NANOSATELLITE BODY COMPOSITE MATERIAL THERMAL CONDUCTIVITY DETERMINATION COMPUTATIONAL AND THEORETICAL METHOD

Cover Page

Cite item

Full Text

Abstract

In this paper, we present a technique for determining the thermal conductivity of an anisotropic composite material (CM) of a body of nanosatellite on a contact heating installation. A description is given of the technique of a thermal physics experiment with CM samples in the form of thin-walled plates, which were parts of the body of nanosatellite.

Full Text

Введение. В настоящее время большое внимание уделяется разработке малых космических аппаратов, в том числе микро-нано- и пикоспутников Земли [1-4]. Любые искусственные спутники Земли подвергаются тепловому воздействию прямого солнечного излучения, солнечного излучения, отраженного земной поверхностью и облачным слоем и собственного излучения Земли. Кроме того, бортовое оборудование выделяет теплоту. В состав бортового оборудования обычно входит аппаратура радиосвязи, блок управления с центральным процессором, системы стабилизации и ориентации, система энергопитания. Наибольшее количество теплоты выделяется при работе системы энергопитания. Суммарное количество теплоты, отведенное от аккумуляторов в процессе разряда, может достигать 140 Дж [5], в зависимости от степени разряда, а температура аккумулятора может превышать 50 °С [5]. Поскольку аппаратура наноспутника сохраняет свою работоспособность при температурах от -10 до +75 °С, то возникает необходимость в обеспечении заданного теплового режима. Особенность нано- и пикоспутников заключается в том, что использование в них сложной системы обеспечении теплового режима (СОТР) с вентиляторами, радиаторами, жидкостной системы охлаждения, тепловыми трубами затруднена в силу малого объема таких спутников. Одним из способов решения данной проблемы может быть применение материалов с высокой теплопроводностью в конструкции корпуса. Наиболее часто, корпус наноспутников изготовляется из алюминиевых сплавов, однако известно, что некоторые КМ, в частности углепластики, могут иметь теплопроводность соизмеримую с алюминием. Использование при создании КМ углеродных волокон на основе пекового прекурсора позволяет достичь значений теплопроводности, превосходящих алюминиевые сплавы [6]. При этом такие материалы имеют при меньшей плотности, более высокую удельную прочность и удельную жесткость. При тепловом проектировании тонкостенных конструкций корпуса, которые могут выступать как теплоотводящие элементы, необходимо располагать данными по теплопроводности в плоскости армирования. Теплопроводность в направлении, перпендикулярном плоскости армирования КМ, не столь важна для тонкостенных конструкций, так как в силу малого термического сопротивления перепады температур по толщине пренебрежимо малы. К сожалению, стандартные методы для определения теплопроводности в плоскости армирования КМ не годятся, что делает актуальным разработку методик, основанных на применении современных средств воспроизведения и контроля условий нагрева образцов материалов, средств измерения, регистрации и обработки экспериментальных данных. Цель настоящей работы заключалась в обеспечении проектных исследований наноспутников необходимыми данными по теплопроводности конструкционных КМ в плоскости армирования с помощью разработки и апробации новой расчетно-экспериментальной методики. 1. Особенности предлагаемой методики: а) экспериментальными образцами служат элементы натурных конструкций корпуса нано-пикоспутников в форме пластин из КМ с размерами сторон до 300×300 мм 2 , толщиной до 3 мм. Представительный характер образцов повышает степень достоверности результатов; б) меняющееся во времени температурное поле образцов формируется с помощью кругового контактного электрического нагревателя. Такой вариант локального нагрева выбран для применения в качестве средства тепловой диагностики - тепловизора. Он удобен для лабораторной практики и не требует специальных средств защиты персонала, которые нужны при испытаниях образцов материалов и элементов конструкций на стендах радиационного и конвективного нагрева [7]; в) динамика изменения температурного поля образца регистрируется с помощью тепловизора Fluke Ti-400, универсально пригодного для измерений температуры на горизонтальных и вертикальных поверхностях в интервале температур от -20 до 1200 °С. Бесконтактный метод измерения температуры имеет заметные преимущества перед контактными в первую очередь по объему получаемой информации. Кроме того, при использовании термопар, существенно повышается трудоемкость подготовки образцов к испытаниям. Близкое расположение контактных датчиков осложнено их взаимным тепловым влиянием, что, в свою очередь, препятствует получению детальной картины температурного распределения; г) обработка экспериментальных данных осуществляется с помощью программы решения нелинейной нестационарной коэффициентной обратной задачи теплопроводности в двумерной постановке [8-10]. Программа позволяет определить температурную зависимость теплопроводности в любых направлениях плоскости армирования в интервале от начальной до максимальной температуры, измеренной в эксперименте; д) достоверность расчетно-экспериментальных данных проверяется с помощью контрольных испытаний стандартных образцов свойств материалов (из материалов с паспортизованными во ВНИИМ им. Д.И. Менделеева теплофизическими свойствами), таких, как полиметилметакрилат (оргстекло) и кварцевое стекло КВ [11]. 2. Экспериментальная установка. В состав экспериментальной установки (рис. 1) входит трубчатый электрический нагреватель ПЭВ-30 6, керамический корпус которого окружен теплоизоляционным материалом ТЗМК-10 для уменьшения влияния радиационного теплообмена между нагревателем и образцом. Теплота от нагревателя к образцу передается с помощью соосного стержневого элемента из латуни, имеющего в зоне контакта с образцом диаметр 20 мм. Нагреватель крепится к основанию 7 с помощью болтового соединения. Во избежание возникновения воздушной прослойки и для улучшения контакта нагревателя с образцом между ними наносится слой термопасты. Рис. 1. Установка контактного нагрева для определения теплопроводности в плоскости армирования: 1 - камеры спокойного воздуха; 2 - образец; 3 - термоэлектроды; 4 - теплоизоляция (ТЗМК-10); 5 - стержневой элемент нагревателя; 6 - электрический нагреватель ПЭВ-30; 7 - основание Образец 2 - пластина с габаритными размерами 120×120×2 мм, зажат сверху и снизу тонкостенными цилиндрическими оболочками из АБС-пластика, выполняющих роль камер спокойного воздуха 1. Для изменения условий нагрева используется лабораторный автотрансформатор HY3000-2. Температура на поверхности образца измеряется с помощью тепловизора Fluke Ti-400. Тепловизор располагается напротив верхней камеры спокойного воздуха и продольная ось его объектива направлена перпендикулярно плоскости образца (рис. 2). Рис. 2. Общий вид установки 3. Проведение тепловых испытаний и обработка результатов. Время эксперимента составляет от 5 до 30 мин, в зависимости от скорости нагрева и максимальной допустимой температуры до которой исследуемый материал сохраняет свою нормальную работоспособность. Для предотвращения передачи тепла через теплоизоляцию между поверхностью образца и изоляционным материалом создан зазор толщиной 0,5 мм. Контакты между нагревателем и теплоизоляцией, также между стержневым элементом нагревателя и образцом считаются идеальными. Весь процесс нагрева регистрируется с помощью тепловизора (рис. 3), а полученные первичные данные оцифровываются для последующей обработки с помощью программы решения ОЗТ. Рассматривая изображения (см. рис. 3) можно наблюдать характерную картину влияния анизотропии теплопроводности образца из однонаправленного углепластика на температурное поле. Рис. 3. Изображения распределение температуры на поверхности в различные моменты времени, полученные с помощью тепловизора Температура нагревателя, расположенного под образцом, измеряется с помощью термопар, установленных внутри нагревателя. Обработка экспериментальных данных в ОЗТ проводится по модели (рис. 4). Для решения ОЗТ используются значения температуры в трех точках на поверхности образца (рис. 5). Рис. 4. Физическая модель эксперимента: α f1 , α f2 - коэффициент теплоотдачи внутри камеры и снаружи соответственно; ε, ε н , ε т - коэффициенты излучения поверхности образца, нагревателя и теплоизоляции соответственно; T f - температура окружающей среды; δ - толщина образца 0 100 200 300 400 500 0 20 40 60 80 100 120 140 160 Температура, °С Время, с Условные обозначения: температура образца на расстоянии 11 мм от центра; температура образца на расстоянии 20 мм от центра; температура в центре образца Рис. 5. Типичные экспериментальные термограммы в трех точках на поверхности образца Две точки - в центре образца и отстоящая от него на 26 мм использовались для задания граничных условий первого рода. Точка, лежащая в 13 мм от центра, служит для формирования квадратичного функционала невязки, для решения задачи методом сопряженных градиентов. Задавая начальное значение теплопроводности λ 0 по модели (см. рис. 4) рассчитывается температура T(τ), после чего полученные значения сравниваются с температурой, измеренной тепловизором. ВЫВОДЫ Разработана методика для определения теплопроводности КМ в плоскости армирования с применением бесконтактных средств измерения температуры и использованием в качестве образцов элементов натурных конструкций. Методика позволяет значительно упростить и ускорить процесс исследования характеристик новых КМ, дает возможность избавится от необходимости создания масштабных моделей конструкций для уточнения характеристик материала. Благодаря тепловизионным изображениям за одно испытания возможно определить теплопроводности в любом направлении в плоскости армирования.

×

About the authors

S V Reznik

Bauman Moscow State Technical University (National Research University of technology)

Author for correspondence.
Email: sreznik@bmstu.ru

Reznik Sergey Vasilyevich, Doctor of Technical Sciences, professor, head of the department SM13 “Rocket and space composite structures” of the Bauman Moscow State Technical University. Research interests: design, producing and testing of rocket and space composite structures.

2-nd Baumanskaya str., 5/1, Moscow, Russia, 105005

P V Prosuntsov

Bauman Moscow State Technical University (National Research University of technology)

Email: pavel.prosuntsov@mail.ru

Prosuntsov Pavel Viktorovich, Doctor of Technical Sciences, professor of the department SM13 “Rocket and space composite structures” of the Bauman Moscow State Technical University. Research interests: modeling and identification of thermal processes in rocket and spacecraft structures.

2-nd Baumanskaya str., 5/1, Moscow, Russia, 105005

O V Denisov

Bauman Moscow State Technical University (National Research University of technology)

Email: denisov.sm13@mail.ru

Denisov Oleg Valeryevich, Candidate of Technical Sciences, associate professor of the department SM13 “Rocket and space composite structures” of the Bauman Moscow State Technical University. Research interests: thermal physics of composite materials and structures.

2-nd Baumanskaya str., 5/1, Moscow, Russia, 105005

N M Petrov

Bauman Moscow State Technical University (National Research University of technology)

Email: avpdrago@gmail.com

Petrov Nikita Mikhailovich, post graduate student, assistant professor of the department SM13 “Rocket and space composite structures” of the Bauman Moscow State Technical University. Research interests: calculation and experimental studies of the thermal-physical characteristics of composite materials.

2-nd Baumanskaya str., 5/1, Moscow, Russia, 105005

Vonheong Lee

Bauman Moscow State Technical University (National Research University of technology)

Email: engjournalrudn@rudn.university

Vonheong Lee, bachelor, student of the department SM13 “Rocket and space composite structures” of the Bauman Moscow State Technical University. Research interests: calculation and experimental studies of the thermal-physical characteristics of composite materials.

2-nd Baumanskaya str., 5/1, Moscow, Russia, 105005

References

  1. Nikolskii V.V. Designing of ultra-small spacecrafts: training manual. Saint-Petersburg: Baltic State Technical University, 2012. (In Russ).
  2. Makridenko L.A., Boyarchuk K.A. Microsatellites. Development trend. Market features and social significance. Voprosy elektromekhaniki. 2005. Vol. 102. P. 12—27.
  3. paceworksforecast.com [Internet]. Atlanta: The market forecast for the operation of microsatellites, [updated 2017 July 25]. Available from: http://spaceworksforecast.com/2017-market-forecast/
  4. Blinov V.N., Ivanov N.N., Sechenov Yu.N., Shalai V.V. Small space vehicles. In 3 books. Book Minisatellite. Unified space platforms for small space vehicles: reference book. Omsk: Publishing office OmSTU, 2010. (In Russ).
  5. Klimenko G.K., Lyapin A.A., Marakhtanov M.K. The study of the thermal state of the battery in the working cycle. Engineering Journal: Science and Innovation. 2013. No. 10. P. 1—11.
  6. Mikhailovskii K.V., Prosuntsov P.V., Reznik S.V. Development of high-conductivity polymer composite materials for space structures. Vestnik MGTU im. N.E. Baumana. Seriya «Mashinostroenie». 2012. No. 9. P. 98—106.
  7. Materials and coatings under extreme conditions. A look into the future. In 3 volumes. Vol. 3. Experimental studies ed. Polezhaev Yu.V., Reznik S.V. Moscow: Publishing office BMSTU, 2002. (In Russ).
  8. Alifanov O.M. Inverse heat transfer problems. Moscow: Mashinostroenie, 1998. (In Russ).
  9. Tikhonov A.N., Arsenin V.Ya. Methods for solving incorrect problems. Moscow: Science. Main edition of physical and mathematical literature, 1979. (In Russ).
  10. Kabanikhin S.I. Inverse and incorrect problems: Textbook for students of higher educational institutions. Novosibirsk: Siberian Scientific Publishing House, 2009. (In Russ).
  11. Sergeev O.A. Metrological basis of thermophysical measurements. Moscow: Publishing house of standards, 1972. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Reznik S.V., Prosuntsov P.V., Denisov O.V., Petrov N.M., Lee V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.