О методах количественного анализа финансовых показателей компании в условиях высокой рискованности инвестиций

Обложка

Цитировать

Полный текст

Аннотация

В работе исследованы методы количественного анализа скрытых статистических связей финансовых показателей компаний в условиях высокой рискованности инвестирования. Предложен новый полупараметрический метод оценивания показателей хвостовой зависимости с использованием моделей структур зависимости BB1 и BB7. Для набора данных, содержащих стоимостные показатели ведущих российских компаний, проведены компьютерные эксперименты, в результате которых показано, что предложенный метод обладает более высокой устойчивостью и точностью по сравнению с другими рассмотренными методами. Практическое применение представленного метода управления рисками позволило бы финансовым компаниям адекватно оценивать инвестиционные риски в условиях наступления экстремальных событий.

Об авторах

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации

Автор, ответственный за переписку.
Email: riviera-molto@mail.ru

Doctor of Physical and Mathematical Sciences, lecturer of Department of Data Analysis, Decision Making and Financial Technologies

Ленинградский проспект, д. 49, Москва, 125993, Россия

Список литературы

  1. E. Y. Shchetinin, “On new approaches to company management in emergency situations [Novyh podhodah k upravleniyu kompaniej v chrezvychajnyh situaciyah],” Finansy i kredit, vol. 30, no. 198, pp. 71-75, 2005, In Russian.
  2. E. Y. Shchetinin, K. M. Nazarenko, and A. V. Paramonov, “Instrumental methods of stochastic analysis of extreme events [Instrumental’nye metody stohasticheskogo analiza ekstremal’nyh sobytij],” Vestnik NNGU, Matematicheskoye modelirovaniye i optimal’noye upravleniye, vol. 2, no. 29, pp. 56-63, 2004, In Russian.
  3. V. A. Akimov, A. A. Bykov, and E. Y. Shchetinin, Introduction to statistics of extreme values, EMERCOM of Russia [Vvedenie v statistiku ekstremal’nyh znachenij i ee prilozheniya]. Moscow: FGU VNII GOChS (FTs), 2009, 524 pp., In Russian.
  4. R. Schmidt and U. Stadtmüller, “Non-parametric estimation of tail dependence,” Scandinavian Journal of Statistics, vol. 33, no. 2, pp. 307-335, 2006.
  5. R. Schmidt, Tail dependence. In Statistical tools in finance and insurance, W. Hardle, P. Cizek, and R. Weron, Eds. Springer Verlag, 2003.
  6. G. Frahm, M. Junker, and A. Szimayer, “Elliptical copulas: Applicability and limitations,” Statistics & Probability Letters, vol. 63, no. 3, pp. 275-286, 2003. doi: 10.1016/S0167-7152(03)00092-0.
  7. S. Resnick, Extreme values, regular variation and point processes. Berlin: Springer, 1987.
  8. E. Y. Shchetinin, “Vine copulas structures modeling on Russian stock market,” Discrete and Continuous Models and Applied Computational Science, vol. 27, no. 4, pp. 343-354, 2019. doi: 10.22363/2658-4670- 2019-27-4-343-354.
  9. E. Y. Shchetinin, “Modeling of D-branching structures in the Russian stock market [Modelirovanie struktur D-vetvlenij na rossijskom fondovom rynke],” Vestnik komp’yuternykh i informatsionnykh tekhnologiy, vol. 8, no. 182, pp. 38-45, 2019, In Russian.
  10. C. Genest, K. Ghoudi, and L. Rivest, “A semiparametric estimation procedure of dependence parameters in multivariate families of distributions,” Biometrika, vol. 82, no. 3, pp. 543-552, 1995. DOI: 10.1093/ biomet/82.3.543.

© Щетинин Е.Ю., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах