Cover Page


The paper describes some of the popular evolutionary algorithms: genetic algorithms, differential evolution method, particle swarm optimization and bat-inspired method. With the help of these algorithms the problem of optimal control of a mobile robot is solved. For comparison the same problem is solved with the algorithm of fast gradient descent and random search. The computational experiments showed that evolutionary algorithms provide more accurate results for the optimal control problems than fast gradient descent algorithm.

About the authors

A I Diveev

Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS; Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: aidiveev@mail.ru
Vavilova str., 40, Moscow, Russia, 119333; Miklukho-Maklaya str., 6, Moscow, Russia, 117198

Doctor of technical sciences, professor, chief of sector of Cybernetic problems, Federal Research Centre “Computer Science and Control” of Russia Academy of Sciences, professor of department Mechanics and mechatronics, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University)

S V Konstantinov

Peoples’ Friendship University of Russia (RUDN University)

Email: konstantinov_sv@rudn.university
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

senior lecturer of department Mechanics and mechatronics, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University). Research interests: Optimization algorithms, evolutionary algorithms, genetic algorithms, computational methods for problems of optimal control


  1. Polak E. Chislennye metody optimizatsii. M.: Mir, 1974. (In Russ).
  2. Karpenko A.P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi. M.: Izdatel’stvo MGTU im. N.E. Baumana, 2014. (In Russ).
  3. Goldberg D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.
  4. Storn R., Price K. Differential Evolution — A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces / Journal of Global Optimization. 1997. No. 11. P. 341—359.
  5. Kennedy J., Eberhart R. Particle Swarm Optimization / Proceedings of IEEE International Conference on Neural Networks IV. 1995. P. 1942—1948.
  6. Yang Xin-She. A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence. Berlin: Springer, 2010. Vol. 284. P. 65—74.
  7. Karpenko A.P. Populyatsionnye algoritmy global’noi poiskovoi optimizatsii. Obzor novykh i maloizvestnykh algoritmov. Informatsionnye tekhnologii. 2012. No. 7 P. 1—32. (In Russ).
  8. Panteleev A.V., Letova T.A. Metody optimizatsii v primerakh i zadachakh: ucheb. posobie. M.: Vysshaya shkola, 2005. (In Russ).



Abstract - 417

PDF (Russian) - 755



Copyright (c) 2017 Diveev A.I., Konstantinov S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies