Вычисление интегралов в MathPartner
- Авторы: Малашонок Г.И.1, Селиверстов А.В.2
-
Учреждения:
- Национальный университет «Киево-Могилянская академия»
- Институт проблем передачи информации им. А.А. Харкевича РАН
- Выпуск: Том 29, № 4 (2021)
- Страницы: 337-346
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/29427
- DOI: https://doi.org/10.22363/2658-4670-2021-29-4-337-346
Цитировать
Полный текст
Аннотация
В статье рассмотрены возможности сервиса MathPartner по вычислению определённых и неопределённых интегралов. MathPartner содержит программную реализацию алгоритма Риша и предоставляет пользователям возможность вычислять первообразные для элементарных функций. Некоторые интегралы, в том числе несобственные, можно вычислить с помощью численных алгоритмов. В этом случае каждый пользователь может указать необходимую точность, с которой ему необходимо знать числовое значение интеграла. Отметим специальные функции, которые позволяют вычислять полные эллиптические интегралы. К ним относятся функции для вычисления арифметико-геометрического среднего и геометрическо-гармонического среднего, которые позволяют вычислять полные эллиптические интегралы первого рода. Набор также включает модифицированное арифметико-геометрическое среднее, которое предложил Семён Адлай, что позволяет вычислять полные эллиптические интегралы второго рода и длину (периметр) эллипса. Особый интерес представляет алгоритм Лагутинского. Для данного дифференцирования в поле рациональных функций от двух переменных можно решить, существует ли рациональный интеграл. Алгоритм основан на вычислении определителя Лагутинского. В этом году мы отмечаем 150-летие со дня рождения Михаила Лагутинского.
Об авторах
Г. И. Малашонок
Национальный университет «Киево-Могилянская академия»
Автор, ответственный за переписку.
Email: malaschonok@gmail.com
ORCID iD: 0000-0002-9698-6374
Doctor of Physical and Mathematical Sciences, Professor, Department of Informatics
ул. Григория Сковороды, д. 2, Киев, 04655, УкраинаА. В. Селиверстов
Институт проблем передачи информации им. А.А. Харкевича РАН
Email: slvstv@iitp.ru
ORCID iD: 0000-0003-4746-6396
Candidate of Physical and Mathematical Sciences, Leading researcher
Большой Каретный пер., д. 19-1, Москва, 127051, РоссияСписок литературы
- G. I. Malaschonok, “Application of the MathPartner service in education,” Computer Tools in Education, no. 3, pp. 29-37, 2017, in Russian.
- G. I. Malaschonok, “MathPartner computer algebra,” Programming and Computer Software, vol. 43, pp. 112-118, 2017. DOI: 10.1134/ S0361768817020086.
- G. I. Malaschonok and I. A. Borisov, “About MathPartner web service,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 19, no. 2, pp. 512-516, 2014, in Russian.
- G. I. Malaschonok and M. A. Rybakov, “Solving systems of linear differential equations and calculation of dynamic characteristics of control systems in a web service MathPartner,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 19, no. 2, pp. 517- 529, 2014, in Russian.
- A. M. Kotochigov and A. I. Suchkov, “A method for reducing iteration in algorithms for building minimal additive chains,” Computer Tools in Education, no. 1, pp. 5-18, 2020, in Russian. doi: 10.32603/20712340-2020-1-5-18.
- M. D. Malykh, A. L. Sevastianov, and L. A. Sevastianov, “About symbolic integration in the course of mathematical analysis,” Computer Tools in Education, no. 4, pp. 94-106, 2019, in Russian. doi: 10.32603/2071-2340-2019-4-94-106.
- M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On algebraic integrals of a differential equation,” Discrete and continuous models and applied computational science, vol. 27, no. 2, pp. 105-123, 2019. doi: 10.22363/2658-4670-2019-27-2-105-123.
- M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On symbolic integration of algebraic functions,” Journal of Symbolic Computation, vol. 104, pp. 563-579, 2021. doi: 10.1016/j.jsc.2020.09.002.
- A. V. Seliverstov, “Heuristic algorithms for recognition of some cubic hypersurfaces,” Programming and Computer Software, vol. 47, pp. 50-55, 2021. doi: 10.1134/S0361768821010096.
- J. M. Borwein and P. B. Borwein, “The arithmetic-geometric mean and fast computation of elementary functions,” SIAM Review, vol. 26, no. 3, pp. 351-366, 1984. doi: 10.1137/1026073.
- K. Y. Malyshev, “Calculation of special functions arising in the problem of diffraction by a dielectric ball,” Discrete and Continuous Models and Applied Computational Science, vol. 29, no. 2, pp. 146-157, 2021. doi: 10.22363/2658-4670-2021-29-2-146-157.
- S. Adlaj, “An eloquent formula for the perimeter of an ellipse,” Notices of the American Mathematical Society, vol. 59, no. 8, pp. 1094-1099, 2012. doi: 10.1090/noti879.
- N. J. Mariani, G. D. Mazza, O. M. Martinez, and G. F. Barreto, “Evaluation of radial voidage profiles in packed beds of low-aspect ratios,” The Canadian Journal of Chemical Engineering, vol. 78, no. 6, pp. 1133-1137, 2000. doi: 10.1002/cjce.5450780614.
- B.-X. Xu, Y. Gao, and M.-Z. Wang, “Particle packing and the mean theory,” Physics Letters A, vol. 377, no. 3-4, pp. 145-147, 2013. doi: 10.1016/j.physleta.2012.11.022.
- R. H. Risch, “The problem of integration in finite terms,” Transactions of the American Mathematical Society, vol. 139, pp. 167-189, 1969. doi: 10.2307/1995313.
- R. H. Risch, “The solution of the problem of integration in finite terms,” Bulletin of the American Mathematical Society, vol. 76, no. 3, pp. 605- 608, 1970. doi: 10.1090/S0002-9904-1970-12454-5.
- M. Bronstein, “The transcendental Risch differential equation,” Journal of Symbolic Computation, vol. 9, pp. 49-60, 1990. doi: 10.1016/S07477171(08)80006-5.
- S. M. Tararova, “To the problem of constructing an algorithm for symbolic integration,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 17, no. 2, pp. 607-616, 2012, in Russian.
- V. A. Korabelnikov, “Symbolic integration algorithms in CAS MathPartner,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 24, no. 125, pp. 75-89, 2019, in Russian. doi: 10.20310/18100198-2019-24-125-75-89.
- V. A. Korabelnikov, “Procedural interpretation of symbolic integration algorithms in MathPartner system,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 24, no. 126, pp. 166-178, 2019, in Russian. doi: 10.20310/1810-0198-2019-24-126-166-178.
- V. A. Dobrovol’skii, N. V. Lokot’, and J.-M. Strelcyn, “Mikhail Nikolaevich Lagutinskii (1871-1915): Un Mathématicien Méconnu,” Historia Mathematica, vol. 25, no. 3, pp. 245-264, 1998. doi: 10.1006/hmat.1998.2194.
- V. A. Dobrovol’skii, N. V. Lokot’, and J.-M. Strelcyn, “Mikhail Nikolaevich Lagutinskii (1871-1915),” Istoriko-Matematicheskie Issledovaniya, vol. 6, pp. 111-127, 2001, in Russian.
- M. D. Malykh, “On application of M.N. Lagutinski method to integration of differential equations in symbolic form. Part 1,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 25, no. 2, pp. 103-112, 2017, in Russian. doi: 10.22363/2312-9735-2017-25-2-103-112.
- M. N. Lagoutinsky, “Application des opérations polaires à l’intégration des équations différ. ordinaires sous forme finie,” Communications de la Société mathématique de Kharkow. 2-ée série, vol. 12, pp. 111-243, 1911, in Russian.
- M. N. Lagoutinsky, “Sur certains polynômes, liés à l’intégration algébrique des équations différentielles ordinaires algébriques,” Communications de la Société mathématique de Kharkow. 2-ée série, vol. 13, no. 4-5, pp. 200-224, 1912, in Russian.