EFFECT OF MINERAL AND VEGETABLE OIL ON DEFORMATION PROPERTIES OF CONCRETE

Cover Page

Abstract


The production or use of vegetable and mineral oils in industrial processes is one of the characteristics of industrial buildings. Negative impact of vegetable, mineral oil and petroleum products on concrete and reinforced concrete leads to decrease of reliability of bearing constructions of industrial buildings for appropriate purposes.The results of experimental study of influence of mineral and vegetable oil on the concrete presented. The relationship between the properties of deformation of concrete and viscosity of mineral and vegetable oils installed.The results of the study can be used in the safety assessment of industrial buildings.


Введение Изучению изменения деформаций бетона и железобетона под влиянием различных факторов посвящены ряд исследований, результаты которых представлены в работах российских и зарубежных авторов. В публикациях представлены выявленные особенности усадочных деформаций бетона. Однако закономерностей формирования деформаций бетона, пропитанного маслянистыми жидкостями, выполненными ранее исследованиями не выявлено. В результате исследования влияния растительного и минерального масла, а также нефтепродуктов на физико-механические свойства бетона установлены закономерности их изменения. Влияние маслянистых жидкостей на свойства бетона в свете современных исследований Бетонные и железобетонные несущие конструкции промышленных зданий характеризуются большой надежностью, которую невозможно оценить на осно- ве анализа статистических данных об отказах, как в электронике или машиностроении. Негативное воздействие масла на бетон и железобетон приводит к снижению надежности несущих промышленных зданий соответствующего назначения. Исследованиями Даркенес А., Маиа Л., Салау М.А. и др. [8; 12; 14] установлены закономерности формирования усадочных деформаций бетона, а также деформаций ползучести. Исследованы деформации бетона в раннем возрасте и при длительных нагрузках на бетон высокой прочности и с дополнительными минеральными добавками. Исследованиями влияния на бетон таких масел и нефтепродуктов, как минеральное масло И-30, топочный мазут, дизельное топливо, осветительный керосин, бензин А-80 [1] выявлены особенности изменения его деформативных свойств, заключающихся в том, что при осевом сжатии продольные деформации уменьшаются, а поперечные увеличиваются. Однако в представленных работах влияние растительного масла на свойства бетона не отражены. Пермяковой В.В. и др. выявлены особенности влияния отработанного машинного масла на структурные изменения бетонных и железобетонных конструкций [2], а также отмечено существенное отличие характеристик бетона, пропитанного свежим и отработанным машинным маслом. Вязкость отработанных минеральных масел отличается от вязкости свежих. В связи с этим изменение физикомеханических характеристик бетона целесообразно рассматривать с учетом этой особенности [7]. Негативное влияние нефтепродуктов на бетон проявляется в том, что прочность на осевое сжатие снижается на 17% для обычного бетона, а для высокопрочного - на 11,8% [9]. Исследованиями [16; 17] также выявлено негативное воздействие минерального масла и нефтепродуктов на цементный камень. Механическое поведение бетона находится под влиянием минерального масла, находящегося в порах цементного камня. Ключевую роль в формировании сопротивления сжатию пропитанного минеральным маслом и нефтепродуктами играют пористость и проницаемость [11]. Минеральное масло, нефтепродукты и вода оказывают не одинаковое влияние на физико-механические характеристики пропитываемого бетона. Исследованием Матти М.А. [13] установлено увеличение модуля упругости бетона, пропитанного сырой нефтью, на 8-10% по сравнению с контрольными образцами, а пропитанного водой - на 10-15%. Это связано со смазывающей способностью маслянистых жидкостей. Нефтепродукты оказывают негативное влияние на конструкции бетонных и железобетонных резервуаров нефтехранилищ [10; 15]. Исследованиями влияния масла и нефтепродуктов на деформативные свойства бетона [3] установлены закономерности влияния вязкости нефтепродуктов на деформативность пропитанного ими бетона. Негативное воздействие масла и нефтепродуктов на деформативные и прочностные свойства бетона оказывают влияние на надежность несущих конструкций промышленных зданий [4]. В результате выполненного исследования предложены концептуальные основы количественной оценки технического состояния несущих бетонных и железобетонных конструкций, пропитанных нефтепродуктами. Анализ публикаций научно-технической информации показывает, что в настоящее время влияние растительного масла на бетон исследовано не в полной мере. Это сдерживает возможности решения задач оценки надежности несущих бетонных и железобетонных конструкций промышленных зданий, в которых производят или используют растительное масло. Материалы К исследованию приняты: а) контрольные образцы - 3 ед.; б) образцы, пропитанные нефтепродуктами: минеральное масло И-30 с условной вязкостью 15° Е - 5 ед.; в) образцы, пропитанные: оливковым маслом с условной вязкостью 5,92° Е - 5 ед.; кукурузным маслом с условной вязкостью 4,1° Е - 5 ед. Условная вязкость нефтепродуктов принята по справочным данным [6]. Условная вязкость растительных масел определена по таблице перевода секунд Сейболта в градусы Энглера [5]. Это позволило использовать единый методический подход к определению влияния маслянистых жидкостей на физико-механические свойства бетона в несущих конструкциях промышленных зданий. Оборудование Приготовление цементно-песчаного раствора выполнено в бетоносмесителе БЛ-10. Для уплотнения образцов использован вибростол лабораторный ВМ-6.4. Твердение и набор прочности образцов осуществлены в камере нормального твердения с поддержанием относительной влажности воздуха не ниже 80%. Исследование образцов на осевое сжатие выполнено на испытательном прессе 50 кН. Изготовление и хранение образцов В соответствии с планом эксперимента изготовлены образцы из цементнопесчаного раствора в виде кубиков размером 7×7×21 см. Кубики выдержаны в течение 28 суток в камере нормального твердения. По истечении срока нормального твердения контрольные образцы направлены на испытание. Для насыщения образцы помещены в емкости, которые заполнены растительным и минеральным маслом, соответственно. В указанных условиях образцы выдержаны в течение 7 месяцев при комнатной температуре от 16 до 24 °С. По мере поглощения масло доливали в емкости. На рисунке 1 представлен момент подготовки образцов к насыщению растительным маслом. Рис. 1. Подготовка образцов к насыщению растительным маслом Методика экспериментального исследования Исследование выполнено на основе анализа, обобщения и оценок экспериментальных данных о влиянии растительного, минерального масла и нефтепродуктов на физико-механические свойства бетона. В рамках экспериментального исследования определены продольные ε прод и ε поп деформации контрольных и пропитанных маслянистыми жидкостями образцов. Математическая обработка экспериментальных данных выполнена по известным методикам математической статистики. Это позволило получить статистически значимые результаты экспериментов с надежностью не ниже α = 0,90. На основе анализа средних значений вычислены коэффициенты поперечной деформации ν = ε поп / ε прод и дифференциальные коэффициенты поперечных деформаций Δν при уровнях напряжения σ / R пр = 0,07-0,94. Использование представленных материалов для экспериментального исследования, а также методов математической обработки и анализа полученных данных позволило уточнить причинно-следственные связи в аспекте влияния маслянистых жидкостей на физико-механические свойства пропитанного ими бетона. Исследование влияния растительного и минерального масла на физикомеханические свойства пропитанного ими бетона Маслянистые жидкости, производимые или используемые в промышленных зданиях, попадают на несущие бетонные и железобетонные конструкции и постепенно их пропитывают. Это приводит к существенному изменению физикомеханических характеристик материала и к возможному увеличению вероятности проявления деструктивных процессов. В рамках экспериментального исследования выявлены причинно-следственные связи изменения деформативных характеристик пропитанного минеральным и растительным маслом бетона. Установлено, что маслянистые жидкости с различной вязкостью не одинаково влияют на изменение деформативных свойств бетона. Индустриальные и растительные масла являются несжимаемыми жидкостями, заполняющими поры пропитываемого бетона. При осевой нагрузке масло, содержащееся в порах, служит дополнительным сопротивлением к сжатию. Этим объясняется соотношение продольных деформаций контрольных и пропитанных маслом образцов. Поперечные деформации образуются под действием распора масла содержащегося в порах бетонных образцов. В результате такого воздействия цементный камень распирается и разрушается в поперечном направлении, что приводит к образованию соответствующих деформаций. На рисунке 2 представлены изменения деформаций в относительных единицах средних значений экспериментальных данных. Анализ кривых показывает, что изменение коэффициентов поперечной деформации (ν) и дифференциальных коэффициентов поперечной деформации (ν) образцов, пропитанных индустриальным маслом И-30, оливковым и кукурузным маслом, а также контрольных образцов сопоставимы по закономерности изменения. Рис. 2. Зависимость коэффициентов поперечной деформации от уровня напряжения осевого сжатия: а - коэффициент поперечной деформации; б - дифференциальный коэффициент поперечной деформации Коэффициент поперечной деформации и дифференциальный коэффициент поперечной деформации образцов, пропитанных маслом, больше чем у контрольных образцов в среднем на 158% и на 137%, соответственно. Совокупность признаков позволяет считать, что пропитывающее бетонные образцы масло оказывает влияние на его деформативные свойства При этом значения коэффициентов поперечной деформации и дифференциальных коэффициентов поперечной деформации пропитанных маслом образцов отличаются между собой и не одинаковы для каждого вида масла. Отличие абсолютных значений составляет от 7% до 26%. Это следствие влияния масел с различной вязкостью. Таким образом, важным фактором, влияющим на физико-механические свойства бетона, служит вязкость пропитывающего его масла. Анализ результатов экспериментального исследования показывает, что маслянистые жидкости, пропитывающие бетон, оказывают на его физико-механические характеристики негативное воздействие, которое существенно зависит от их вязкости. Изменение первоначальных свойств материала может привести к снижению технической безопасности несущих конструкций, из которого они сделаны. В связи с этим изменения строительных свойств бетонных и железобетонных конструкций необходимо учитывать при проектировании несущих элементов промышленных зданий, где используются или производятся маслянистые жидкости. Это позволит предотвратить преждевременные и непредвиденные разрушения, а также возникновение чрезвычайных ситуаций. Заключение Предотвращение аварий и чрезвычайных ситуаций является одной из важнейших научно-технических задач проектирования, строительства и эксплуатации промышленных зданий, где производят или применяют в технологических процессах маслянистые жидкости: растительные масла, минеральные масла, мазут, которые попадают на фундаменты под оборудования, на несущие конструкции и постепенно пропитывают их. Это обусловливает увеличение вероятности появления деструктивных процессов в несущих бетонных и железобетонных конструкциях промышленных зданий и риск их разрушения различной степени тяжести. В результате теоретических и экспериментальных исследований установлены закономерности изменения физико-механических характеристик бетона и железобетона в зависимости от вязкости пропитывающих маслянистых жидкостей. Установлено, что влияние на деформативные свойства бетона зависит от вязкости пропитывающих маслянистых жидкостей. Полученные результаты исследования могут быть использованы в практических целях для предотвращения чрезвычайных ситуаций на промышленных зданиях, где производят растительное или минеральное масло, а также применяют нефтепродукты в технологических процессах.

A P Svintsov

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: engjournalrudn@rudn.university
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

T SF Gamal

Peoples’ Friendship University of Russia (RUDN University)

Email: engjournalrudn@rudn.university
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

E E Shumilin

Peoples’ Friendship University of Russia (RUDN University)

Email: engjournalrudn@rudn.university
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

  • Vorob’ev A.A., Kazakov A.S. Stojkost’ stroitel’nyh konstrukcij pri jekspluatacii v promyshlennyh zdanijah pri vozdejstvii na nih nefteproduktov // Bulletin of Peoples’ Friendship University of Russia. Series «Engineering researches». 2010. № 2. S. 32—35. (In Russ).
  • Permyakova V.V., Lebedeva N.A., Pozhitkova O.A. Issledovanie sostoyaniya betonnykh i zhelezobetonnykh konstruktsiy, podverzhennykh vozdeystviyu otrabotannogo masla // Izvestiya Vserossiyskogo nauchno-issledovatel’skogo instituta gidrotekhniki im. B.E. Vedeneeva. 2000. T. 237. S. 18—24. (In Russ).
  • Svintsov A.P., Nikolenko Y.V., Kharun M., Kazakov A.S. Vlijanie vjazkosti nefteproduktov na deformativnye svojstva betona // Inzhenerno-stroitel’nyi zhurnal. 2014. № 7. S. 16—22. (In Russ).
  • Svintsov A.P., Nikolenko Y.V., Kharun M. Vlijanie nefteproduktov na nadezhnost’ betonnyh i zhelezobetonnyh nesushhih konstrukcij // Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. № 10. S. 68—74. (In Russ).
  • Tehnicheskaja informacija — tablicy Tehtab.ru. Tablica sootvetstvija edinic kinematicheskoj vjazkosti. URL: http://tehtab.ru/Guide/GuidePhysics/VicosityReynolds/ConvertionKinematicViscosity/ (10.01.2017). (In Russ).
  • Toplivno-smazochnye materialy, tehnicheskie zhidkosti, assortiment i primenenie. Spravochnik. Moscow: Tehinform, 1999. 596 s. (In Russ).
  • Jusupova Ju.F. Vlijanie mineral’nyh masel na jekspluatacionnye kachestva zhelezobetonnyh konstrukcij // Izvestija KazGASU. 2008. № 1(9). S. 137—140. (In Russ).
  • Darquennes A., Khokhar M.I.A., Rozière E., Loukili A., Grondin F., Staquet S. Early age deformations of concrete with high content of mineral additions // Construction and Building Materials. 2011. Vol. 25. Is. 4. Pp. 1836—1847. http://doi.org/ 10.1016/j.conbuildmat.2010.11.077
  • Diab H. Compressive strength performance of low- and high-strength concrete soaked in mineral oil // Construction and Building Materials. 2012. Vol. 33. Pp. 25—31. http://doi.org/10.1016/j.conbuildmat.2012.01.015
  • Emery G. Tank-bottoms reclamation unit upgraded to meet stricter rules // Oil and Gas Journal. 1993. Vol. 91. No. 15. Pp. 40—46.
  • Kameche Z.A., Ghomari F., Choinska M., Khelidj A. Assessment of liquid water and gas permeabilities of partially saturated ordinary concrete // Construction and Building Materials. 2014. Vol. 65 (29). Pp. 551—565. http://doi.org/10.1016/j.conbuildmat. 2014.04.137
  • Maia L., Figueiras J. Early-age creep deformation of a high strength self-compacting concrete // Construction and Building Materials. 2012. Vol. 34. Pp. 602—610. http://doi.org/10.1016/j.conbuildmat.2012.02.083
  • Matti M.A. Effect of oil soaking on the dynamic modulus of concrete // International Journal of Cement Composites and Lightweight Concrete. 1983. Vol. 5 (4). Pp. 277—282.
  • Salau M.A. Long-term deformations of lateral concrete short columns // Building and Environment. 2003. Vol. 38 (3). Pp. 469—477. http://doi.org/10.1016/S0360-1323(02)00014-8
  • Wright R.N., Smith G. Oil storage tank collapses // Oil and Gas Journal. 1988. No. 46. Pp. 49—54.
  • Yurtdas I., Xie S.Y., Burlion N., Shao J.F., Saint-Marc J., Garnier A. Influence of chemical degradation on mechanical behavior of a petroleum cement paste // Cement and Concrete Research. 2011. Vol. 41. Is. 4. Pp. 412—421. http://doi.org/10.1016 /j.cemconres.2011.01.008
  • Zhang J., Weissinger E.A., Peethamparan S., Scherer G.W. Early hydration and setting of oil well cement // Cement and Concrete Research. 2010. Vol. 40. Is. 7. Pp. 1023—1033. http://doi.org/10.1016/j.cemconres.2010.03.014

Views

Abstract - 1461

PDF (Russian) - 74


Copyright (c) 2017 Svintsov A.P., Gamal T.S., Shumilin E.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.