ANISOTROPIC GEOMETRODYNAMICS: GALACTIC TEST - STATE OF THE ART

Cover Page

Cite item

Abstract

Anisotropic geometrodynamics contains all the known results of the general relativity theory. It also makes it possible to interpret a number of observations of the last decades without introducing new entities, but due to a change in the mathematical apparatus, and predicts the observed effects, that have not yet been interpreted. To further test the theory, an experiment is proposed, for which a theory is developed and basic observations are made. An analysis of the data obtained in the course of monitoring observations of 49 astrophysical masers (22 GHz) is presented. It is shown that the results obtained are not a consequence of instrumental errors, geophysical conditions, fluctuations in the interstellar medium, or local conditions in the vicinity of the maser. The interpretation of the observed effect is based on the phenomenon of optical-metric parametric resonance created by the action of gravitational radiation from distant short-period binaries. The stellar systems that satisfy the given conditions are revealed.

About the authors

S. V Siparov

State University of Civil Aviation

Email: sergey@siparov.ru
38 Pilotov St., Saint Petersburg, 196210, Russian Federation

References

  1. Сипаров С.В. Закон гравитации и модель источника в анизотропной геометродинамике // Гиперкомплексные числа в геометрии и физике. 2009. 2 (12). Т. 6. С. 140-160.
  2. Siparov S. Introduction to the Anisotropic Geometrodynamics // World Scientific. London - New-Jersey - Singapore, 2011.
  3. Сипаров С.В. Теория эквивалентности и ее первые результаты // Пространство, время и фундаментальные взаимодействия. 2012. № 1. С. 99.
  4. Balan V., Bogoslovsky G.Yu., Kokarev S.S., Pavlov D.G., Siparov S.V., Voicu N. Geometrical Models of the Locally Anisotropic Space-Time // Journal of Modern Physics. 2012. V. 3 No. 29. P. 1314-1335. doi: 10.4236/jmp.2012.329170. (arXiv:[ gr-qc astro-ph] 1111.4346)
  5. Siparov S. Metrical interpretation of field theories // Proc. of Int. Conf. PIRT-2015. Moscow: BMSTU, 2015. P. 483-501. (arXiv:1506.03304v1 [physics.gen-ph])
  6. URL: https://www.spacetelescope.org/images/opo9621a/
  7. URL: https://universetoday.ru/2018/09/27/%D0%B3%D0%B 5%D1%80%D1%88%D0%B5% D0%BB%D1%8C-%D0%BF%D0%BE%D0%BA%D0%B0%D0%B7%D0%B0%D0%BB-% D1%86%D0%B5%D0%BD%D1%82%D1%80-%D0%B3%D0%B0%D0%BB%D0%B0% D0%BA%D1%82%D0%B8%D0%BA%D0%B8/
  8. Пименов Р.И. Анизотропное финслерово обобщение теории относительности как структуры порядка. Сыктывкар, 1987.
  9. Abbott B.P. et al. Observation of Gravitational Waves from a Binary Black Hole Merger // Physical Review Letters. 2016. 116, 061102.
  10. Siparov S. Two-level atom in the field of the gravitational wave: on the possibility of the parametric resonance // Astronomy&Astrophysics. 2004. No. 416. P. 815-824.
  11. Siparov S., Samodurov V., Laptev G. Analysis of time series in space maser signals // Astronomy&Astrophysics. 2016. 574, L2, February. doi: 10.1051/0004-6361/201424651
  12. Siparov S., Samodurov V., Laptev G. Origin of observed periodic components in astrophysical masers’ spectra // Monthly Notices of Royal Astronomical Society. 2017. No. 467 (3). P. 2813-2819.
  13. Stenholm S. Foundations of Laser Spectroscopy. Wiley, New York, 1984.
  14. Siparov S. Low-frequency external action on a two-level atom in resonant field // Physical Review A. 1997. No. 55 P. 3704.
  15. Siparov S. Theory of the zero order effect suitable to investigate the space-time geometrical properties // Acta Mathematica APN. 2008. No. 24 (1). P. 135.
  16. Reid M.J., Moran J.M. Masers // Annual review of astronomy and astrophysics. 1981. V. 19. P. 231-276. URL: https://doi.org/10.1146/annurev.aa.19.090181.001311
  17. Imai H., Watanabe T. et al. 2002, 3-D Kinematics of Water Masers in the W51A Region // URL: https://arxiv.org/abs/astro-ph/0207648. Drissen L., C. Rubert, N. St-Louis,
  18. Drissen L., Rubert C., St-Louis N., Moffat A.F.J. Pulsations of Massive Stars // Astronomical Society of the Pacific Conference Series. 2012. № 465. P. 3-13.
  19. Goedhart S., Maswanganye J., Gaylard M., van der Walt D. Periodicity in Class II methanol masers in high-mass star-forming regions // Monthly Notices of Royal Astronomical Society. 2013. No. 437. P. 1808.
  20. Araya E., Hofner P. et al. Quasi-Periodic Formaldehyde Maser Flares in the Massive Protostellar Object IRAS 18566+0408 // Astrophisical Journal. 2010. No. 717. L133.
  21. Szymczak M., Wolak P., Bartkiewicz A., van Langevelde H.J. Periodic variability of 6.7 GHz methanol masers in G22.357+0.066 // Astronomy&Astrophysics. 2011. No. 531. L2.
  22. Сипаров С., Самодуров В. Периодические компоненты в сигналах космических мазеров и их интерпретация // Компьютерная Оптика. 2009. № 30 (1). С. 79. URL: https://arxiv.org/ abs/0904.1875
  23. Lomb N. Least-squares frequency analysis of unequally spaced data // Astrophysics and Space Science. 1976. No. 39. P. 447.
  24. Scargle J. Studies in astronomical time series analysis. II: Statistical aspects of spectral analysis of unevenly spaced data // Astrophisical Journal. 1982. No. 236. P. 835.
  25. Ivezic Ž., Connolly A., Vanderplas J. et al. Statistics, Data Mining and Machine Learning in Astronomy. Princeton, NJ: Princeton Univ. Press, 2014.
  26. Zechmeister M., Kurster M. The generalised Lomb-Scargle periodogram A new formalism for the floating-mean and Keplerian periodograms // Astronomy & Astrophysics. 2009. № 496. P. 577-584. doi: 10.1051/0004-6361:200811296
  27. Kovaleva D., Kaygorodov P. et al. Binary star DataBase BDB development: structure, algorithms, and VO standards implementation // Astronomy and Computings. 2015. URL: http://bdb.inasan.ru/
  28. Kafka S. Observations from the AAVSO International Database. 2016. URL: http://www.aavso.org
  29. Siparov S., Brinzei N. Space-time anisotropy: theoretical issues and the possibility of an observational test. URL: arXiv: [gr-qc] 0806.3066 v1 18 Jun 2008.
  30. Brinzei N., Siparov S. Mathematical formalism for an experimental test of the space-time anisotropy // Astrophysics and Cosmology after Gamow. Proc.4-th Int. Conf. Odessa-2009 / S.K. Chakrabarti, G.S. Bisnovatyi-Kogan, A.I. Zhuk (Eds.). Р. 152-163, AIP Conf. Proc., Melville, New York. V. 1206.
  31. Imai H., Deguchi S., Sasao T. Microstructure of water maser features in W3 IRS 5 // Astrophysical Journal. 2002. No. 567 (2). P. 971-979.
  32. Imai H., Shibata K.M. et al. The 3-D kinematics of water masers around the semiregular variable RT Virginis. 2003. URL: https://arxiv.org/abs/astro-ph/0302389.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies