape with uncertainties in the reaction rate constants is presented. Results of a numerical study of the effect of uncertainties on the structure of the detonation wave, as well as on steady-state flow parameters, such as the ignition delay time and the concentration of harmful substances at the nozzle exit, are presented. 2. Model of chemical kinetics Here is a description of the basic relations. A multicomponent system of a variable composition of
×

Об авторах

А. Ю. Морозов

Федеральный исследовательский центр “Информатика и управление” Российской академии наук; Московский авиационный институт (национальный исследовательский университет)

Email: morozov@infway.ru
ORCID iD: 0000-0003-0364-8665
Scopus Author ID: 57203389215
ResearcherId: ABC-7836-2021

Doctor of Physical and Mathematical Sciences, Senior Researcher, Department of Mathematical Modeling of Heterogeneous Systems, Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Associate Professor of the Department of Computational Mathematics and Programming, Moscow Aviation Insti- tute (National Research University)

ул. Вавилова, д. 44, кор. 2, Москва, 119333, Российская Федерация; Волоколамское шоссе, д. 4, Москва, 125993, Российская Федерация

Д. Л. Ревизников

Федеральный исследовательский центр “Информатика и управление” Российской академии наук; Московский авиационный институт (национальный исследовательский университет)

Email: reviznikov@mai.ru
ORCID iD: 0000-0003-0998-7975
Scopus Author ID: 6602701797
ResearcherId: T-4571-2018

Doctor of Physical and Mathematical Sciences, Professor, Leading Researcher, Department of Math- ematical Modeling of Heterogeneous Systems, Federal Research Center Computer Science and Control of the Russian Academy of Sciences; Professor of the Department of Computational Mathematics and Programming, Moscow Aviation Institute (National Research University)

ул. Вавилова, д. 44, кор. 2, Москва, 119333, Российская Федерация; Волоколамское шоссе, д. 4, Москва, 125993, Российская Федерация

В. Ю. Гидаспов

Московский авиационный институт (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: gidaspov@mai.ru
ORCID iD: 0000-0002-5119-4488
Scopus Author ID: 6506396733
ResearcherId: B-4572-2019

Doctor of Physical and Mathematical Sciences, Associate Professor, Professor of the Department of Computational Mathematics and Programming

Волоколамское шоссе, д. 4, Москва, 125993, Российская Федерация

Список литературы

  1. Vaitiev, V. A. & Mustafina, S. A. Searching for uncertainty regions of kinetic parameters in the mathematical models of chemical kinetics based on interval arithmetic. Russian. Bulletin of the South Ural State University. Series Mathematical Modelling, Programming & Computer Software 7, 99-110. doi: 10.14529/mmp140209 (2014).
  2. Moore, R. E. Interval analysis 145 pp. (Prentice-Hall, New Jersey, Englewood Cliffs, 1966).
  3. Moore, R. E., Kearfott, R. B. & Cloud, M. J. Introduction to Interval Analysis 223 pp. doi: 10.1137/1.9780898717716 (Society for Industrial and Applied Mathematics, 2009).
  4. Bazhenov, A. N., Zhilin, S. I., Kumkov, S. I. & Shary, S. P. Processing and analysis of interval data Russian. 356 pp. (Institute of Computer Research, Izhevsk, 2024).
  5. Dobronec, B. S. Interval mathematics Russian. 287 pp. (SibFU, Krasnoyarsk, 2007).
  6. Morozov, A. Y. & Reviznikov, D. L. Adaptive Interpolation Algorithm Based on a kd-Tree for Numerical Integration of Systems of Ordinary Differential Equations with Interval Initial Conditions. Differential Equations 54, 945-956. doi: 10.1134/S0012266118070121 (2018).
  7. Morozov, A. Y. & Reviznikov, D. L. Adaptive sparse grids with nonlinear basis in interval problems for dynamical systems. Computation 11. doi: 10.3390/computation11080149 (2023).
  8. Morozov, A. Y., Zhuravlev, A. A. & Reviznikov, D. L. Analysis and Optimization of an Adaptive Interpolation Algorithm for the Numerical Solution of a System of Ordinary Differential Equations with Interval Parameters. Differential Equations 56, 935-949. doi: 10.1134/s0012266120070125 (2020).
  9. Morozov, A. Y., Reviznikov, D. L. & Gidaspov, V. Y. Adaptive Interpolation Algorithm Based on a KD-Tree for the Problems of Chemical Kinetics with Interval Parameters. Mathematical Models and Computer Simulations 11, 622-633. doi: 10.1134/S2070048219040100 (2019).
  10. Makino, K. & Berz, M. Verified Computations Using Taylor Models and Their Applications in Numerical Software Verification 10381 (Springer International Publishing, Heidelberg, Germany, July 22-23, 2017), 3-13. doi: 10.1007/978-3-319-63501-9_1.
  11. Neher, M., Jackson, K. & Nedialkov, N. On Taylor model based integration of ODEs. SIAM Journal on Numerical Analysis 45, 236-262. doi: 10.1137/050638448 (2007).
  12. Rogalev, A. N. Guaranteed Methods of Ordinary Differential Equations Solution on the Basis of Transformation of Analytical Formulas. Russian. Computational technologies 8, 102-116 (2003).
  13. Fu, C., Ren, X., Yang, Y., Lu, K. & Qin, W. Steady-state response analysis of cracked rotors with uncertain-but-bounded para-meters using a polynomial surrogate method. Communications in Nonlinear Science and Numerical Simulation 68, 240-256. doi: 10.1016/j.cnsns.2018.08.004 (2018).
  14. Fu, C., Xu, Y., Yang, Y., Lu, K., Gu, F. & Ball, A. Response analysis of an accelerating unbalanced rotating system with both random and interval variables. Journal of Sound and Vibration 466. doi: 10.1016/j.jsv.2019.115047 (2020).
  15. Smoliak, S. A. Quadrature and Interpolation Formulae on Tensor Products of Certain Classes of Functions. Russian. Dokl. Akad. Nauk. Sssr 148, 1042-1045 (1963).
  16. Bungatrz, H.-J. & Griebel, M. Sparse grids. Acta Numerica 13, 147-269 (2004).
  17. Bungatrz, H. J. Finite Elements of Higher Order on Sparse Grids 127 pp. (Shaker Verlag, Germany, Duren/Maastricht, 1998).
  18. Oseledets, I. V. Tensor-train decomposition. SIAM Journal on Scientific Computing 33, 2295-2317. doi: 10.1137/090752286 (2011).
  19. Oseledets, I. & Tyrtyshnikov, E. TT-cross approximation for multidimensional arrays. Linear Algebra and its Applications 432, 70-88. doi: 10.1016/j.laa.2009.07.024 (2010).
  20. Gidaspov, V. Y., Morozov, A. Y. & Reviznikov, D. L. Adaptive Interpolation Algorithm Using TT-Decomposition for Modeling Dynamical Systems with Interval Parameters. Computational Mathematics and Mathematical Physics 61, 1387-1400. doi: 10.1134/S0965542521090098 (2021).
  21. Morozov, A. Y., Zhuravlev, A. A. & Reviznikov, D. L. Sparse Grid Adaptive Interpolation in Problems of Modeling Dynamic Systems with Interval Parameters. Mathematics 9. doi: 10.3390/math9040298 (2021).
  22. Morozov, A. & Reviznikov, D. Adaptive Interpolation Algorithm on Sparse Meshes for Numerical Integration of Systems of Ordinary Differential Equations with Interval Uncertainties. Differential Equations 57, 947-958. doi: 10.1134/S0012266121070107 (2021).
  23. Gidaspov, V. Y. & Severina, N. S. Elementary Models and Computational Algorithms in Physical Fluid Dynamics. Thermodynamica and Chemical Kinetics Russian. 84 pp. (Faktorial, Moscow, 2014).
  24. Glushko, V. P., Gurvich, L. V., Veits, I. V. & et al. Thermodynamic Properties of Some Substances Russian (Nauka, Moscow, 1978).
  25. Warnatz, J., Maas, U. & Dibble, R. Combustion. Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation 378 pp. doi: 10.1007/978-3-540-45363-5 (Springer, Berlin, Heidelberg, 2006).
  26. Starik, A. M., Titova, N. S., Sharipov, A. S. & Kozlov, V. E. Syngas oxidation mechanism. Combustion, Explosion, and Shock Waves 46, 491-506. doi: 10.1007/s10573-010-0065-x (2010).
  27. Novikov, E. A. & Golushko, M. I. (m, 3) third-order method for stiff nonautonomous systems of ODEs. Russian. Computational technologies 3, 48-54 (1998).
  28. Pirumov, U. G. & Roslyakov, G. S. Gas dynamics of nozzles Russian. 368 pp. (Nauka, Moscow, 1990).
  29. Cherny, G. G. Gas dynamics Russian. 424 pp. (Nauka, Moscow, 1988).
  30. Zhuravskaya, T. A. & Levin, V. A. Stabilization of detonation combustion of a high-velocity combustible gas mixture flow in a plane channel. Fluid Dynamics 50, 283-293. doi: 10.1134/S001546281502012X (2015).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Морозов А.Ю., Ревизников Д.Л., Гидаспов В.Ю., 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.