EXPERIMENTAL RESEARCHES OF SURVIVABILITY FRAGMENT OF THE FRAME OF THE BUILDING WITH REINORCED CONCRETE COMPOSITE ELEMENTS WORKING ON BEND WITH TORSION

Cover Page

Abstract


In the article, the experimental results of deformation, cracking and failure of a reinforced concrete frame when loaded over the designed specifications, or when overloaded by a sudden failure of a pillar are presented. The results of displacements and cracking caused by the load at the main support points, for bending and twisting, give an opportunity to determine the survivability parameters and the dynamic overload values for the construction elements. The results can also provide information about the survivability of a building after being overloaded.


Full Text

В последние годы в ряде ведущих стран мира, в том числе и в России, наравне с традиционным расчетом конструкций по предельным состояниям требуется расчетный анализ конструктивных систем на аварийные воздействия, вызванные внезапным выключением из системы одного из несущих элементов. Решение данной задачи требует проведения экспериментальных исследований для определения параметров живучести конструктивных систем, а также изучение особенностей статико-динамического деформирования заданной конструктивной системы в предельных и запредельных состояниях. В представленной работе приведены методика и основные результаты испытаний фрагмента железобетонного каркаса многоэтажного здания с ригелями составного сечения. Цель экспериментальных исследований - изучение особенностей деформирования, трещинообразования и разрушения элементов конструктивной системы в условиях ее структурной перестройки, вызванной внезапным выключением одного из вертикальных несущих элементов (стойки). Основные задачи исследований: - экспериментальное выявление особенностей деформирования и трещинообразования ригеля составного сечения, работающего на кручение с изгибом от заданной нагрузки и запроектного воздействия - выключения центральной несущей стойки; - экспериментальное определение схем разрушения железобетонной рамы при указанных воздействиях. Описание экспериментальной установки Конструкция железобетонной рамы, моделирующая фрагмент пространственного каркаса многоэтажного здания включала пять стоек и два неразрезных ригеля составного сечения армированных плоскими сварными каркасами Кр-1 и Кр-2. Нагружение ригелей опытного фрагмента проектной нагрузкой производилось с использованием рычажно-подвесной системы и нагрузочных устройств, передающих нагрузку в виде сосредоточенных сил на ригели большего пролета в местах установки опорных пластин 4 (см. рис.1,а, в). Запроектное воздействие в виде внезапного выключения подвижной центральной опоры 1 прикладывалось после нагружения рамной системы проектной нагрузкой. Эта опора выполнена в виде шарнирно-стержневого механизма (см. рис. 1,а, рис.2), состоящего из двух расположенных вертикально и шарнирно соединенных между собой и с опорами стержней, геометрическая неизменяемость которого обеспечивается неподвижной опорой и горизонтальной связью в виде шпильки с резьбой, удерживаемой в проектном положении посредством болтового соединения. Приоритет предложенного решения защищен патентом РФ №2016128903 от 15.07.2016г. Рис. 1. Конструкция опытного образца рамы: а - опалубочная схема; б - схема армирования; в - вид сверху: 1 - трехшарнирная выключаемая стойка; 2 -неподвижная стойка; 3 - горизонтальная связь; 4 - опорные пластины При определенном (расчетном) значении испытательной нагрузки в шарнирно-стержневом механизме (1,2), моделирующем выключаемую колонну рамы, принудительно выключалась горизонтальная связь 3 путем разъединения резьбового соединения шпильки и неподвижной опоры 2. При этом сжатая пружина мгновенно создает горизонтальное усилие, выталкивающее в горизонтальном направлении шарнир, соединяющий вертикально расположенные стержни шарнирно-стержневого механизма и таким образом мгновенно выключает из работы центральную подвижную стойку опытного фрагмента. Измерение опытных характеристик в конструкции железобетонной рамы для количественной оценки параметра живучести (?) и коэффициента динамических догружений ? [3] выполнялось с использованием тензометрии и оптико-механических приборов. Предварительно эти параметры были определены расчетным путем по методике [3,4]. Расчет был проведен по двухуровневой расчетной схеме (рис.3). Рис. 2. Общий вид выключающейся стойки Моделирование Расчетная схема первого уровня (рис. 3,а) представлена пространственной рамно-стержневой системой с центральной стойкой, которая при расчете может исключаться из системы. В расчетной схеме второго уровня(рис. 3,б) составной ригель с частью стойки в расчетной модели представлен комбинацией объемных конечных элементов, моделирующих с заданной степенью дискретизации тело разных бетонов, и стержней - податливых связей растяжения, сжатия, сдвига в некотором малом по толщине слое, разделяющем эти бетоны. Толщина контактного слоя определена в соответствии с рекомендациями работы [5].Объемные элементы - прямоугольные параллелепипеды, например, тип конечного элемента КЭ №31 в программном комплексе Лира-САПР (КЭ №231 в физически нелинейной постановке) моделируют тело бетона разного состава. Рис. 3. Расчетные схемы пространственной рамы первого (а) уровня, второго (б) уровня: 1,2 - объемные КЭ стойки и составного ригеля,3- КЭ связей для предотвращения поворота ригеля, 4 - связи растяжения, сжатия, сдвига, 5 - связи, объединяющие перемещения между жесткой пластиной и объемными элементами Стержневые элементы КЭ №10 (№210) «универсальный стержень» служили для описания дискретных связей между объемными элементами слоев. При проведении расчета на запроектное воздействие по так называемой вторичной расчетной схеме [6,7,8] влияние на несущие элементы отброшенной части рамы заменялась вычисленными с использованием расчетной схемы первого уровня (см. рис. 3,а) внутренними усилиями в выключаемой стойке рамы. Указанные усилия передаются на объемные элементы в виде соответствующих компонент M, Q, N в заданной точке и распределяются между узлами объемных элементов при помощи специально введенной в расчетную схему фиктивной пластины. Варьирование жесткостью пластины позволяет моделировать следование гипотезе плоских сечений для каждого элемента составного ригеля или задавать его депланацию. Расчет выполняется с использованием шагово-итерационной процедуры метода последовательных приближений. Результатом расчета с использованием описанной расчетной модели являются перемещения узлов, усилия в стержневых элементах, напряжения в объемных элементах. Проверка условий образования трещин в объемных и стержневых элементах на заданном шаге нагрузки, корректировка их жесткостных характеристик может выполняться как вручную, так и с использованием алгоритма, реализованного в библиотеке конечных элементов программного комплекса, аналогично тому, как это сделано в работе [9]. Полученные в результате эксперимента данные о вертикальных перемещениях в середине пролета элемента ригеля Р-3, Р-2 и углах поворота составного ригеля в середине пролета сечения и над выключенной центральной стойкой приведены на рисунках 4, 5. Здесь же приведены теоретические значения перемещений и углов поворота сечений ригеля, вычисленные с использованием описанной расчетной схемы (см. рис. 3). Рис. 4. Перемещения сечений ригелей рамы при ее нагружении проектной нагрузкой: а - 1,2 - соответственно опытные и теоретические прогибы для среднего пролетного сечения ригеля Р-3 (точка 5);б -1,2 - то же для ригеля Р-2 (точка 6) Основные результаты Полученные данные о перемещениях и углах поворота ригелей при проектной нагрузке позволяют иметь нагрузку распределения деформированного состояния в элементах рамы при проектной нагрузке для ее сопоставления с картиной деформированного состояния рамы после запроектного воздействия. Рис. 5. Углы поворота сечений ригелей рамы при ее нагружении проектной нагрузкой:а - 1,2-соответственно, расчетные и опытные углы поворота сечения над подвижной опорой ригеля Р-3 (точка 2);б - 1,2- расчетные и опытные углы поворота среднего пролетного сечения ригеля Р-3 (точка 6) Анализ полученных опытных данных о трещинообразовании в конструкциях рамы позволяет отметить следующее (рис. 6). Первые трещины с раскрытием 0,05 мм (Тр. 1) в составном ригеле Р-3 появились в верхней зоне приопорного сечения у стойки С-3 при суммарной нагрузке 12,6 кН (рис.6,а). По мере нагружения рамы на 12-м этапе нагружения (13,5 кН) образовались нормальные трещины (Тр. 2) в пролете ригеля Р-1 с шириной раскрытия 0,05 - 0,1 мм и до достижения полной проектной нагрузки 18 кН их раскрытие составило до 0,25 мм. По мере увеличения нагрузки ширина раскрытия этих трещин увеличивалась, и трещины развивались по высоте сечения составного ригеля. После запроектного воздействия образовавшиеся трещины первого и второго типа (Тр.1 и Тр.2) получили значительное раскрытие, количество трещин первого типа (Тр. 1) увеличилось, также произошло образование нормальных трещин в пролете ригеля Р-3 (Тр.2’) (рис. 6, б). Кроме этого, после указанного воздействия в составных ригелях Р-1 и Р-3 образовались продольные трещины в зоне контакта двух бетонов с раскрытием до 1,6 мм (Тр. 3’). Все типы трещин, образовавшиеся при запроектном воздействии (рис. 6,б), обозначены знаком «штрих». Количественные значения раскрытия трещин при увеличении проектной нагрузки приведены на рис. 7. После запроектного воздействия в виде внезапного выключения центральной стойки в элементах опытной конструкции рамы, существующие трещины получили дополнительное раскрытие, и образовалась сеть новых нормальных трещин (Тр.2’). В приопорном сечении ригеля Р-1 в соединении со стойкой С-1 образовалась нормальная трещина (Тр.1’) с шириной раскрытия 2,8 мм, а в приопорном сечении составного ригеля Р-3 в соединении со стойкой С-3нормальная трещина Тр.1’ раскрылась до 2 мм. Ширина раскрытия нормальных трещин (Тр.2’), образовавшихся при проектной нагрузке, после запроектного воздействия значительно увеличилась - с 0,25 мм до 0,8 мм. Рис. 6. Схема образования и раскрытия трещин в опытной конструкции рамы при проектной нагрузке (а) и запроектном воздействии (б) Рис. 7. Зависимость «нагрузка-ширина раскрытия трещин» в среднем сечении и на опоре составного ригеля Р-3(Тр-1,Тр-2) Разрушение составного ригеля рамы характеризовалось значительным раскрытием нормальных трещин (Тр.2) в середине пролета (до 0,8 мм), трещин (Тр.1), развивающихся по пространственному сечению у опор ригеля, испытывающего изгиб с кручением, и разрушением шва контакта между элементами составного ригеля (до 1,6 мм). При этом наблюдались значительные вертикальные перемещения составных ригелей во вторичной (после запроекного воздействия) конструктивной системе, которые составили 15,6 мм или 1/56 пролета составного ригеля. Общий вид разрушения конструктивной системы после запроектного воздействия представлен на рис.8. Рис. 8. Общий вид разрушения пространственной рамы после внезапного выключения центральной стойки Выводы Предложенная методика экспериментальных исследований фрагмента железобетонного каркаса многоэтажного здания позволила экспериментально установить особенности деформирования, трещинообразования и разрушения элементов конструктивной системы после внезапного выключения одного из вертикальных несущих элементов. Полученные опытным путем приращения деформаций, схемы образования и раскрытия трещин в составных конструкциях ригелей, картины характера разрушения опытного фрагмента позволяют анализировать перераспределение силовых потоков в рассматриваемой конструктивной системе и численно оценить динамические догружения в сечениях конструктивных элементов, вызванные внезапным выключением одной из колонн фрагмента каркаса здания.

About the authors

SVETLANA ALEKSEEVNA ALKADI

South-West State University, Kursk

Author for correspondence.
Email: fortina2008@mail.ru
305040, Курск, ул. 50 Лет Октября, 94

ALKADI SVETLANA ALEKSEEVNA, assistant of the department of unique buildings and structures, South-West State University. Scientific interests: theoretical and experimental studies of the survivability of buildings and structures, modeling of reinforced concrete structures, testing of reinforced concrete structures with solid and composite element

ALEKSEJ IVANOVICH DEMYANOV

South-West State University, Kursk

Email: speccompany@gmail.com
305040, Курск, ул. 50 Лет Октября, 94

DEMYANOV ALEKSEJ IVANOVICH, candidate of technical sciences, associate professor of the department of industrial and civil engineering. Scientific interests: the study of composite structures in complex resistance, the study of the survivability of structural systems and reinforced concrete and other non-linearly deformed materials, experimental studies in reinforced concrete structures, computer technologies for computational analysis of buildings and structures

EVGENIJ VASILэEVICH OSOVSKIH

South-West State University, Kursk

Email: jane_wasp@mail.ru
305040, Курск, ул. 50 Лет Октября, 94

OSOVSKIH EVGENIJ VASILэEVICH, candidate of technical sciences, associate professor of the department unique buildings and structures, South-West State University. Scientific interests: development of research in the field of deformation and destruction of reinforced concrete folded coatings of operating industrial buildings in out-of-state conditions, development of reconstruction projects for such coatings, using along with traditional methods of verification calculations for limit states of analysis of the survivability of these systems

References

  1. Federalnyiyzakonot 30.12.2009 N 384-FZ «Tehnicheskiyreglament o bezopasnostizdaniy i sooruzheniy» [Elektronnyiyresurs]. SPS KonsultantPlyus: Zakonodatelstvo: VersiyaProf. – URL: http: www.consultant.ru/document/cons_doc_LAW_95720/ (17.08.2016) (in Russian).
  2. GOST 27751-2014. Nadezhnost stroitelnyih konstruktsiy i osnovaniy. Osnovnyie polozheniya. Vved. 2015-07-01, Moscow Standartinform, 2015, 13 p.
  3. Kolchunov, V.I., Klyueva, N.V., Androsova, N.B., Buhtiyarova, A.S. (2004). Zhivuchest zdaniy i sooruzheniy pri zaproektnyih vozdeystviyah [Stability of buildings and structures under beyond design basis impacts], Moscow: ASV, 208 p. (in Russian).
  4. Geniev, G.A., Kolchunov, V.I., Klyueva, N.V., Nikulin, A.I., Pyatikrestovskiy,, K.P. (2004). Prochnost i deformativnost zhelezobetonnyih konstruktsiy pri zaproektnyih vozdeystviyah [Strength and deformability of reinforced concrete structures under beyond design impacts], Moscow: ASV, 216 p.
  5. Bashirov, H.Z., Kolchunov, Vl.I., Fedorov, S.V., Yakovenko, I.A. (2016). Zhelezobetonnyie sostavnyie konstruktsii zdaniy i sooruzheniy [Reinforced concrete structures of buildings and structures], Moscow: Izdatelstvo ASV, 248 p. (in Russian).
  6. Kolchunov, V.I., Emelyanov, S.G. (2016). Issues of calculation analysis and protection of large-panel buildings from progressive collapse, Zhilischnoe stroitelstvo, (10), 17—20 (in Russian).
  7. Emelyanov, S.G., Fedorova, N.V., Kolchunov, V.I. (2017). Features of designing of knots of designs of inhabited and public buildings from panel-frame elements for protection against a progressing collapse, Nauchno-Tehnicheskiy i Proizvodstvennyiy Zhurnal. Stroitelnyie Materialyi, (3), 3—5 (in Russian).
  8. Fedorova, N.V., Koren'kov P.A. (2016). Static-and-dynamic deformation of monolithic reinforced concrete building frameworks in the limiting and transcendental states, Stroitel'stvo i rekonstrukciya, (6), 90—100 (in Russian).
  9. Salnikov, A.S., Kolchunov, Vl.I.,Yakovenko, I.A. (2015). Calculation model for the formation of spatial cracks of the first type in reinforced concrete structures with torsion with bending, Promy-ishlennoe i Grazhdanskoe Stroitelstvo, No 3, 35—40 (in Russian).

Statistics

Views

Abstract - 276

PDF (Russian) - 203

Cited-By


PlumX

Dimensions


Copyright (c) 2017 ALKADI S.A., DEMYANOV A.I., OSOVSKIH E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies