НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ПРЯМОУГОЛЬНЫХ ПЛАСТИН НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ

Обложка

Аннотация


Представлены два варианта уточненной теории расчета напряженно-деформированного состояния прямоугольной ортотропной пластины. Уравнения со- стояния пластины представляются в виде трехмерных уравнений теории упругости. Компоненты напряженно-деформированного состояния в пластине принимаются полиномиальными функциями по нормальной к срединной плоскости пластины координате. Эти функции имеют степень на один и два порядка выше относительно используемых в классической теории Кирхгофа-Лява. Для получения двумерных уравнений и естественных граничных условий применяется принцип возможных перемещений. Формулируются модифицированные граничные условия для стандартных случаев крепления пластины. Расчет напряженно-деформированного состояния пластины проводится с помощью преобразования Лапласа, при этом вдвое сокращается число произвольных постоянных при интегрировании системы дифференциальных уравнений. Одна из отличительных особенностей уточненной теории состоит в прямом интегрировании уравнений равновесия трехмерной теории упругости при определении поперечных нормальных и касательных напряжений. В качестве примера в статье рассматривается расчет напряженно-деформированного состояния прямоугольной изотропной пластины при локальном нагружении. Сравниваются результаты, полученные по уточненной и классической теориям. Показан существенный вклад поперечных нормальных напряжений типа «пограничный слой» в общее напряженное состояние пластины. Полученные результаты могут быть использованы в расчетах и испытаниях на прочность и долговечность авиационных и ракетно-космических конструкций, а также машиностроительных объектов различного назначения


НГОК ДОАН ЧАН

Лицо (автор) для связи с редакцией.
ngocdoanmai@gmail.com
Государственный технический университет им. Ле Куи Дона, Ханой, Вьетнам
Вьетнам, Ханой, ул. Хоанг Куок Вьет, д. 236

Кандидат технических наук, заведующий кафедрой Системного проектирования летательных аппаратов, Государственный технический университет им. Ле Куи Дона, Ханой, СРВ. Научные интересы: динамика и прочность конструкций из композиционных материалов; аэроупругость летательных аппаратов; разработка уточнённых методов расчёта напряженно- деформированного и динамического состояния пластинок и оболочек

ВАЛЕРИЙ ВАСИЛЬЕВИЧ ФИРСАНОВ

kaf906@mai.ru
Московский авиационный институт (национальный исследовательский университет), Москва, Россия 125993, Россия, Москва, А-80, ГСП-3, Волоколамское шоссе, д. 4

доктор технических наук, профессор, заведующий кафедрой Машиноведения и деталей машин, Московский авиационный институт (национальный исследовательский университет). Научные интересы: разработка неклассической теории ортотропных пластинок и оболочек постоянной и переменной толщины на основе более точного решения трехмерных уравнений теории упругости вариационно-асимптотическим методом; расчетно- экспериментальные методы анализа динамического нагружения и деформирования конструкций летательных аппаратов в аварийных ситуациях, приводящих к среднескоростному соударению с преградами, имеющими различные механические свойства

  • Пикуль В.В. Современное состояние теории оболочек и перспективы ее развития // Изв. АН. МТТ. 2000. № 2. С. 153-168.
  • Гольденвейзер А.Л. Теория упругих тонких оболочек. М. : Наука, 1976. 512 с.
  • Фирсанов В.В. Об уточнении классической теории прямоугольных пластинок из композиционных материалов // Механика композиционных материалов и конструкций. 2002. Т. 8. № 1. С. 28-64.
  • Фирсанов В.В. Напряженное состояние типа «пограничной слой» - краевое кручение прямоугольной пластинки // Строительные механика инженерных конструкций и сооружений. 2016. № 6. С. 44-51.
  • Зверяев Е.М. Конструктивная теория тонких упругих оболочек // Препринты ИПМ им. М.В. Келдыша. 2016. № 33. 24 с. doi: 10.20948/prepr-2016-33. Режим доступа: http://keldysh.ru/papers/2016/prep2016_33.pdf
  • Васильев В.В., Лурье С.А. К проблеме построения неклассической теории пластин // Изд. АН. МТТ. 1990. № 2. С. 158-167.
  • Фирсанов В.В., Чан Н.Д. Энергетически согласованная теория цилиндрических оболочек // Проблемы машиностроения и надежности машин. 2011. № 6. С. 49-54.
  • Dicarlo A., Podio-Guidugli P., Williams W.O. Shells with thickness distension // In- tern. J. of Solids and Structures. 2001. Vol. 38. Iss. 6-7. P. 1201-1225.
  • Jaiani G. Differential hierarchical models for elastic prismatic shells with microtem-peratures // ZAMM (Journal of Mathematics and Mechanics). 2015. Vol. 95. Iss. 1. P. 77-90.

Просмотры

Аннотация - 91

PDF (Russian) - 256


© ЧАН Н.Д., ФИРСАНОВ В.В., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.