Сцепление с бетоном новых видов арматурного проката для строительства
- Авторы: Окольникова Г.Э.1, Тихонов Г.И.1,2, Гришин Г.Е.2
-
Учреждения:
- Российский университет дружбы народов
- Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона имени А. А. Гвоздева АО «НИЦ “Строительство”»
- Выпуск: Том 21, № 2 (2020)
- Страницы: 144-152
- Раздел: Строительство
- URL: https://journals.rudn.ru/engineering-researches/article/view/25553
- DOI: https://doi.org/10.22363/2312-8143-2020-21-2-144-152
Цитировать
Полный текст
Аннотация
В статье рассмотрены предпосылки и история возникновения инновационных, востребованных на сегодняшний день видов арматурного проката для строительства, их отличительные особенности и качественные показатели, приведены методология и результаты различных исследований, проведенных на базе НИИЖБ имени А.А. Гвоздева АО «НИЦ “Строительство”» и ООО «Института ВНИИжелезобетон». Цель исследования - ознакомление с новыми видами инновационного арматурного проката и демонстрация их преимуществ. Для испытаний, результаты и методика которых приведены в статье, были изготовлены пробные прокатки арматуры с четырехрядным винтовым профилем. По прочности и деформативности сцепления с бетоном арматура с многорядным (четырехрядным и шестирядным) арматурным профилем существенно превзошла арматуру с двухрядным серповидным (европейским) и винтовым (аналог GEWI-Stahl) профилями. Она продемонстрировала высокие показатели сцепления с бетоном не только в эксплуатационной, но и в запредельной стадии деформирования арматуры. Новая четырехрядная винтовая арматура обладает конкурентными преимуществами относительно винтовой двухрядной арматуры (аналог GEWI-Stahl), обеспечивает качество и расширяет применение механических муфтовых соединений взамен сварных и нахлесточных. Конструктивные решения с ее применением могут успешно конкурировать с продукцией фирм Dywidag, Peikko, Halfen, Lenton и др.
Ключевые слова
Полный текст
Введение [‡‡‡] От эффективности сцепления с бетоном периодического профиля поверхности арматурного проката зависит длина анкеровки арматуры на опорах железобетонных плит и балок, прочность их наклонных сечений, момент образования и ширина раскрытия трещин, длина анкерующих стержней закладных деталей и пр. В предварительно напряженных железобетонных элементах от вида профиля поверхности арматуры и его распорности в бетоне зависит эффективность применения высокопрочной стержневой арматуры. Несмотря на ряд существенных недостатков, касающихся в основном технологии производства и низкой выносливости, в СССР была рекомендована для массового применения арматура с кольцевым видом профиля по ГОСТ 5781-82 (рис. 1, а) [1]. Нормативные документы того времени для проектирования железобетонных конструкций создавались на базе результатов испытаний элементов (плит, балок стоек и т.п.), армированных кольцевой арматурой по ГОСТ 5781-82, имеющей высокие показатели сцепления с бетоном. Железобетонные конструкции зданий и сооружений, запроектированные по СНиП 2.03.01-84* «Бетонные и железобетонные конструкции» имели лучшие в мире технико-экономические показатели по расходу арматуры, а их безопасность проверена длительными сроками эксплуатации [1]. Нормативными документами, разработанными для мостостроения, - СНиП 2.05.03-84* (СП 35.13330.2011) «Мосты и трубы» до настоящего времени предусмотрено использование кольцевой арматуры по ГОСТ 5781-82, для которой из-за ее низкой выносливости введены к расчетному сопротивлению понижающие коэффициенты условий работы (m), зависящие от характеристик многократно повторяющихся циклических нагрузок и наличия сварных соединений. При для А400 m = 0,75, а для А600 m = 0,49 [1]. Применение арматуры класса А500, массово используемой в обычном строительстве, данными нормами не предусмотрено. Рис. 1. Виды профилей арматурного проката [7]: а, б - обычные; в, г - инновационные; г, д - винтовые [Figure 1. Types of rebar profiles [7]: а, б - normal; в, г - innovative; г, д - screw] С 1990 г. металлурги России стали массово производить арматурный прокат для экспортной поставки в другие страны. В соответствии с рекомендациями евростандартов, принятых в нормах многих стран, поставка на зарубежный рынок арматуры производится с так называемым европейским профилем, который отличается от кольцевого, производимого в СССР по ГОСТ 5781-82, незамкнутым по периметру (без пересечений с продольными ребрами) двухсторонним (двухрядным) расположением поперечных серповидных ребер (рис. 1, б). С целью унификации производства, арматура с «европейским» видом профиля стала массово внедряться в России, несмотря на то, что ее показатели сцепления с бетоном значительно ниже, чем у кольцевого профиля по ГОСТ 5781-82 [1; 2]. Внедрение нового вида профиля арматуры привело к необходимости гармонизации требований по ее сцеплению с бетоном и трещиностойкости железобетона отечественных стандартов с зарубежными нормами. В СП 63.13330.2018 к СНиП 52-01-2003 рекомендованы методы расчета и конструктивные требования, учитывающие массовое внедрение в России арматуры с европейским профилем с низким браковочным значением критерия Рема ( ≥ 0,056), имеющую пониженную прочность и повышенную деформативность сцепления с бетоном относительно арматуры с кольцевым профилем, по ГОСТ 5781-82. Длина анкеровки и нахлестки стержней, а также ширина раскрытия трещин по новым нормам увеличена на 30-40 % по сравнению со старыми [1; 3]. Впервые в истории создания нормативных документов в СССР и России для проектирования железобетонных конструкций расчеты по новому нормативному документу дают результаты по расходу арматуры выше, чем по предшествующим нормам. Применение новых требований при проектировании привело к удорожанию строительства и излишним расходам металла, используемом в строительной отрасли. Для исправления сложившейся ситуации необходимо было принимать новые инновационные технические решения. С 2003 г. различные исследователи и организации разрабатывают виды арматурного проката с принципиально новыми конструктивными решениями профиля поверхности [1; 3]. Успешными оказались разработка и исследование арматуры с шестирядным профилем класса А500СП с высоким критерием Рема ( ≥ 0,075) (рис. 1, в). Эта арматура более 12 лет производится на ЕВРАЗ ЗСМК (Новокузнецк, Кемеровская область). К настоящему моменту использовано в железобетоне около 4 млн т подобной арматуры. В результате высокой прочности сцепления с бетоном, а также меньшей ширины раскрытия трещин в железобетонных конструкциях, учитываемых СТО 36554501-005-2006** «Применение арматуры класса А500СП в железобетонных конструкциях», расход арматуры в элементах с ее применением снижается на 5-30 %. Подтверждена надежность и эффективность использования новой арматуры в сейсмостойком, высотном и других видах гражданского и промышленного строительства [1]. В процессе освоения производства арматуры класса А500СП экспериментально установлено, что благодаря увеличению оребренности поверхности арматуры, а следовательно, контакта с водовоздушной охлаждающей средой в процессе термомеханического упрочнения увеличиваются прочностные свойства проката. Таким образом, эффективность термоупрочнения арматуры, как и ее сцепления с бетоном, зависит от профиля поверхности стержней, характеризуемой видом профиля и критерием Рема ( ), минимальные значения которого устанавливаются действующей нормативной документацией для массового производства арматуры (0,056), а оптимальные значения находятся в диапазоне 0,07-0,08 [1; 2]. Увеличение критерия Рема у арматуры с традиционным европейским профилем, имеющим двустороннее расположение поперечных ребер 0,056, возможно только за счет увеличения площади контакта поперечных ребер с бетоном (из-за чего образуется асимметрия (овальность) сечения стержней, возникают трудности по заполнению их металлом) или же за счет уменьшения расстояния между ними, вследствие чего снижается прочность сцепления с бетоном [1]. В результате исследований установлено, что совершенствование европейского профиля технологически и практически нецелесообразно. Арматура класса А500СП положительно зарекомендовала себя на стройках Чувашии, Удмуртии, Татарстана, Сибири и Дальнего Востока. Она применялась при строительстве олимпийских объектов и реконструкции морского порта Сочи (Краснодарский край), в высотном монолитном и сборном строительстве Москвы, Санкт-Петербурга, Астаны и Алма-Аты (Казахстан), космодрома «Восточный», атомной электростанции «Нововоронежская», а также на многих других строительных объектах. Объемы производства и применения арматуры класса А500СП объективно подтверждают эффективность разработки и массового внедрения инновационных видов арматуры в России. В 2016 г. началась разработка нового вида арматурного проката, сохранявшего преимущества многорядного профиля, а именно низкую распорность в бетоне, но имеющего высокие динамические показатели (выносливость при циклическом динамическом нагружении), необходимые для транспортного и других видов строительства [1; 4; 5]. При создании арматуры с новым профилем ставилась задача не только выполнить оба вышеприведенных условия, но и практически осуществить эту разработку на имеющемся у металлургов серийном двухвалковом прокатном оборудовании без значительных материальных затрат на его переделку. Кроме того, новую арматуру предполагалось использовать в качестве винтовых крепежных элементов и винтовой арматуры с механическими муфтовыми стыковыми соединениями стержней и их анкеровкой гайками [1; 6]. Данный вид стыковки и анкеровки арматуры является предпочтительным в сейсмостойком строительстве, а также при большом насыщении ею железобетонных конструкций высотного, атомно-энергетического, гидротехнического и других видов строительства. Задачи были успешно выполнены путем разработки и внедрения новой конструкции четырехрядного профиля арматуры с двухзаходным винтообразным расположением по поверхности серповидных ребер (рис. 1, г) [1; 7]. Данная конструкция позволяет изменять в широком диапазоне критерий Рема ( ) и без каких-либо технологических трудностей обеспечить его высокие браковочные значения ( 0,07). Для отработки технологии производства, оценки эффективности применения новой арматуры были произведены опытные прокатки на Тульском металлопрокатном заводе и ЕВРАЗ ЗСМК (Новокузнецк), а также исследования в НИИЖБ имени А.А. Гвоздева [7] и ООО «Институт ВНИИжелезобетон». Для производства арматуры с винтообразным (резьбовидным) расположением поперечных ребер, позволяющим осуществить стыковку арматуры муфтами и анкеровку гайками, использовалась синхронизация прокатных валков, что несколько усложняет процесс изготовления арматуры, но обеспечивает преимущества, присущие этому виду продукции [1; 8; 9]. Результаты Испытания по оценке прочности сцепления арматуры с бетоном проводились по методике ГОСТ Р 57357-2016 «Сталь для армирования железобетонных конструкций. Технические условия» (EN 10080:2005. Steel for the reinforcement of concrete. Weldable reinforcing steel. General, IDT). Метод базируется на RILEM Рекомендациях RC 6 «Испытание на сцепление арматурной стали - 2. Испытание выдергиванием» (1983). Принцип испытания заключался в следующем. Образец упирался вертикально в опорную плиту испытательного устройства, в которой имелось центральное отверстие размером 2d. К длинному концу арматурного стержня замоноличенного в бетонный куб с заделкой, составляющей 5d, прикладывалось растягивающее усилие. Другой незагруженный конец стержня выступал из образца на 10 мм. Сдвиг арматуры относительно бетона измерялся в начале и в конце каждого приращения нагружения. Соотношение между усилием растяжения и сдвигом (то есть относительное смещение между арматурой и бетоном) измерялось до полного выдергивания арматуры из бетона. Растягивающую нагрузку увеличивали ступенями составляющими ≈ 10 % от расчетного усилия разрушения сцепления арматуры с бетоном. Выдержка после приложения каждой ступени составляла 5 мин. В процессе испытания на оборудовании «Института ВНИИжелезобетон» непрерывно регистрировалось прикладываемое к арматуре усилие и перемещение активного захвата динамометром и датчиком перемещения испытательной системы. В начале и конце каждой ступени выдержки регистрировался сдвиг ненагруженного конца арматуры относительно плоскости заделки в бетонный образец и удлинение (деформация) нагруженного конца арматуры [1; 10-12]. Схема испытания в НИИЖБ имени А.А. Гвоздева АО «НИЦ “Строительство”» показана на рис. 2. На рис. 3 приведены результаты испытаний, выполненных в ООО «Институт ВНИИжелезобетон», а на рис. 4 испытания, проведенные в НИИЖБ имени А.А. Гвоздева АО «НИЦ “Строительство”». На рис. 3 графики левой части от вертикальной оси характеризуют величину сдвига незагруженных концов испытанных арматурных стержней двух сопоставляемых видов относительно торцевой поверхности опытных бетонных кубов, построенные вручную по показаниям приборов. В правой части приводятся графики, оценивающие суммарную величину сдвига стержней относительно бетона и удлинение загруженного конца арматуры в процессе поэтапного нагружения, записанные автоматическими датчиками, регистрирующими перемещение захватов испытательной машины. Эти графики наглядно иллюстрируют процесс перераспределения усилий сцепления анкерующего участка арматуры с бетоном в запредельной стадии деформирования ее загруженного конца. По полученным результатам испытаний в ООО «Институт ВНИИжелезобетон» можно заключить, что: - арматура с четырехрядным винтовым профилем (fR = 0,072, рис. 1, г) имеет прочность сцепления с бетоном выше на 20-30 %, чем арматура с двухрядным винтовым профилем (fR = 0,091, рис. 1, д); - арматура с четырехрядным расположением поперечных ребер с длиной анкеровки 5d сохраняет сцепление с бетоном прочностью 72,2 МПа на упругом и пластическом участках деформирования стержня. Более того, прочность сцепления с бетоном продолжала увеличиваться при нагружении загруженного конца стержня в зоне упрочнения до относительных деформаций, достигающих
Об авторах
Галина Эриковна Окольникова
Российский университет дружбы народов
Автор, ответственный за переписку.
Email: okolnikova-ge@rudn.ru
доцент департамента строительства Инженерной академии РУДН; кандидат технических наук, доцент
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6Георгий Игоревич Тихонов
Российский университет дружбы народов; Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона имени А. А. Гвоздева АО «НИЦ “Строительство”»
Email: okolnikova-ge@rudn.ru
аспирант департамента строительства Инженерной академии РУДН; инженер-конструктор Проектно-конструкторского центра № 25 НИИЖБ имени А.А. Гвоздева
Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6; Российская Федерация, 109428, Москва, 2-я Институтская ул., д. 6, корп. 5Григорий Евгеньевич Гришин
Научно-исследовательский, проектно-конструкторский и технологический институт бетона и железобетона имени А. А. Гвоздева АО «НИЦ “Строительство”»
Email: okolnikova-ge@rudn.ru
аспирант, инженер-конструктор Проектно-конструкторского центра НИИЖБ имени А.А. Гвоздева
Российская Федерация, 109428, Москва, 2-я Институтская ул., д. 6, корп. 5Список литературы
- Тихонов И.Н., Смирнова Л.Н., Бубис А.А., Тихонов Г.И., Сафонов А.А. О новых видах арматурного проката для сейсмостойкого строительства // Сейсмостойкое строительство. Безопасность сооружений. 2019. № 6. С. 20-27.
- Саврасов И.П. Прочность, трещиностойкость и деформативность изгибаемых железобетонных элементов, армированных сталью класса А500 с различным периодическим профилем: дис. … к. т. н. М.: НИИЖБ имени А.А. Гвоздева, 2010. 207 с.
- Тихонов И.Н., Елшина Л.И. О влиянии свойств новых видов арматурного проката на надежность и экономическую эффективность железобетонных конструкций // Вестник «НИЦ “Строительство”». 2017. № 1 (12). С. 54-68.
- Тихонов И.Н., Мешков В.З., Звездов А.И., Саврасов И.П. Эффективная арматура для железобетонных конструкций зданий, проектируемых с учетом воздействия особых нагрузок // Строительные материалы. 2017. № 3. С. 39-45.
- Мулин Н.М. Стержневая арматура железобетонных конструкций. М.: Стройиздат, 1974. 233 с.
- Мадатян С.А. Арматура железобетонных конструкций. М., 2000. 256 с.
- Тихонов И.Н., Блажко В.П., Тихонов Г.И., Казарян В.А., Краковский М.В., Цыба О.О. Инновационные решения для эффективного армирования железобетонных конструкций // Жилищное строительство. 2018. № 8. С. 5-10.
- Скоробогатов С.М. Основы теории расчета выносливости стержней арматуры железобетонных конструкций. М.: Стройиздат, 1976. 108 с.
- Городницкий Ф.М., Михайлов К.В. Выносливость арматуры железобетонных конструкций. М.: Стройиздат, 1972. 151 с.
- Тихонов И.Н., Мешков В.З., Расторгуев Е.С. Проектирование армирования железобетона / ЦИТП имени Г.К. Орджоникидзе. М., 2015. 273 с.
- Тихонов И.Н. Разработка, производство и внедрение инновационных видов арматурного проката для строительства // Строительные материалы. 2019. № 9. С. 67-75.
- Цыба О.О. Трещиностойкость и деформативность растянутого железобетона с ненапрягаемой стержневой арматурой, имеющей различную относительную площадь смятия поперечных ребер: дис. … к. т. н. М.: НИИЖБ имени А.А. Гвоздева, 2012. 203 с.
- Тихонов И.Н., Мешков В.З., Расторгуев Б.С. Проектирование армирования железобетона. М.: ООО «Бумажник», 2015. 273 с.
- Тихонов И.Н., Гуменюк В.С., Казарян В.А. Несущая способность сжатых железобетонных элементов с холоднодеформированной рабочей арматурой класса В500С // Жилищное строительство. 2016. № 10. С. 25-29.
- Квасников А.А. Методика расчета взаимодействия бетона и арматуры железобетонных конструкций в программном комплексе Abaqus // Строительная механика и расчет сооружений. 2019. № 1. C. 65-70.