Решение обратной задачи определения оптических характеристик материалов
- Авторы: Ловецкий К.П.1, Жуков А.А.2, Паукшто М.В.3, Севастьянов Л.А.1, Тютюнник А.А.1
-
Учреждения:
- Российский университет дружбы народов
- ITL Consulting
- Fibralign Corporation
- Выпуск: Том 28, № 4 (2020)
- Страницы: 378-397
- Раздел: Статьи
- URL: https://journals.rudn.ru/miph/article/view/25183
- DOI: https://doi.org/10.22363/2658-4670-2020-28-4-378-397
Цитировать
Полный текст
Аннотация
В работе изложена методология определения оптических и физических свойств анизотропных тонкоплёночных материалов. Такой подход позволяет в дальнейшем проектировать многослойные тонкоплёночные покрытия с заданными свойствами. Сформулирована обратная задача определения тензора диэлектрической проницаемости и толщины тонкой плёнки, нанесённой на стеклянную подложку, с известными оптическими свойствами и толщиной. Предварительная информация о принадлежности тонкоплёночного покрытия к определённому классу позволяет значительно сократить время расчёта и увеличить точность определения тензора диэлектрической проницаемости на всём исследуемом интервале длин волн и толщины плёнки в точке измерения отражения и пропускания. В зависимости от поставленных целей возможна постановка и, следовательно, решение различных обратных задач: o определение тензора диэлектрической проницаемости и уточнение толщины толстой (до 1 см) подложки, часто изотропной; o определение тензора диэлектрической проницаемости тонкой изотропной или анизотропной плёнки, нанесённой на подложку, с известными оптическими свойствами. Сложность решения каждой из задач весьма различна и каждая требует своего определённого набора измеренных входных данных. Окончательные результаты решения обратной задачи верифицируются с помощью сравнения вычисленных коэффициентов пропускания и отражения с измеренными для произвольных углов падения и отражения.
Об авторах
К. П. Ловецкий
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: lovetskiy-kp@rudn.ru
Candidate of Physical and Mathematical Sciences, assistant professor of Department of Applied Probability and Informatics
ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияА. А. Жуков
ITL Consulting
Email: a.zhukov@itlc.ru
PhD, lead analyst of “ITL Consulting” company
Ольховская, д. 16, корп. 5, Москва, 105066, РоссияМ. В. Паукшто
Fibralign Corporation
Email: mpaukshto@fibralignbio.com
- DSc., Physics & Mechanical Engineering, co-founder and CTO of Fibralign Corporation
Альварадо-Найлс Роуд, д. 32930, офис 350, Юнион-Сити, CA 94587, СШАЛ. А. Севастьянов
Российский университет дружбы народов
Email: sevastianov-la@rudn.ru
Doctor of Physical and Mathematical Sciences, professor of Department of Applied Probability and Informatics
ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияА. А. Тютюнник
Российский университет дружбы народов
Email: tyutyunnik-aa@rudn.ru
Candidate of Physical and Mathematical Sciences, lecturer of Department of Applied Probability and Informatics
ул. Миклухо-Маклая, д. 6, Москва, 117198, РоссияСписок литературы
- D. A. Yakovlev, V. G. Chigrinov, and H. S. Kwok, Modeling and Optimization of LCD Optical Performance. New York: Wiley, 2015.
- J. A. Dobrowolski, F. C. Ho, and A. Waldorf, “Determination of optical constants of thin film coating materials based on inverse synthesis,” Applied Optics, vol. 22, no. 20, pp. 3191-3200, 1983. doi: 10.1364/AO. 22.003191.
- X. Cheng, B. Fan, J. A. Dobrowolski, L. Wang, and Z. Wang, “Gradientindex optical filter synthesis with controllable and predictable refractive index profiles,” Optics Express, vol. 16, no. 4, pp. 2315-3221, 2008. doi: 10.1364/OE.16.002315.
- A. Tejada et al., “Determination of the fundamental absorption and optical bandgap of dielectric thin films from single optical transmittance measurements,” Applied Optics, vol. 58, no. 35, pp. 9585-9594, 2019. doi: 10.1364/AO.58.009585.
- J. B. Bell, A. N. Tikhonov, and V. Y. Arsenin, “Solutions of Ill-Posed Problems,” Mathematics of Computation, vol. 32, no. 144, pp. 1320-1322, 1978.
- S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using highaccuracy spectrophotometric measurements with oblique angles of incidence,” in Advances in Optical Thin Films, International Society for Optics and Photonics, vol. 5250, SPIE, 2004, pp. 234-242. doi: 10.1117/12.512700.
- L. D. Landau and E. M. Lifshitz, Electromagnetic Waves in Anisotropic Media. Oxford: Pergamon Press, 1984.
- A. V. Tikhonravov et al., “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Applied Optics, vol. 41, no. 13, pp. 2555-2560, 2002. doi: 10.1364/AO.41.002555.
- M. Nur-E-Alam, M. M. Rahman, M. K. Basher, M. Vasiliev, and K. Alameh, “Optical and chromaticity properties of metal-dielectric composite-based multilayer thin-film structures prepared by rf magnetron sputtering,” Coatings, vol. 10, no. 3, p. 251, 2020. DOI: 10.3390/ coatings10030251.
- S. A. Furman and A. V. Tikhonravov, Basics of optics of multilayer systems. Singapore: World Scientific Publishing, 1992.
- M. Paukshto, K. Lovetskiy, and A. Zhukov, “P-59: Dielectric Constants of Display Optical Components,” SID Symposium Digest of Technical Papers, vol. 38, no. 1, pp. 410-413, 2007. doi: 10.1889/1.2785320.
- M. Paukshto, K. Lovetsky, A. Zhukov, V. Smirnov, D. Kibalov, and G. King, “P-168: Simulation of Sub-100nm Gratings Incorporated in LCD Stack,” SID Symposium Digest of Technical Papers, vol. 37, no. 1, pp. 848-850, 2006. doi: 10.1889/1.2433649.
- A. M. Alsaad et al., “Measurement and ab initio Investigation of Structural, Electronic, Optical, and Mechanical Properties of Sputtered Aluminum Nitride Thin Films,” Frontiers in Physics, vol. 8, p. 115, 2020. doi: 10.3389/fphy.2020.00115.
- R. M. A. Azzam and N. M. Bashara, Ellipsometry and polarized light. Amsterdam: North-Holland Pub. Co., 1977.
- Q. M. Al-Bataineh, A. M. Alsaad, A. A. Ahmad, and A. Telfah, “A novel optical model of the experimental transmission spectra of nanocomposite PVC-PS hybrid thin films doped with silica nanoparticles,” Heliyon, vol. 6, no. 6, p. 04 177, 2020. doi: 10.1016/j.heliyon.2020.e04177.
- A. V. Tikhonravov and M. K. Trubetskov. (2020). “OptiChar Software,” [Online]. Available: http://www.optilayer.com.
- M. Born and E. Wolf, Principles of Optics. London: Pergamon Press, 1980.
- T. L. Watkins and J. Fendley, “Refractive index,” Physics Education, vol. 18, no. 2, p. 56, 1983. doi: 10.1088/0031-9120/18/2/102.
- K. P. Lovetskiy, N. E. Nikolaev, and A. L. Sevastianov, “Optical Characterization of a Thin-Film Material Based on Light Intensity Measurements,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 26, no. 3, pp. 252-260, 2018. doi: 10.22363/2312- 9735-2018-26-3-252-260.
- J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308-313, 1965. doi: 10.1093/comjnl/7.4.308.
- S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” Journal of the Optical Society of America A, vol. 13, no. 5, pp. 1106-1113, 1996. doi: 10.1364/JOSAA.13.001106.
- P. Yeh, “Extended Jones Matrix Method,” Journal of the Optical Society of America, vol. 72, no. 4, pp. 507-513, 1982. doi: 10.1364/JOSA.72. 000507.
- D. A. Yakovlev and V. G. Chigrinov, “A robust polarization-spectral method for determination of twisted liquid crystal layer parameters,” Journal of Applied Physics, vol. 102, no. 2, p. 023 510, 2007. DOI: 10. 1063/1.2756377.
- A. Yariv and P. Yeh, Optical Waves in Crystals. New York: John Wiley and Sons, Inc, 2003.
- F. I. Fedorov, Optics of Anisotropic Media [Optika anizotropnykh sred]. Minsk: Academy of Sciences of Belarus, 1958, in Russian.
- D. W. Berreman, “Optics in Stratified and Anisotropic Media: 4 × 4 - Matrix Formulation,” The Journal of the Optical Society of America, vol. 62, no. 4, pp. 502-510, 1972.
- T. F. Isaev, I. V. Kochikov, D. V. Lukyanenko, A. V. Tikhonravov, and A. G. Yagola, “Comparison of Algorithms for Determining the Thickness of Optical Coatings Online,” Computational Mathematics And Mathematical Physics, vol. 59, no. 3, pp. 465-474, 2019. DOI: 10.1134/ S0965542519030102.
- J. L. M. Van Mechelen, A. B. Kuzmenko, and H. Merbold, “Stratified dispersive model for material characterization using terahertz timedomain spectroscopy,” Optics Letters, vol. 39, no. 13, pp. 3853-3856, 2014. doi: 10.1364/OL.39.003853.
- A. B. Kuzmenko, “Kramers-Kronig constrained variational analysis of optical spectra,” Review of Scientific Instruments, vol. 76, no. 8, pp. 1-9, 2005. doi: 10.1063/1.1979470.
- G. Ghosh, “Refractive Index of Quartz for Thin Film Thickness Measurement,” Optics Communications, vol. 163, pp. 95-102, 1999.