Применение средств компьютерной алгебры к вычислению амплитуды \(\pi\pi\)-рассеяния

Обложка

Цитировать

Полный текст

Аннотация

Целью данной работы является разработка программ для расчёта амплитуды рассеяния элементарных частиц, а также автоматизация таких расчётов с использованием систем компьютерной алгебры (Mathematica, Form, Cadabra). В статье рассматривается процесс рассеяния пиона на пионе в рамках эффективной КХД-мотивированной модели Намбу-Иона-Лазинио с двумя ароматами кварков. Для расчёта амплитуды рассеяния (начиная с расчёта Фейнмановских диаграмм и заканчивая вычислением Фейнмановских интегралов в однопетлевом приближении) использовался пакет  Package-X для Mathematica. Интегралы Фейнмана в однопетлевом приближении вычислялись для случая общей кинематики. В Package-X в основе вычисления интегралов лежит метод Фейнмановской параметризации с последующей пространственной регуляризацией. Для проверки корректности вычислений был произведён расчёт длин рассеяния \(a_0 = 0.147\) и \(a_2 = -0.0475\) для случая нулевой температуры, и было построено полное сечение рассеяния как функции \(s\). Полученные результаты сравнивались с другими моделями и экспериментальными данными.

Об авторах

Ю. Л. Калиновский

Объединённый институт ядерных исследований; Университет «Дубна»

Автор, ответственный за переписку.
Email: kalinov@jinr.ru

Doctor of Physical and Mathematical Sciences, senior researcher

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия; ул. Университетская, д. 19, Дубна, Московская область, 141982, Россия

А. В. Фризен

Объединённый институт ядерных исследований

Email: avfriesen@theor.jinr.ru

Candidate of Physical and Mathematical Sciences, researcher of Joint Institute for Nuclear Research

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Е. Д. Рогожина

Объединённый институт ядерных исследований; Университет «Дубна»

Email: liorinoff@mail.ru

Student of Dubna State University; Senior laboratory assistant of Joint Institute for Nuclear Research

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия; ул. Университетская, д. 19, Дубна, Московская область, 141982, Россия

Л. И. Голяткина

Объединённый институт ядерных исследований; Университет «Дубна»

Email: lubovgolyatkina@mail.ru

Student of Dubna State University; Senior laboratory assistant of Joint Institute for Nuclear Research

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия; ул. Университетская, д. 19, Дубна, Московская область, 141982, Россия

Список литературы

  1. S. P. Klevansky, “The Nambu—Jona-Lasinio model of quantum chromodynamics,” Reviews of Modern Physics, vol. 64, pp. 649–708, 3 Jul. 1992. doi: 10.1103/RevModPhys.64.649.
  2. Wei-jie Fu and Yu-xin Liu, “Mesonic excitations and pi–pi scattering lengths at finite temperature in the two-flavor Polyakov–Nambu–Jona- Lasinio model,” 2009. arXiv: 0904.2914 [hep-ph].
  3. V. Jos. (1989). “FORM (symbolic manipulation system),” [Online]. Available: https://www.nikhef.nl/~form/.
  4. P. Kasper. (2020). “Cadabra,” [Online]. Available: https://cadabra. science/.
  5. R. Mertig, M. Bohm, and A. Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Computer Physics Communications, vol. 64, pp. 345–359, 1991. doi: 10.1016/0010-4655(91)90130-D.
  6. T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and D-dimensions,” Computer Physics Communications, vol. 118, pp. 153–165, 1999. doi: 10.1016/S0010-4655(98)00173-8. arXiv: hep-ph/9807565.
  7. T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, “Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs,” Computer Physics Communications, vol. 180, pp. 2317–2330, 2009. doi: 10.1016/j.cpc.2009.06.024. arXiv: 0810.0992 [hep-ph].
  8. G. Passarino and M. Veltman, “One-loop corrections for e+e− annihilation into µ+µ− in the Weinberg model,” Nuclear Physics B, vol. 160, no. 1, pp. 151–207, 1979. doi: 10.1016/0550-3213(79)90234-7.
  9. H. H. Patel, “Package-X: A Mathematica package for the analytic calculation of one-loop integrals,” Computer Physics Communications, vol. 197, pp. 276–290, Dec. 2015. doi: 10.1016/j.cpc.2015.08.017.
  10. D. Ebert, Y. L. Kalinovsky, L. Munchow, and M. K. Volkov, “Mesons and diquarks in a NJL model at finite temperature and chemical potential,” International Journal of Modern Physics A, vol. 8, pp. 1295–1312, 1993. doi: 10.1142/S0217751X93000539.
  11. M. L. Goldberger and S. B. Treiman, “Decay of the pi meson,” Physical Review, vol. 110, pp. 1178–1184, 1958. doi: 10.1103/PhysRev.110.1178.
  12. E.Quack, P. Zhuang, Y. L. Kalinovsky, S. P. Klevansky, and J.Hufner, “ππ scattering lengths at finite temperature,” Physics Letters B, vol. 348, pp. 1–6, 1995.
  13. S. Narison, “Techniques of dimensional regularization and the two-point functions of QCD and QED,” Physics Reports, vol. 84, no. 4, pp. 263–399, 1982. doi: 10.1016/0370-1573(82)90023-0.
  14. J. D. Bjorken and S. D. Drell, Relativistic quantum mechanics, ser. International series in pure and applied physics. New York, NY: McGraw-Hill, 1964.
  15. H. J. Schulze, “Pion pion scattering lengths in the SU(2) Nambu-Jona-Lasinio model,” Journal of Physics G, vol. 21, pp. 185–191, 1995. doi: 10.1088/0954-3899/21/2/006.
  16. V. Srinivasan et al., “π−π+ → π−π+ interactions below 0.7 GeV from π−p→π−π+n data at 5 GeV/c,” Physical Review D, vol. 12, pp. 681–692, 3 Aug. 1975. doi: 10.1103/PhysRevD.12.681.
  17. S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, J. H. Friedman, T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz, “ππ Partial-Wave Analysis from Reactions π+p → π+π−∆++ and π+p → K+K−∆++ at 7.1 GeV/c,” PPhysical Review D, vol. 7, pp. 1279–1309, 5 Mar. 1973. doi: 10.1103/PhysRevD.7.1279.
  18. Y. L. Kalinovsky, V. D. Toneev, and A. V. Friesen, “Phase diagram of baryon matter in the SU(2) Nambu – Jona-Lasinio model with a Polyakov loop,” Physics-Uspekhi, vol. 59, no. 4, pp. 367–382, 2016. doi: 10.3367/UFNe.0186.201604b.0387.
  19. S. R. Cotanch and P. Maris, “QCD based quark description of pi pi scattering up to the sigma and rho region,” Physical Review D, vol. 66, p. 116 010, 2002. DOI: 10. 1103 / PhysRevD. 66. 116010. arXiv: hep-ph/0210151.
  20. V. Bernard, U. G. Meissner, A. Blin, and B. Hiller, “Four point functions in quark flavor dynamics: Meson meson scattering,” Physics Letters B, vol. 253, pp. 443–450, 1991. doi: 10.1016/0370-2693(91)91749-L.

© Калиновский Ю.Л., Фризен А.В., Рогожина Е.Д., Голяткина Л.И., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах