Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind
- Authors: Krasnov V.A.1
-
Affiliations:
- Peoples’ Friendship University of Russia (RUDN University)
- Issue: Vol 65, No 4 (2019): Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University
- Pages: 623-634
- Section: New Results
- URL: https://journals.rudn.ru/CMFD/article/view/23054
- DOI: https://doi.org/10.22363/2413-3639-2019-65-4-623-634
Cite item
Full Text
Abstract
In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group S 4) via dihedral angles.
About the authors
V. A. Krasnov
Peoples’ Friendship University of Russia (RUDN University)
Author for correspondence.
Email: krasnov_va@rudn.university
Moscow, Russia
References
- Абросимов Н.В., Выонг Хыу Б. Объем гиперболического тетраэдра с группой симметрий S4// Тр. Ин-та мат. и мех. УрО РАН. - 2017. -23, № 4. - С. 7-17.
- Винберг Э.Б. Объемы неевклидовых многогранников// Усп. мат. наук. - 1993. -48, № 2. - С. 17-46.
- Лобачевский Н.И. Воображаемая геометрия// В сб.: «Полное собр. соч. Т. 3». - M.-Л., 1949.
- Abrosimov N.V., Mednykh A.D. Volumes of polytopes in spaces of constant curvature// Rigidity and Symmetry. - 2014. -70. - С. 1-26.
- Bolyai J. Appendix. The theory of space// В сб.: «Janos Bolyai». - Budapest, 1987.
- Cho Yu., Kim H. On the volume formula for hyperbolic tetrahedra// Discrete Comput. Geom. - 1999. - 22. - С. 347-366.
- Derevnin D.A., Mednykh A.D. A formula for the volume of hyperbolic tetrahedron// Russ. Math. Surv. - 2005. -60, № 2. - С. 346-348.
- Kellerhals R. On the volume of hyperbolic polyhedra// Math. Ann. - 1989. -285. - С. 541-569.
- Kneser H. Der Simplexinhalt in der nichteuklidischen Geometrie// Deutsche Math. - 1936. -1. - С. 337- 340.
- Milnor J. Hyperbolic geometry: the first 150 years// Bull. Am. Math. Soc. - 1982. -6, № 1. - С. 307- 332.
- Murakami J. The volume formulas for a spherical tetrahedron// Arxiv. - 2011. - 1011.2584v4.
- Murakami J., Ushijima A. A volume formula for hyperbolic tetrahedra in terms of edge lengths// J. Geom. - 2005. -83, № 1-2. - С. 153-163.
- Murakami J., Yano M. On the volume of a hyperbolic and spherical tetrahedron// Comm. Anal. Geom. - 2005. -13. - С. 379-400.
- Schlafli L.¨ Theorie der vielfachen Kontinuitat// В сб.: «Gesammelte mathematische Abhandlungen». -¨ Basel: Birkhauser, 1950.¨
- Sforza G. Spazi metrico-proiettivi// Ric. Esten. Different. Ser. - 1906. -8, № 3. - С. 3-66.
- Ushijima A. A volume formula for generalized hyperbolic tetrahedra// Non-Euclid. Geom. - 2006. - 581. - С. 249-265.