STRONGLY VIOLATED SCALE INVARIANCE OF SPACE-TIME (QUANTUM-MECHANICAL ASPECT)

Cover Page

Cite item

Abstract

The hypothesis that the Universe in its evolution exhibits, to one degree or another, strongly violated scale invarianceis discussed. The fundamental group of space-time now is not the Poincaré group, but the Poincaré-Weyl group. In case with a very high probability a particle is found near its classical trajectory, but there is an extremely small (but nonetheless nonzero!) probability of detecting this particle far from its classical trajectory, providing quantum mechanical nonlocality both in space and in time. The considerations presented here, in their further study, may lead to the formulation of a new interpretation of quantum mechanics. А possible change in Planck’s constant over time is discussed.

About the authors

B. N Frolov

Moscow Pedagogical State University (MPGU)

Email: metafizika@rudn.university
1/1 Malaya Pirogovskaya St, Moscow, 119435, Russian Federation

References

  1. Фролов Б. Н. Группа Пуанкаре-Вейля и теория гравитации Вейля-Дирака // Метафизика. 2017. № 4 (26). С. 75-79.
  2. Фролов Б. Н. Аксиома отделимости Хаусдорфа и спонтанное нарушение масштабной инвариантности // Метафизика. 2019. № 2 (32). С. 120-127.
  3. Фролов Б. Н. Точная масштабная инвариантность в эпоху начала Большого взрыва как проблема фундаментальной физики // Метафизика. 2019. № 3 (37). С. 94-100.
  4. Harrison E. R. Fluctuations at the Threshold of Classical Cosmology // Phys. Rev. D. 1970. V. 1. P. 2726.
  5. Зельдович Я. Б. Гипотеза, единым образом объясняющая структуру и энтропию Вселенной // Избранные труды. Частицы, ядра, Вселенная. Ч. 2. М.: Наука, 1985. С. 176-179.
  6. Сажин М. В. Анизотропия и поляризация реликтового излучения. Последние данные // УФН. 2004. Т. 174. № 2. С. 197-205.
  7. Aghanim N. et al. [Planck Collaboration], Planck 2018 results. VI. Cosmological parameters. URL: ArXiv:1807.06209 [astro-ph.CO].
  8. Babourova O. V., Frolov B. N., Zhukovsky V. Ch. Gauge field theory for the Poincaré-Weyl group // Phys. Rev. D. 2006. V. 74. P. 064012-1-12 (gr-qc/ 0508088, 2005).
  9. Babourova O. V., Frolov B. N., Zhukovsky V. Ch. Theory of Gravitation on the Basis of the Poincare-Weyl Gauge Group // Gravit. Cosmol. (Гравитация и космология). 2009. Vol. 15, no. 1. P. 13-15.
  10. Владимиров Ю. С. Реляционная картина мира. М.: ЛЕНАНД, 2021. Книга 1. 224 с. Книга 2. 305 с.
  11. Гринштейн Дж., Зайонц А. Квантовый вызов. Современные исследования оснований квантовой механики. Долгопрудный. Издательский Дом «Интеллект», 2008. 400 с.
  12. Массер Дж. Нелокальность. «Альпина Диджитал», 2018. 430 с.
  13. Казаков К. А. Введение в теоретическую и квантовую механику. МГУ, физич. факультет, 2008. http://vega. phys.msu.ru>teormech>classquant
  14. Babourova O. V., Frolov B. N. Harrison-Zel’dovich scale invariance and the exponential decrease of the “cosmological constant” in the super-early Universe. URL: ArXive: 2001.05968 [gr-qc]. 2020.
  15. Babourova O. V., Frolov B. N. On the exponential decrease of the “cosmological constant” in the super-early Universe // J. Phys: Conf. Series. 2020. Vol. 1557. P. 012011.
  16. Babourova O. V., Frolov B. N. The Solution of the Cosmological Constant Problem: The Cosmological Constant Exponential Decrease in the Super-Early Universe // Universe. 2020. 6 (12): 230.
  17. Babourova O. V., Frolov B. N. Decrease of the effective cosmological constant in the Poincare gauge theory of gravity with a scalar field // Journal of Physics: Conference Series. 2021. V. 2081. P. 012015.
  18. Webb J. K., King J. A., Murphy M. T., Flambaum V. V., Carswell R. F., Bainbridge M. B. Evidence for spatial variation of the fine structure constant. URL: ArXive: 1008.3907[astro-ph.CO]. 2010.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies