FROM THE METAPHYSICS OF EUCLIDES - TO GEOMETRIC IDEAS IN PHYSICS THROUGH THE AGE (GEOMETRIC IDEAS IN PHYSICS EXPAND THE HORIZONS OF THE KNOWLEDGE OF THE WORLD)

Cover Page

Cite item

Abstract

This work consists of two parts. In the first part, a historical analysis is made with modern comments on the importance of a deep study of stable knowledge, experience and traditions of a geometric nature about the structure of the world accumulated by our civilization, which have passed thousands of years of testing. In addition to mathematics, in physics, the tradition of geometric research methods comes from Archimedes, through the work of Leonardo da Vinci, Galileo Galilei, René Descartes, Isaac Newton and other scientists. This trend is now stronger than ever. The second part briefly and summarizes the stages of how and what we have come to on this path.

About the authors

A. V Khodunov

Federal Scientific Center Scientific Research Institute for System Research of the Russian Academy of Sciences

Cor. 1, 36, Nakhimovsky Pr., Moscow, 117218, Russian Federation

References

  1. Евклид. Начала. Изд. 4. URSS. 2015. 752 с. ISBN 978-5-9710-1764-6.
  2. Омельяновский М.Э. Проблема наглядности в физике // Вопросы философии. 1961. № 11.
  3. Омельяновский М.Э. Диалектика в современной физике. М.: Наука, 1973.
  4. Омельяновский М.Э. Развитие оснований физики XX века и диалектика. М., 1984.
  5. Фейнман Р. Теория фундаментальных процессов / пер. с англ., cер. БТФ. Т. 1. М.: Наука, ГРФМЛ, 1978. 200 с.
  6. Russell Bertrand. Mathematics and the metaphysicians // The world of mathematics / James Roy Newman (ed.) Reprint of Simon and Schuster 1956 ed. Courier Dover Publications, 2000. P. 1577. ISBN 0-486-41151-6.
  7. Russell Bertrand. Introduction // Russel Bertrand. An essay on the foundations of geometry. Cambridge University Press, 1897. P. 1-5.
  8. Гильберт Д. Основания геометрии. М.-Л.: ГИТТЛ, 1948.
  9. Tall David. Looking at graphs through infinitesimal microscopes windows and telescopes // Mathematical Gazette. March 1980. № 64 (427). P. 22-49. doi: 10.2307/3615886
  10. Dales H. Garth, Woodin W. Hugh. Super-real fields. Totally Ordered Fields with Additional Structure // London Mathematical Society Monographs. New Series no. 14. Clarendon Press, Oxford University Press, Oxford, NY, 1996. ISBN 978-0-19-853991-9.
  11. Успенский В.А. Что такое нестандартный анализ? М.: Наукa, ГРФМЛ, 1987.
  12. Conway H. John. On Numbers and Games. (2 ed.). CRC Press, 2000. ISBN 9781568811277; 2001, ISBN 1-56881-127-6.
  13. Alling Norman L. Foundations of Analysis over Surreal Number Fields. 1987. ISBN 0-444-70226-1.
  14. Dries Van den, Lou, Ehrlich Philip. Fields of surreal numbers and exponentiation // Fundamenta Mathematicae. Warszawa: Institute of Mathematics of the Polish Academy of Sciences. 2001. 167 (2). P. 173-188. ISSN 0016-2736.
  15. Kruskal M.D. Asymptotology Archived 2016-03-03 at the Wayback Machine // Proceedings of Conference on Mathematical Models on Physical Sciences. Englewood Cliffs, NJ: Prentice-Hall, 1963. P. 17-48.
  16. Barantsev R.G. Asymptotic versus classical mathematics // Topics in Math. Analysis. Singapore e.a., 1989. P. 49-64.
  17. Andrianov I.V., Manevitch L.I. Asymptotology: Ideas, Methods, and Applications. Dordrecht, Boston, London: Kluwer Academic Publishers, 2002.
  18. Dewar R.L. Asymptotology - a cautionary tale // ANZIAM Journal. July 2002. № 44 (01). P. 33-40.
  19. Омельяновский М.Э. Эйнштейн и философские проблемы физики ХХ века / Грибанов Д.П., Кузнецов Б.Г., Фок В.А. и др.; под ред. Э.М. Чудинова. М.: Наука, 1979. 566 с.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies