К ВОПРОСУ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОГО РЕЖИМА ТРУБОПРОВОДОВ СИСТЕМЫ НЕФТЕСБОРА

Обложка

Цитировать

Полный текст

Аннотация

Показана актуальность задачи изучения таких характеристик защитных покрытий, как стойкость к образованию отложений, коррозионная и термическая стойкость. Выбор защитных покрытий необходимо осуществлять с учетом температуры, оказывающей влияние на их термическую стойкость, что позволит уменьшить затраты на проведение различных мероприятий по удалению органических отложений. Представлены результаты разработки программы для ЭВМ, предназначенной для определения изменения температуры нефти по заданной длине трубопровода, с целью выбора оптимального типа защитных покрытий, предотвращающих коррозию и формирование органических отложений. Результаты расчета распределения температур при заданных условиях и длине трубопровода с использованием компьютерного приложения «Автоматизированная система расчета термодинамических параметров потока», разработанного на кафедре «Разработка и эксплуатация нефтяных и газовых месторождений» Альметьевского государственного нефтяного института, показывают целесообразность применения защитных покрытий не только с целью защиты от коррозии и формирования органических отложений, но и снижения скорости охлаждения перекачиваемых нефтепродуктов по трубопроводам системы нефтесбора. Разработанная программа для ЭВМ позволяет моделировать температурный режим трубопроводов с целью подбора оптимальной системы покрытий с учетом факторов, осложняющих транспортировку нефтей и нефтепродуктов.

Полный текст

На поздней стадии разработки месторождений продукция добывающих скважин представляет собой водонефтяную смесь, а многообразие условий эксплуатации предопределяет появление сразу комплекса проблем, в том числе коррозию оборудования и формирование соле- и парафиноотложений. При наличии осадков скорость коррозии нефтепроводов увеличивается в 3-5 раз [1]. Одним из традиционных, и в то же время перспективных направлений по повышению энергоэффективности предприятий нефтедобывающего комплекса, является применение защитных покрытий. В настоящее время широкое применение находят различные типы современных высококачественных и долговечных защитных покрытий [2-8], использование которых способствует повышению надежности работы всех элементов системы транспорта и хранения углеводородного сырья, снижению издержек, связанных с ремонтом защитных покрытий, уменьшению экологических рисков, увеличению периода эксплуатации существующих и вновь вводимых трубопроводов. Использование систем покрытий и материалов, обеспечивающих комплексное решение технологических проблем, в том числе предотвращение образования различных отложений, обеспечение защиты от коррозии, уменьшение гидравлических сопротивлений, улучшение теплового режима работы скважины или трубопровода, а также определение оптимальных условий их эксплуатации, позволит в значительной мере повысить эффективность работы нефтедобывающих предприятий и снизить затраты на добычу нефти. Для дальнейшего развития и повышения эффективности применения защитных покрытий необходимо расширение перечня критериев, характеризующих качество покрытий. Учитывая изменение условий эксплуатации техногенно изменённых залежей нефти, применение значительного количества химреагентов для увеличения нефтеотдачи и интенсификации работы добывающих и нагнетательных скважин, ингибиторов и деэмульгаторов, а также появление новых классов и типов защитных покрытий, необходимо дальнейшее изучение возможностей использования защитных покрытий для предотвращения формирования органических отложений и повышения эффективности работы нефтепромыслового оборудования. Значительное количество научных работ посвящено методам и техническим средствам оценки качества защитных покрытий. Оценка качества изоляции на всех этапах эксплуатации магистральных нефтепроводов является одним из основных факторов обеспечения надежной противокоррозионной защиты объектов [9-12]. В настоящее время системы покрытий, предлагаемые российскими и зарубежными компаниями для защиты нефтепромыслового оборудования, характеризуются различными показателями эксплуатационной стойкости, в том числе стойкостью к воздействиям повышенных температур, коррозионной стойкостью, эластичностью, прочностью сцепления с поверхностью, пористостью, твердостью. Учитывая, что нефти основных месторождений Республики Татарстан относятся к категории парафинистых, с высоким содержанием смолисто-асфальтеновых компонентов и образуют стойкие отложения на поверхности нефтепромыслового оборудования, изучение таких характеристик защитных покрытий, как стойкость к образованию отложений, коррозионная и термическая стойкость, является актуальной задачей. Выбор типа защитного покрытия проводится с учетом конкретных геологофизических условий, свойств продукции скважины, состава органических отложений, особенностей данного объекта, наличия тех или иных технических средств, химических реагентов и т.д. Почти половина всех применяемых в ОАО «Татнефть» методов удаления органических отложений связана с применением тепловых эффектов. Однако, если учесть, что почти 100% промысловых трубопроводов имеют внутреннее или внешнее антикоррозионное покрытие, то применение тепловых методов удаления ограничено их термостойкостью [13]. Выбор защитных покрытий необходимо осуществлять с учетом температуры, оказывающей влияние на их термическую стойкость, что позволит уменьшить затраты на проведение различных мероприятий по удалению органических отложений. Значение температурных показателей имеет большое влияние на выбор защитных покрытий. Вопрос термической стойкости покрытий является актуальным, так как половина всех используемых методов для очистки промысловых трубопроводов системы нефтесбора от органических отложений основана на применении теплового воздействия. При перекачках нефти и нефтепродуктов по подземным трубопроводам происходит их постепенное остывание вследствие теплообмена между трубопроводом и окружающим грунтом. Поэтому необходимо максимально точное определение температурного режима трубопроводов системы нефтесбора. Тепловой расчет трубопроводов при перекачке нефти и нефтепродуктов производят с целью определения температуры потока в конце трубопровода. При перекачках нефти и нефтепродуктов по подземным трубопроводам происходит их постепенное остывание вследствие теплообмена между трубопроводом и окружающим грунтом. С целью снижения вязкости перекачиваемой нефти и нефтепродуктов и во избежание закупорки трубопровода при их остывании по длине трубопровода, большинство высоковязких нефтей и нефтепродуктов предварительно подогревают. Подогрев осуществляется на головной станции и промежуточных подогревательных пунктах. При размещении подогревательных установок между перекачивающими насосными станциями производительность и число их определяются исходя из характера падения температуры по длине трубопровода. С расширением практики использования ЭВМ, расчеты распределения температуры по длине трубопровода можно предельно упростить, используя соответствующие алгоритмы. С целью расчета распределения температур по длине трубопровода, определения характера падения температуры для труб без покрытия и с изоляционными покрытиями, на кафедре «Разработка и эксплуатация нефтяных и газовых месторождений» Альметьевского государственного нефтяного института разработана автоматизированная система расчета термодинамических параметров потока [14]. Созданная система позволяет рассчитать распределение температуры при заданной длине трубопровода для труб без покрытия, для выкидных линий с различными типами защитных покрытий, в частности, с покрытиями П-ЭП-585 и МПТ, с использованием формулы Шухова [15]. Помимо расчета, программа реализует построение графиков распределения температуры нефтепродукта по длине трубопровода в зависимости от наличия и типа защитного покрытия и выгрузку полученных результатов в файл MicrosoftExcel. Участвующий в уравнении Шухова [15] коэффициент теплопередачи k имеет большое значение. Он зависит от ряда факторов, в том числе от режима движения нефти или нефтепродукта, их физических свойств, от характера окружающей среды, от сопротивлений тепло переходу антикоррозионной и тепловой изоляции, отложений парафина. В качестве базы данных, включающей значения коэффициентов теплопроводности изоляционных материалов, грунтов, нефти, показателей трубопровода, используется база MicrosoftAccess. В программе заложены инструменты для проверки, вводимых пользователем, исходных данных. На рисунке изображена блок-схема программы. Блок выполнения расчетов состоит из расчета полного коэффициента теплопередачи, начальной и конечной температуры для труб без покрытия, для выкидных линий с МПТ и труб с покрытием П-ЭП-585. Блок построения графических элементов заключается в построении графиков распределения температуры по заданной длине трубопровода для всех трех вариантов расчета. Основой расчета распределения температуры нефти или нефтепродукта для трубопроводов является формула Шухова [15], в которой решающее значение имеет полный коэффициент теплопередачи от нефти или нефтепродукта в окружающую среду, средний по длине трубопровода. Для расчета этого коэффициента используются хранимые в базе данных значения коэффициента теплоотдачи нефти или нефтепродукта к внутренней стенке отложений или трубы и коэффициент теплоотдачи от наружной поверхности трубопровода в окружающую среду; значение коэффициента теплопроводности органических отложений и параметры трубопровода. В результате сравнительного расчета температуры перекачиваемых по трубопроводу нефтепродуктов при использовании различных покрытий отмечена различная степень снижения рассматриваемого параметра по сравнению с начальными показателями (таблица): - при отсутствии защитных покрытий остывание перекачиваемой жидкости составляет 48,8%; - при применении покрытий вида П-ЭП-585 отмечено остывание перекачиваемой жидкости на 34,0%; - при применении покрытий вида МПТ остывание перекачиваемой жидкости - 30,7%. Существует прямая зависимость температуры от полного коэффициента теплопередачи. Чем данный коэффициент больше, тем быстрее происходит остывание перекачиваемой нефти или нефтепродукта вследствие теплообмена между трубопроводом и окружающим грунтом. Отмечается, что защитные покрытия помимо выполнения своих основных функций защиты от коррозии и предотвращения формирования органических отложений, способствуют теплоизоляции трубопровода и уменьшают степень охлаждения перекачиваемой жидкости. Данный показатель для труб с МПТ не значительно, но превышает показатели для труб с покрытием П-ЭП-585.Ввод исходных данных Проверка корректности вводимых данных + Выполнение расчетов Построение графических элементов Конец Вывод полученных результатов Начало Настройка программы. Рисунок. Блок-схема программы «Автоматизированная система расчета термодинамических параметров потока» [Figure. Flowchart of the program “Automated system for calculating thermodynamic flow parameters”] Таблица Результаты программы расчета термодинамических параметров потока в трубопроводах системы нефтесбора [Results of obtained by the program for calculating the thermodynamic flow parameters in the pipelines of the oil-gathering system] Определяемый параметр Значение для трубопровода при отсутствии защитного покрытия с покрытием П-ЭП-585 с МПТ Полный коэффициент теплопередачи, Вт/(м 2 ·K) 1,98 1,17 1,03 Начальная температура нефти (нефтепродуктов), °C 56 Конечная температура нефти (нефтепродуктов), °C 28,66 36,95 38,8 Отношение конечной и начальной температур, % 51,18 65,98 69,29 Таким образом, результаты расчета распределения температур при заданных условиях и длине трубопровода с использованием разработанного компьютерного приложения «Автоматизированная система расчета термодинамических параметров потока» показывают целесообразность применения защитных покрытий не только с целью защиты от коррозии и формирования органических отложений, но и снижения скорости охлаждения перекачиваемых нефтепродуктов по подземным трубопроводам вследствие теплообмена между трубопроводом и окружающим грунтом. Моделирование температурных показателей данного процесса на каждом участке позволяет фиксировать выходные параметры системы - температуру в любой точке по длине рассматриваемого трубопровода, - не производя интерполяционных вычислений, с дальнейшим построением графической зависимости изменения температуры по длине трубопровода. При изменении значений коэффициентов теплоотдачи и теплопроводности данная задача может быть решена практически для любого типа защитного покрытия, что позволяет моделировать температурный режим трубопроводов системы нефтесбора с целью подбора оптимальной системы покрытий с учетом факторов, осложняющих транспортировку нефтей и нефтепродуктов.

×

Об авторах

И А Гуськова

Альметьевский государственный нефтяной институт

Автор, ответственный за переписку.
Email: guskovaagni1@rambler.ru

Гуськова Ирина Алексеевна, доктор технических наук, проректор по научной работе, зав. кафедрой, профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений» («РиЭНГМ»), Государственное бюджетное образовательное учреждение высшего образования «Альметьевский государственный нефтяной институт» (ГБОУ ВО АГНИ). Область научных интересов: Научные разработки в области добычи нефти в осложненных условиях, проблем добычи трудноизвлекаемых запасов.

ул. Ленина, 2, Альметьевск, Республика Татарстан, Россия, 423452

Д Р Хаярова

Альметьевский государственный нефтяной институт

Email: GilDinara14@mail.ru

Хаярова Динара Рафаэлевна, кандидат технических наук, доцент кафедры «Разработка и эксплуатация нефтяных и газовых месторождений» («РиЭНГМ»), Государственное бюджетное образовательное учреждение высшего образования «Альметьевский государственный нефтяной институт» (ГБОУ ВО АГНИ). Область научных интересов: Проблемы добычи нефти в осложненных условиях.

ул. Ленина, 2, Альметьевск, Республика Татарстан, Россия, 423452

Е В Леванова

Альметьевский государственный нефтяной институт

Email: evgeniyalevanova@rambler.ru

Леванова Евгения Васильевна, кандидат технических наук, доцент кафедры «Разработка и эксплуатация нефтяных и газовых месторождений» («РиЭНГМ»), Государственное бюджетное образовательное учреждение высшего образования «Альметьевский государственный нефтяной институт» (ГБОУ ВО АГНИ). Область научных интересов: Особенности применения методов увеличения нефтеизвлечения и обработки призабойной зоны пластов на поздней стадии разработки нефтяных месторождений.

ул. Ленина, 2, Альметьевск, Республика Татарстан, Россия, 423452

И Е Белошапка

Альметьевский государственный нефтяной институт

Email: i.e.beloshapka@gmail.com

Белошапка Иван Евгеньевич, аспирант кафедры «Разработка и эксплуатация нефтяных и газовых месторождений» («РиЭНГМ»), Государственное бюджетное образовательное учреждение высшего образования «Альметьевский государственный нефтяной институт» (ГБОУ ВО АГНИ). Область научных интересов: Повышение эффективности разработки месторождений с трудноизвлекаемыми запасами нефти, фильтрационные исследования.

ул. Ленина, 2, Альметьевск, Республика Татарстан, Россия, 423452

Список литературы

  1. Низамов К.Р., Муразгильдин З.Г., Арменский Е.А. и др. Коррозия трубопроводов в условиях выпадения осадков // Нефтяное хозяйство. 2002. № 4. С. 90-91.
  2. Низьев С.Г. О противокоррозионной защите магистральных и промысловых трубопроводов современными полимерными покрытиями // Территория Нефтегаз. 2009. № 9. С. 56-58.
  3. Набокова В.В. Совершенствование методов противокоррозионной защиты магистральных трубопроводов // Вестник Северо-Кавказского федерального университета. 2013. № 6. С. 52.
  4. Бойцов А.Ю., Меркович Е.А. Современные тенденции в создании полимерных защитных покрытий // Коррозия территории нефтегаз. 2012. № 9. С. 32.
  5. Малыхина Л.В., Чернова Н.В., Губайдуллина Н.К. Применение полимерных покрытий для предотвращения коррозии нефтепромыслового оборудования в ОАО «Татнефть» // Коррозия территории нефтегаз. 2009. № 5. С. 10-12.
  6. Никитин М.Н., Гуськова И.А. Анализ эффективности применения покрытия ПЭП-585 для системы промысловых трубопроводов ОАО «Татнефть» // «Материалы научной сессии студентов по итогам 2008 года. Альметьевск: АГНИ, 2009. С. 66-67.
  7. Малыхина Л.В., Губайдуллина Н.К., Тахаутдинова Г.Л., Сатвалдиева Ю.С. Перспективные полимерные покрытия для нефтепромыслового оборудования ОАО «Татнефть» // Защита окружающей среды в нефтегазовом комплексе. 2012. № 9. С. 7-9.
  8. Тахаутдинова Г.Л. Термостойкие полимерные покрытия для внутренней поверхности труб линейных и насосно-компрессорных // Институт «ТатНИПИнефть». Бугульма, 2012.
  9. Баранов А.Н., Янченко Н.И., Гусева Е.А. Электрохимические методы исследований образцов трубопроводных энергетических систем, подвергнутых противокоррозионной обработке // Системы. Методы. Технологии. 2012. № 4. C. 127-130.
  10. Абакачева Е.М., Сафронов Е.Ф., Киреев К.А., Ильчинбаев Т.Д., Ибрагимова Г.М., Акчурина А.М. Исследование защитных антикоррозийных покрытий магистральных трубопроводов без контактным методом // Башкирский химический журнал. 2009. № 4. С. 167.
  11. Харисов Р.А. Проведение экспертной оценки для защитных покрытий трубопроводов // Нефтегазовое дело. 2009. № 3. С. 26.
  12. Попов В.А., Лукин Е.С., Истомин А.И. Методы и технические средства контроля качества защитных покрытий объектов нефтегазовой отрасли на разных стадиях их жизненного цикла // Коррозия территории нефтегаз. 2013. № 6. С. 42.
  13. Гуськова И.А., Павлова А.И., Емельянычева С.Е. О проблемах формирования асфальтосмолопарафиновых отложений (АСПО) в трубопроводах и резервуарах, имеющих защитные антикоррозионные покрытия // Нефтепромысловое дело. 2010. № 9. С. 45.
  14. Гуськова И.А., Хаярова Д.Р., Леванова Е.В., Сергеев А.Ю. Свидетельство о государственной регистрации программы для ЭВМ № 2017616410. Автоматизированная система расчета термодинамических параметров потока для определения температурного режима трубопроводов системы нефтесбора. 2017.
  15. Тугунов П.И., Новоселов В.Ф., Коршак А.А., Шаммазов А.М. Типовые расчеты при проектировании и эксплуатации нефтебаз и нефтепроводов. Уфа: ДизайнПолиграфСервис, 2002. С. 658.

© Гуськова И.А., Хаярова Д.Р., Леванова Е.В., Белошапка И.Е., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах