Cover Page

Cite item


Opponents of Russian culture have spent a lot of effort to prove that our culture has not reached the level of development at which European and Western culture in general is. It did not reach it, if only because it did not develop its own national philosophy. The article shows why such a false idea has developed in the minds of Western ideologists. The fact is that they are looking for Russian philosophy only in a purely religious area, in the so-called “Berdyaevshchina”, far from the scientific achievements of Russian civilization. And in scientific achievements, as the author shows on a number of examples given in this article, national philosophy is contained. They do not notice it because it is presented in a logical form, mediated by a special dialectical logic, which was later rediscovered in the fundamental ontology of the German thinker Martin Heidegger. Since this logic permeates both the sphere of scientific and philosophical thinking, Russian philosophy, the Russian national worldview, originates in it. This can be seen in the example of the logical structure of Lobachevsky’s non-Euclidean geometry, it is the origin of Russian philosophy, Russian national worldview. It is no coincidence that D.I. Mendeleev saw in Lobachevsky’s geometry something more than a particular mathematical discipline of thought, and said: “Geometric knowledge formed the basis of all exact science, and the originality of Lobachevsky’s geometry was the dawn of the independent development of sciences in Russia. The scientific sowing will sprout for the harvest of the people...”. An equally high assessment of Lobachevsky’s geometry was voiced by prof. V.F. Kagan: “I take the liberty of asserting that it was easier to stop the sun, that it was easier to move the earth than to reduce the sum of angles in a triangle, to reduce the parallels to convergence and push the perpendiculars to the straight line to divergence”. This is one of the results of applying dialectical logic.

About the authors

L. G. Antipenko

Institute of Philosophy of RAS

Email: chistrod@yandex.ru
12/1 Goncharnaya St, Moscow, 109240, Russian Federation


  1. Ефимов Н. В. Высшая геометрия. М.: Физматгиз, 1961. 580 с.
  2. Хайдеггер Мартин. Цолликоновские семинары (Протоколы - Беседы - Письма) / пер. с нем. языка И. Глуховой. Вильнюс: ЕГУ, 2012. 404 с.
  3. Антипенко Л. Г. Проблема неполноты математической теории и онтологические предпосылки её решения. М.: ЛЕНАНД, 2022. 152 с.
  4. Менделеев Д. Попытка химического понимания мирового эфира. СПб.: Типография М. П. Фроловой, 1905.
  5. Курант Р., Роббинс Г. Что такое математика? 10-е изд., стер. М.: МЦНМО, 2022. 568 с.
  6. Гильберт Д. Основания геометрии. М.; Л.: Госиздат технико-теоретической литературы, 1948. 491 с.
  7. Акад. Н. Н. Лузин. Современное состояние функций действительного переменного. М.; Л.: ГГГИ, 1933.
  8. Лузин Н. Н. Собрание сочинений. Том II: Дескриптивная теория множеств. М.: Изд-во АН. СССР, 1958. 746 с.
  9. Хайдеггер Мартин. Время и бытие. М.: Изд-во «Республика», 1993. 447 с.
  10. Лобачевский Н. И. Полн. собр. соч.: в 2 т. М.-Л.: Гостехиздат, 1946-1951.
  11. Васильев Н. А. Воображаемая логика: избранные труды. М.: Наука, 1989. 264 с.
  12. Антипенко Л. Г. П. А. Флоренский о логическом и символическом аспектах научнофилософского мышления. М.: «Канон+» РООИ «Реабилитация», 2012. 172 с.
  13. Heidegger Martin. Gesamtausgabe. Übergungen XIII. (Schwarze Hefte 1938-1941). 2014. Band 96.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies