Анализ целесообразности внедрения газотурбинной технологии для производства электроэнергии в Ираке

Обложка

Цитировать

Полный текст

Аннотация

Проведенное исследование посвящено анализу состояния спроса, выработки и предложения электроэнергии в Ираке и целесообразности внедрения газотурбинной технологии для выработки электроэнергии. На основе климатических и погодных данных было установлено, что в Ираке в целом жаркий и сухой климат с более прохладными ночами. За исключением прибрежных районов страны относительная влажность, как правило, низкая. Это является обнадеживающим фактором для внедрения экономически эффективных систем испарительного охлаждения для воздуха, поступающего в газовую турбину, используемую для выработки электроэнергии (ГТВЭ). Более частые пыльные бури в Ираке могут привести к проблемам в эксплуатации, сокращению срока службы и увеличению затрат на техническое обслуживание ГТВЭ, что делает фильтрацию воздуха обязательной для эффективной работы ГТВЭ. Принимая во внимание климатические и погодные условия района, район Найнив был признан более подходящим для создания газотурбинной установки для выработки электроэнергии. Среди различных доступных систем охлаждения, принимая во внимание экономическую эффективность и простоту проектирования, конструкции, эксплуатации и технического обслуживания, было установлено, что система испарительного охлаждения является наиболее подходящей. Показано, что эффективность системы испарительного охлаждения может быть повышена за счет использования преимуществ низкой ночной температуры и охлаждения воды, которая будет использоваться в системе испарительного охлаждения. При анализе производительности газовой турбины было установлено, что внедрение системы охлаждения приведет к снижению потерь мощности с 6,68- 46,89 до 2,77-21,17 %.

Об авторах

Виссам Хузам Салман Ал-Аабиди

Российский университет дружбы народов

Email: 1042238172@pfur.ru
ORCID iD: 0009-0008-9824-1852

аспирант кафедры энергетического машиностроения, инженерная академия

Москва, Россия

Маджид Саббар Салих Аль-Рубаяви

Шиитский благотворительный офис

Email: majed.sbbar@yahoo.com
ORCID iD: 0009-0003-4279-5761
Ирак

Михаил Алексеевич Чертоусов

Российский университет дружбы народов

Email: Chertousov.mikhail@gmail.com
ORCID iD: 0009-0001-3719-6292

аспирант базовой кафедры энергетического машиностроения, инженерная академия

Москва, Россия

Михаил Юрьевич Фролов

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: michel-f@yandex.ru
ORCID iD: 0000-0003-2356-6587
SPIN-код: 3995-2331

кандидат технических наук, доцент базовой кафедры энергетического машиностроения, инженерная академия

Москва, Россия

Список литературы

  1. Bashir MF, Sadiq M, Talbi B, Shahzad L, Adnan Bashir M. An outlook on the development of renewable energy, policy measures to reshape the current energy mix, and how to achieve sustainable economic growth in the post COVID-19 era. Environmental Science and Pollution Research. 2022;29(29):43636-43647. https://doi.org/10.1007/s11356-022-20010-w
  2. Tian J, Yu L, Xue R, Zhuang S, Shan Y. Global low-carbon energy transition in the post-COVID-19 era. Applied Energy. 2022;307:118205. https://doi.org/10.1016/j.apenergy.2021.118205
  3. Altawell N. (ed.). 12 - Energy technologies and energy storage systems for sustainable development. In: Rural Electrification. Academic Press; 2021. p. 231-248.
  4. Alhazmy MM, Jassim RK, Zaki GM. Performance enhancement of gas turbines by inlet air-cooling in hot and humid climates. International Journal of Energy Research. 2006;30(10):777-797. https://doi.org/10.1002/er.1184
  5. Hashmi MB, Majid MAA, Lemma TA. Combined effect of inlet air cooling and fouling on performance of variable geometry industrial gas turbines. Alexandria Engineering Journal. 2020;59(3):1811-1821. https://doi.org/10.1016/j.aej.2020.04.050
  6. de Gouw JA, Parrish DD, Frost GJ, Trainer M. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth’s Futur. 2014; 2(2):75-82. https://doi.org/10.1002/2014EF000196
  7. Jasim DJ, Mohammed J, Abid MF. Natural Gas in Iraq, Currently and Future Prospects: A Review. Journal of Engineering Research. 2021;1-15. https://doi.org/10.36909/jer.11989
  8. Barakat S, Ramzy A, Hamed AM, El-Emam SH. Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System. Energy. 2019;189:116133. https://doi.org/10.1016/j.energy.2019. 116133
  9. Majdi Yazdi MR, Ommi F, Ehyaei MA, Rosen MA. Comparison of gas turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. Energy Convers Manag. 2020;216:112944. https://doi.org/10.1016/j.enconman. \2020.112944
  10. Al-Ansary HA, Orfi JA, Ali ME. Impact of the use of a hybrid turbine inlet air cooling system in arid climates. Energy Convers Manag. 2013;75:214-223. https://doi.org/10.1016/j.enconman.2013.06.005
  11. Erdem HH, Sevilgen SH. Case study: Effect of ambient temperature on the electricity production and fuel consumption of a simple cycle gas turbine in Turkey. Appl Therm Eng. 2006;26(2):320-326. https://doi.org/10.1016/j.applthermaleng.2005.08.002
  12. Iraq Population 2022. World Population Review. Available from: https://worldpopulationreview.com/countries/iraq-population (cited 2022 Oct 5)
  13. Majhool MH, Salim ALRikabi HTH, Farhan MS. Design and Implementation of Sunlight Tracking Based on the Internet of Things. IOP Conf Ser Earth Environ Sci. 2021;877(1):12026.
  14. Al-Khafaji H. Electricity generation in Iraq Problems and solutions. Iraq. 2018.
  15. Almusawi HM, Farnoosh A. Economic Analysis of the Electricity Mix of Iraq using Portfolio Optimization Approach. Int Energy J. 2021;21:235-244.
  16. Altai HDS, Abed FT, Lazim MH, Alrikabi HTS. Analysis of the problems of electricity in Iraq and recommendations of methods of overcoming them. Period Eng Nat Sci. 2022;10(1):607-614. http://doi.org/10.21533/pen.v10i1.2722
  17. Saeed IM, Ramli AT, Saleh MA. Assessment of sustainability in energy of Iraq, and achievable opportunities in the long run. Renew Sustain Energy Rev. 2016; 58:1207-1215. https://doi.org/10.1016/j.rser.2015.12.302
  18. Mills R, Salman M. Powering Iraq: Challenges facing the Electricity Sector in Iraq. 2020.
  19. Gordon MR, Coles I. Defeat of ISIS in Iraq Caused $45.7 Billion in Damage to Infrastructure, Study Finds. The Wall Street Journal. 2018 Feb 11;
  20. Abass AZ, Pavlyuchenko DA, AlRikabi HT, Abed FT, Gaidukov J. Economic Feasibility Study of a Hybrid Power Station Between Solar Panels and Wind Turbine with The National Grid in Al-Hayy City in the Central of Iraq. IOP Conf Ser Mater Sci Eng. 2021;1184 (1):12001.
  21. Marzouk AM, Hanafi AS. Thermo-economic analysis of inlet air cooling in gas turbine plants. J Power Technol. 2013;93(2).
  22. Al-Fehdly H, ElMaraghy W, Wilkinson S. Carbon Footprint Estimation for Oil Production: Iraq Case Study for The Utilization of Waste Gas in Generating Electricity. Procedia CIRP. 2019;80:389-92.
  23. Hussein MMF. Comparison of Time Series Models before and after Using Wavelet Shrinkage Filtering to Forecast the Amount of Natural Gas in Iraq. Cihan Univ Sci J. 2022;6(1):32-46.
  24. Alnasur F, Al-Furaiji MA. Estimation the Performance of Gas Turbine Power Station with Air Cooling Fog System. J Phys Conf Ser. 2021;1973(1):12040.
  25. Shirazi A, Najafi B, Aminyavari M, Rinaldi F, Taylor RA. Thermal-economic-environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling. Energy. 2014;69:212-26.
  26. Farzaneh-Gord M, Deymi-Dashtebayaz M. A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery). Appl Energy. 2009;86 (12):2750-2759.
  27. Ehyaei MA, Mozafari A, Alibiglou MH. Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant. Energy. 2011;36(12): 6851-6861.
  28. Soleimani Z, Teymouri P, Darvishi Boloorani A, Mesdaghinia A, Middleton N, Griffin DW. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos Environ. 2020;223:117187.
  29. Mathioudakis K, Tsalavoutas T. Uncertainty Re- duction in Gas Turbine Performance Diagnostics by Accounting for Humidity Effects. J Eng Gas Turbines Power. 2002 Sep 24;124(4):801-808.
  30. Rice IG. Thermodynamic Evaluation of Gas Turbine Cogeneration Cycles: Part I-Heat Balance Method Analysis. J Eng Gas Turbines Power. 1987 Jan 1;109(1):1-7.
  31. Osman Y, Abdellatif M, Al-Ansari N, Knutsson S, Jawad S. Climate change and future precipitation in an arid environment of the Middle East: case study of Iraq. J Environ Hydrol. 2017;25(3):1-22.
  32. Salman SA, Shahid S, Ismail T, Chung E-S, AlAbadi AM. Long-term trends in daily temperature extremes in Iraq. Atmos Res. 2017;198:97-107.
  33. Zakaria S, Al-Ansari N, Knutsson S. Historical and future climatic change scenarios for temperature and rainfall for Iraq. J Civ Eng Archit. 2013;7(12):1574-94.
  34. Khwarahm NR, Ararat K, HamadAmin BA, Najmaddin PM, Rasul A, Qader S. Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia (Bratisl). 2022;77(2):369-83.
  35. Climate Change Knowledge Portal. The World Bank Group. 2021. Available from: https://climateknowledgeportal.worldbank.org/download-data (accessed: 10.10. 2022).
  36. Salman SA, Shahid S, Ismail T, Ahmed K, Wang X-J. Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos Res. 2018;213:509-22.
  37. Baakeem SS, Orfi J, Al-Ansary H. Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia. Appl Therm Eng. 2018;138:417-32.
  38. MacPhee DW, Beyene A. Impact of Air Quality and Site Selection on Gas Turbine Engine Performance. J Energy Resour Technol. 2017;140(2).
  39. Yahya BM, Seker DZ. The Impact of Dust and Sandstorms in Increasing Drought Areas in Nineveh Province, North-western Iraq. J Asian Afr Stud. 2018 Nov 21;54(3):346-359.
  40. Hasanean HM. Middle East Meteorology [Inter- net]. Encyclopedia of Life Support Systems. Available from: https://www.eolss.net/sample-chapters/c01/E6-158-19.pdf (accessed: 11.07.2022)
  41. Mohammadpour K, Sciortino M, Kaskaoutis DG. Classification of weather clusters over the Middle East associated with high atmospheric dust-AODs in West Iran. Atmos Res. 2021;259:105682.
  42. Parolari AJ, Li D, Bou-Zeid E, Katul GG, Assouline S. Climate, not conflict, explains extreme Middle East dust storm. Environ Res Lett. 2016;11(11):114013.
  43. Hafeznia MR, Taheri A, Asl MF. Political Effects Resulting from Dust Storms in Tigris and Euphrates Basins. Geopolit Q. 2017;12(4):13-38.
  44. Shukur OB, Ali SH, Saber LA. Climatic Temperature Data Forecasting in Nineveh Governorate Using the Recurrent Neutral Network Method. Int J Adv Sci Eng Inf Technol. 2021;11(1):113-123.
  45. El-Shazly AA, Elhelw M, Sorour MM, El-Maghlany WM. Gas turbine performance enhancement via utilizing different integrated turbine inlet cooling techniques. Alexandria Eng J. 2016;55(3):1903-1914.
  46. Zeitoun O. Two-Stage Evaporative Inlet Air Gas Turbine Cooling. Energies. 2021;14(5):1382. https://doi.org/10.3390/en14051382
  47. Ameri M, Hejazi SH. The study of capacity enhancement of the Chabahar gas turbine installation using an absorption chiller. Appl Therm Eng. 2004;24(1):59-68.
  48. Shukla AK, Singh O. Thermodynamic investigation of parameters affecting the execution of steam injected cooled gas turbine based combined cycle power plant with vapor absorption inlet air cooling. Appl Therm Eng. 2017;122:380-388.
  49. Kakaras E, Doukelis A, Prelipceanu A, Karellas S. Inlet Air Cooling Methods for Gas Turbine Based Power Plants. J Eng Gas Turbines Power. 2005;128(2): 312-317.
  50. Mostafa M, Eldrainy YA, EL-Kassaby MM. A comprehensive study of simple and recuperative gas turbine cycles with inlet fogging and overspray. Therm Sci Eng Prog. 2018;8:318-326.
  51. Hosseini R, Beshkani A, Soltani M. Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler. Energy Convers Manag. 2007;48(4): 1055-1064.
  52. AL-Salman KY, Rishack QA, AL-Mousawi SJ. Parametric study of gas turbine cycle with fogging system. J Basrah Res. 2007;33(4):16-30.
  53. Meher-Homji CB, Mee III TR. Inlet Fogging of Gas Turbine Engines: Part A - Theory, Psychrometrics and Fog Generation. 2000.
  54. Savic S, Hemminger B, Mee T. High fogging application for alstom gas turbines. In: Proceedings of PowerGen november. Orlando, USA; 2013.
  55. Chaker MA, Meher-Homji CB. Effect of Water Temperature on the Performance of Gas Turbine Inlet Air-Fogging Systems. 2013.
  56. Chaker M, Meher-Homji CB, Mee III T. Inlet fogging of gas turbine engines - part B: Fog droplet sizing analysis, nozzle types, measurement and testing. In: American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI. 2002. P. 4 A 429-441.
  57. Santos AP, Andrade CR. Analysis of Gas Turbine Performance with Inlet Air Cooling Techniques Applied to Brazilian Sites. J Aerosp Technol Manag. 2012;4(3): 341-353.
  58. Dizaji SH, Hu EJ, Chen L, Pourhedayat S. Using novel integrated Maisotsenko cooler and absorption chiller for cooling of gas turbine inlet air. Energy Convers Manag. 2019;195:1067-1078.
  59. Kwon HM, Kim TS, Sohn JL, Kang DW. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy. 2018;163: 1050-1061.
  60. Sanaye S, Tahani M. Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Appl Therm Eng. 2010;30(2):234-244.
  61. Dawoud B, Zurigat YH, Bortmany J. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman. Appl Therm Eng. 2005;25 (11):1579-1598.
  62. Farzaneh-Gord M, Deymi-Dashtebayaz M. Effect of various inlet air cooling methods on gas turbine performance. Energy. 2011;36(2):1196-1205.
  63. Yang C, Yang Z, Cai R. Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy. 2009;86(6):848-856.
  64. Zurigat YH, Dawoud B, Bortmany J. On the technical feasibility of gas turbine inlet air cooling utilizing thermal energy storage. Int J Energy Res. 2006 Apr 1;30(5):291-305.
  65. Sanaye S, Fardad A, Mostakhdemi M. Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling. Energy. 2011;36(2):1057- 1067.
  66. Bédécarrats J-P, Strub F. Gas turbine performance increase using an air cooler with a phase change energy storage. Appl Therm Eng. 2009;29(5):1166-1172.
  67. Alasfour FN, Al-Fahed SF, Abdulrahim HK. The effect of elevated inlet air temperature and relative humidity on Gas Turbine cogeneration system: exergy assessment. Int J Exergy. 2011;8(3):247-264.
  68. Lugo-Leyte R, Zamora-Mata JM, Toledo-Velázquez M, Salazar-Pereyra M, Torres-Aldaco A. Methodology to determine the appropriate amount of excess air for the operation of a gas turbine in a wet environment. Energy. 2010;35(2):550-555.
  69. Ameri M, Shahbazian HR, Nabizadeh M. Comparison of evaporative inlet air cooling systems to enhance the gas turbine generated power. Int J Energy Res. 2007;31(15):1483-1503.
  70. Ibrahim TK, Rahman MM, Abdalla AN. Improvement of gas turbine performance based on inlet air cooling systems: A technical review. Int J Phys Sci. 2011;6(6):620-627.
  71. Effiom SO, Abam FI, Ohunakin OS. Performance modeling of industrial gas turbines with inlet air filtration system. Case Stud Therm Eng. 2015;5:160-167.
  72. Schroth T, Cagna M. Economical Benefits of Highly Efficient Three-Stage Intake Air Filtration for Gas Turbines. Conference ASME Turbo Expo 2008: Power for Land, Sea, and Air, 2008:889-894. https://doi.org/10.1115/GT2008-50280
  73. Brake C. Identifying Areas Prone to Dusty Winds for Gas Turbine Inlet Specification. 2007:749-759.
  74. Jin Y, Liu C, Tian X, Huang H, Deng G, Guan Y, et al. A novel integrated modeling approach for filter diagnosis in gas turbine air intake system. Proc Inst Mech Eng Part A J Power Energy. 2021;236(3):435-449. https://doi.org/10.1177/09576509211044392
  75. Zaba T, Lombardi P. Experience in the Operation of Air Filters in Gas Turbine Installations. 1984.
  76. Lebele-Alawa BT, Le-ol AK. Improved Design of a 25 MW Gas Turbine Plant Using Combined Cycle Application. Journal of Power and Energy Engineering. 2015;3(8):1-14. https://doi.org/10.4236/jpee.2015.38001
  77. Nineveh, Iraq Climate. The Global Historical Weather and Climate Data. 2022. Available from: https://tcktcktck.org/iraq/nineveh (accessed: 02.10.2022)
  78. Watt JR. Evaporative air conditioning hand-book. Springer Science & Business Media; 2012.
  79. Hamedani AM, Manesh MHK, Salehi G, Masoomi M. Performance Analysis of Gas Turbine Inlet Air Cooling Plant with Hybrid Indirect Evaporative Cooling and Absorption Chiller System. Int J Thermodyn. 2021; 24(3):248-259. https://doi.org/10.5541/ijot.840496
  80. Dinc A, Tahe R, Derakhshandeh JF, Fayed M, Elbadawy I, Gharbia Y. Performance Degradation of a 43 MW Class Gas Turbine Engine in Kuwait Climate. Int Res J Innov Eng Technol. 2021;5(4):108-113. https://doi.org/10.47001/IRJIET/2021.504016
  81. Punwani DV. Hybrid Systems for Cooling Turbine Inlet Air for Preventing Capacity Loss and Energy Efficiency Reduction of Combustion Turbine Systems. Proceedings of the ASME 2010 Power Conference. ASME 2010 Power Conference. Chicago, Illinois, USA. July 13-15, 2010. p. 485-488. https://doi.org/10.1115/POWER 2010-27010
  82. Chacartegui R, Jiménez-Espadafor F, Sánchez D, Sánchez T. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant. Energy Convers Manag. 2008;49(8):2130-2141.
  83. Kakaras E, Doukelis A, Karellas S. Compressor intake-air cooling in gas turbine plants. Energy. 2004; 29(12):2347-2358.
  84. Oyedepo S, Kilanko O. Thermodynamic Analysis of a Gas Turbine Power Plant Modelled with an Evaporative Cooler. International Journal of Thermodynamics. 2014;1(1):14-20. https://doi.org/10.5541/ijot.76988
  85. Alwan IA, Karim HH, Aziz NA. Agro-Climatic Zones (ACZ) Using Climate Satellite Data in Iraq Republic. IOP Conf Ser Mater Sci Eng. 2019;518(2): 22034.

© Ал-Аабиди В.Х., Аль-Рубаяви М.С., Чертоусов М.А., Фролов М.Ю., 2024

Ссылка на описание лицензии: https://creativecommons.org/licenses/by-nc/4.0/legalcode

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах