Parametric Study of the System with Active Queue Management Module

Cover Page

Cite item

Abstract

Self-oscillating modes in control systems of computer networks quite negatively affect the characteristics of these networks. The problem of finding the areas of self-oscillations is actual and important as the study of parameters of self-oscillations. These studies are extremely labor-intensive because of the substantial non-linear nature of the mathematical model. It is of interest to obtain a so-called parametric portrait describing the zones of occurrence of self-oscillations depending on the value of the parameters: one parameter (two-dimensional graph), two parameters (three-dimensional graph), and so on. Such a parametric portrait allows us to purposefully manage the characteristics of the investigated control system. The investigation of the system under consideration on the basis of ordinary linearization by Taylor expansion is not possible because of the disappearance of the self-oscillatory regime. Therefore, the paper describes a parametric study technique based on the method of harmonic linearization. To verify the theoretical results obtained, simulation is used. In addition, it is proposed to use the computer algebra system for analytical calculations. For this, the criteria for choosing software were formulated. Based on these criteria, a set of software for analytical and numerical calculations was proposed.

About the authors

T R Velieva

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: velieva_tr@rudn.university

PhD student of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia (RUDN University)

6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation

References

  1. M. Allman, V. Paxson, E. Blanton, TCP Congestion Control, Tech. rep. (sep 2009). doi: 10.17487/rfc5681.
  2. S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoidance, IEEE/ACM Transactions on Networking 1 (4) (1993) 397–413. doi: 10.1109/90.251892.
  3. A. V. Korolkova, D. S. Kulyabov, A. I. Chernoivanov, On the Classification of RED Algorithms, Bulletin of Peoples’ Friendship University of Russia. Series “Mathematics. Information Sciences. Physics” (3) (2009) 34–46.
  4. A. Jenkins, Self-Oscillation, Physics Reports 525 (2) (2013) 167–222. arXiv:1109.6640, doi: 10.1016/j.physrep.2012.10.007.
  5. F. Ren, C. Lin, B. Wei, A Nonlinear Control Theoretic Analysis to TCP-RED System, Computer Networks 49 (4) (2005) 580–592. doi: 10.1016/j.comnet.2005.01.016.
  6. W. Lautenschlaeger, A. Francini, Global Synchronization Protection for Bandwidth Sharing TCP Flows in High-Speed Links, in: Proc. 16-th International Conference on High Performance Switching and Routing, IEEE HPSR 2015, Budapest, Hungary, 2015. arXiv:1602.05333.
  7. N. Kryloff, N. Bogolˇıuboff, Les mees symboliques dе lа Meque non Line dans leur application a de la rence dans l’oscillateur, Bulletin de l’Acad´emie des Sciences de l’URSS. Classe des sciences math´ematiques et na (1) (1934) 7–34.
  8. H. Nyquist, Regeneration Theory, Bell System Technical Journal 11 (1) (1932) 126–147. doi: 10.1002/j.1538-7305.1932.tb02344.x.
  9. V. Misra, W.-B. Gong, D. Towsley, Stochastic Differential Equation Modeling and Analysis of TCP-Windowsize Behavior, Proceedings of PERFORMANCE 99.
  10. V. Misra, W.-B. Gong, D. Towsley, Fluid-Based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED, ACM SIGCOMM Computer Communication Review 30 (4) (2000) 151–160. doi: 10.1145/347057.347421.
  11. C. V. V. Hollot, V. Misra, D. Towsley, Wei-Bo Gong, On Designing Improved Controllers for AQM Routers Supporting TCP Flows, in: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), Vol. 3, IEEE, 2001, pp. 1726–1734. doi: 10.1109/INFCOM.2001.916670.
  12. T. R. Velieva, A. V. Korolkova, D. S. Kulyabov, Designing Installations for Verification of the Model of Active Queue Management Discipline RED in the GNS3, in: 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE Computer Society, 2015, pp. 570–577. arXiv:1504.02324, doi: 10.1109/ICUMT.2014.7002164.
  13. A. V. Korolkova, T. R. Velieva, P. A. Abaev, L. A. Sevastianov, D. S. Kulyabov, Hybrid Simulation of Active Traffic Management, Proceedings 30th European Conference on Modelling and Simulation (2016) 685–691doi: 10.7148/2016-0685.
  14. R. Brockett, Stochastic Analysis for Fluid Queueing Systems, in: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), Vol. 3, IEEE, 1999, pp. 3077–3082. doi: 10.1109/CDC.1999.831407.
  15. T. R. Velieva, D. S. Kulyabov, A. V. Korolkova, I. S. Zaryadov, The Approach to Investigation of the Regions of Self-Oscillations, Journal of Physics: Conference Series 937 (2017) 012057_1–8. doi: 10.1088/1742-6596/937/1/012057.
  16. D. S. Kulyabov, A. V. Korolkova, T. R. Velieva, Application of the Harmonic Linearization Method to the Study a Control Systems with a Self-Oscillatory Regime, RUDN Journal of Mathematics, Information Sciences and Physics 25 (3) (2017) 234–252, in Russian. doi: 10.22363/2312-9735-2017-25-3-234-252.
  17. D. S. Kulyabov, A. V. Korolkova, T. R. Velieva, E. G. Eferina, L. A. Sevastianov, The Methodology of Studying of Active Traffic Management Module Self-oscillation Regime, in: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk (Eds.), DepCoS-RELCOMEX 2017: Advances in Dependability Engineering of Complex Systems, Vol. 582 of Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2018, pp. 215–224. doi: 10.1007/978-3-31959415-6_21.
  18. T. Issariyakul, E. Hossain, Introduction to Network Simulator NS2, Springer US, Boston, MA, 2012. doi: 10.1007/978-1-4614-1406-3.
  19. R. Lamy, Instant SymPy Starter, Packt Publishing, 2013.
  20. F. Perez, B. E. Granger, IPython: A System for Interactive Scientific Computing, Computing in Science & Engineering 9 (3) (2007) 21–29. doi: 10.1109/MCSE.2007.53.
  21. T. E. Oliphant, Python for Scientific Computing, Computing in Science & Engineering 9 (3) (2007) 10–20. doi: 10.1109/MCSE.2007.58.
  22. T. E. Oliphant, Guide to NumPy, 2nd Edition, CreateSpace Independent Publishing Platform, 2015.
  23. A. Joshi, R. Lakhanpal, Learning Julia, Packt Publishing, 2017.
  24. T. R. Velieva, A. V. Korolkova, A. V. Demidova, D. S. Kulyabov, Software Package Development for the Active Traffic Management Module Self-Oscillation Regime Investigation, in: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk (Eds.), DepCoS-RELCOMEX 2018: Advances in Intelligent Systems and Computing, Vol. 761 of Advances in Intelligent Systems and Computing, Springer International Publishing, Cham, 2019, pp. 515–525. doi: 10.1007/978-3-319-91446-6_48.
  25. E. Altman, T. Jim´enez, NS Simulator for Beginners, Synthesis Lectures on Communication Networks 5 (1) (2012) 1–184. doi: 10.2200/S00397ED1V01Y201112CNT010.
  26. B. Welch, K. Jones, Practical Programming in Tcl and Tk, 4th Edition, Prentice Hall, 2003.
  27. A. P. Nadkarni, The Tcl Programming Language: A Comprehensive Guide, CreateSpace Independent Publishing Platform, 2017.
  28. K. R. Rao, D. N. Kim, J. J. Hwang, Fast Fourier Transform Algorithms and Applications, Signals and Communication Technology, Springer, 2010.
  29. T. R. Velieva, A. V. Korolkova, M. N. Gevorkyan, S. A. Vasilyev, I. S. Zaryadov, D. S. Kulyabov, Software Package For The Active Queue Management Module Model Verification, in: L. Nolle, A. Burger, C. Tholen, J. Werner, J. Wellhausen (Eds.), Proceedings 32st European Conference on Modelling and Simulation, ECMS 2018, European Council for Modelling and Simulation, Wilhelmshaven, 2018, pp. 498–504.

Copyright (c) 2018 Velieva T.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies