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Abstract. An analysis of a number of published materials regarding four types of developable surfaces with two director
(supporting) algebraic curves of the second order lying in parallel or in intersecting planes has been conducted. Three types of
developable surfaces are shortly described with references to sources, and visualizations of each type of developable surface are
presented. For the developable surfaces with two supporting curves with intersecting axes in intersecting planes, the construction
technique and the method of obtaining parametric equations are given. This method is illustrated with three examples. It is
established that to date, there are no studies on the strength of thin shells in the form of the presented developable surfaces defined
in curvilinear conjugate non-orthogonal coordinates that coincide with the external contour of the shells. It is shown that there are
suggestions of application of the studied surfaces in architecture, shipbuilding, and agricultural machine engineering.

Keywords: parallel vectors, vector coplanarity, second-order algebraic curves, developable surface with two director curves,
surface modelling, computer graphics
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KaXJ0ro Tuiia TOpcoB, a AJId TOPCOBBIX HOBerHOCTef/'I C AByMs ONIOPHBIMU KPUBBIMHU C MEPECEKAONIUMHUCA OCSIMU B NEPECCKAIO-
HIUXCA TIOCKOCTAX NPEACTAaBIICH MOPAAOK NOCTPOCHUA 3TOM IMOBCPXHOCTH U METOJJUKA IMOJYUCHHUS NapaMETPHUICCKUX ypaBHCHHﬁ.
Mertoauka MMPOUJUIFOCTPUPOBAHA Ha TPEX IPUMEpaX. YCTaHOBHeHO, YTO OO0 HACTOAIICTO BPEMEHU HET HU OAHOTO0 MCCICAOBAHUA
Hal'lpﬂ)KCHHO-Lle(pOpMI/IpOBaHHOFO COCTOSAAHUS MPCUI0KEHHBIX TOHKUX TOPCOBBIX 060J]0‘{€K, 3aJlaHHbIX B KpI/IBOJ]I/IHef/’IHbIX HEOPTO-
TOHAJIBHBIX COIPSPKEHHBIX KOOPAWHATAX, KOTOPBHIEC COBIAAAIOT C BHECIIHHUM KOHTYPOM TOPCOBBIX 000J10YEeK. HOKa3aHO, 4TO €CThb
MPEAJIOKECHUS 110 TPUMECHCHUIO NIPEAJIOKCHHBIX HOBerHOCTef/’I B apXUTCKTYpPEC, CYAOCTPOCHUHU U CEJIbCKOXO3IMCTBEHHOM MAaIllUHO-
CTPOCHUHU.

KinroueBble ¢/10Ba: mapaaienbHOCTh BEKTOPOB, KOMITTAHAPHOCTh BEKTOPOB, allreOpanyecKrne KpUBble BTOPOTO MOpPs/Ka, TOPC C IBY-
M3l HallpaB/IAIOIUMU KPUBBIMU, MOAEIUPOBAaHHUE IIOBEPXHOCTEH, KOMIIbIOTEpHAs I'paduKa

3asiBiieHHe 0 KOH(UIMKTE HHTEPeCOB: ABTOD 3asBJsICT 00 OTCYTCTBHH KOH(INKTA HHTEPECOB.

Jost nurupoBanus: Kpusowanxo C.H. TlocTpoeHne TOPCOBBIX IIOBEPXHOCTE HA ABYX HANPABISIOIIX KPUBBIX // CTpOUTENb-
Hasl MEXaHMKa WHXKCHEPHBIX KOHCTPYKUUH u coopyxeHuid. 2025. T. 21. Ne 5. C. 377-388. http://doi.org/10.22363/1815-5235-
2025-21-5-377-388 EDN: DQGY SO

1. Introduction

Over the last five years, the author has published articles on the construction of developable surfaces
containing two prespecified plane algebraic curves on opposite sides of rectangular [1], trapezoidal [2],
and arbitrary quadrilateral [3] bases. Moreover, the generator lines of the resulting developable surfaces
coincide with the opposite sides of the rectangular and trapezoidal bases. In the case of an arbitrary
quadrilateral base, the generator lines do not coincide with the sides, but are only projected onto them.

The construction of the considered developable surfaces is based on the works of G. Monge,
G.E. Pavlenko [4], J.N. Gorbatovich [5], B. Bhattacharya [6], V.G. Rekach and N.N. Ryzhov [7], V.N. Ivanov
[8], M.E. Ershov, E.M. Tupikova [9], Fr. Perez-Arribas and L. Fernandez-Jambrina [10].

Despite the fact that many geometers and engineers have been creating and improving methods for
constructing developable surfaces with two prespecified plane curves, there are very few illustrations of
specific developable surfaces, literally only a handful.

The purpose of the study is to draw the attention of experts to the possibility of obtaining parametric
equations of developable surfaces constructed with two prespecified supporting plane curves lying in parallel
or intersecting planes. Until now, graphical methods have been mainly used to construct these surfaces
[11; 12]. Implicit or parametric equations have been obtained only for 5-6 developable surfaces [13].
Engineers and designers in the mechanical and textile industries are interested in expanding the list of
developable surfaces defined by analytical formulas, which is also the goal of the proposed study [14; 15].

2. Algebraic Curves as Director Curves
for Construction of Developable Surfaces

In all publications [1; 2; 3], second- and fourth-order algebraic curves were used as director curves.
These curves can be defined as follows:

= parabola:
xzx(u)zau,yzy(u)zh(l—uz), (D)

= ellipse fragment:

x=x(u)=au, yzy(u)zhl(\/l—uza2 / at —\/l—a2 /at ), ()

where a1 and /1 are the lengths of the semiaxes of a complete ellipse, a1 > a. By assuming the value of ai,
the length of the other semiaxis of the complete ellipse /1 can be determined,
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= circle fragment:

X =x(u):au, " :y(u):\/R2 —a*u? —\/R2 —az,

= hyperbola:

x=x(u):au, y:c+h—\/c2 +hu2(20+h),
constant parameter c is chosen arbitrarily, but ¢ # 0,
= biquadratic parabola:
x=x(u)=au, y=yu)= h(l—u4),
= superellipse:

x=x(u)=au, y=y(u) =h{/l—|u|[ )

The tangent to the curve at angle ¢ is
determined by the formula:

dy
top=—2, 7
go="" @)
-1<u<l.

The remaining geometric parameters are
shown in Figure 1. More detailed information on
curves (1)—(6) can be found in any reference book
on analytical geometry or in publications [1-3].

3)
4)
(5)
(0)
h P
0 Do
—a a X

Figure 1. Constant geometrical parameters of curves
Source: compiled by S.N. Krivoshapko.

2.1. Examples of Developable Surfaces with Rectangular, Trapezoida
and Quadrilateral Bases with Two Director Curves at Opposite Ends

2.1.1.Cylindrical surfaces with rectangular base (Figure 2)

All algebraic second-order cylindrical surfaces
are considered in [16]. A cylindrical surface is an
improper developable surface, in which the edge
of regression is moved off to infinity. It is very easy
to define a cylindrical surface with a rectangular
base in parametric form. For example, if the iden-
tical director parabolas are specified as: y = ax?,
where a = h/c?, then the parametric equations of

the cylindrical surface will be: x =x, y = ax?, z = z.

Figure 2. Cylindrical surface with parabolas at the ends
S ource: compiled by V.N. Ivanov et al. [16].

2.1.2. Developable surfaces with two prespecified plane curves in parallel planes

For the construction of a developable surface, which contains plane curves in parallel xOy planes,
i.e. at z =0, and at z =/, and in which the opposite straight generator lines lie in the horizontal xOz plane
parallel to the coordinate plane yOz, it is necessary to assume that angles @o of both director curves are

equal (Figure 1).
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Given a pair of any director curves defined by equations (1)—(6), their vector equations can be
represented as:

r=r() and r,=r,(v) 8)

with respect to origin O, where u, v are the corresponding parameters, then the equation of the developable
surface can be represented in the form [6]:

r(u,A) = n(u) +Mr(v) —n W], ©)

where A is a dimensionless parameter, 0<A<]1.
By defining the developable surface in the form of (9), coordinate lines A = 0 and A = 1 coincide with
the director curves. The following relation must hold true between parameters u and v [4]:

n() _»ne) (10)

x (1) x5(v)
The geometric meaning of equation (10) is that the straight generator of the developable surface passes
through two corresponding points of the plane curves, for which the angular coefficients of the tangents @o

are equal, i.e., the tangents drawn through the corresponding points of the two curves must be parallel.
Vector equation (9) may be represented in parametric form:

x=x(u, A) =2 () (1-1) + 2y [ v(u) ],
y=y(u, 1) =3 () (1-2) +d [v(w) ],
z=2z(A) =\l (1D

The method described above for determining parametric equations (11) of the developable surfaces in
[1] has been tested on five examples of pairs of plane curves as director curves: ellipse (2) + parabola (1),
circle fragment (3) + parabola (1), hyperbola (4) + parabola (1) (Figure 3), parabola (1) + biquadratic
parabola (5) (Figure 4), superellipse (6) with » = ¢ =2 + superellipse (6) with » = ¢ = 3.

Figure 3. Developable surface with a parabola Figure 4. Developable surface with a second-
and a hyperbola at the ends and a fourth-order parabola at the ends
S ource: compiled by S.N. Krivoshapko. S ource: compiled by S.N. Krivoshapko.

The developable surface with a circle and a parabola in parallel planes also attracted the attention of
J.N. Gorbatovich [5]. The surface with an ellipse and a parabola in parallel planes was studied in article
[17]. A developable surface with parabolas was used to illustrate the method of constructing its projection
onto a plane [9]. There is an example of approximating a developable surface with parabolas of the 2nd and
4th orders in parallel planes with a folded structure [18]. These developments can be applied to the
considered surfaces with rectangular base, but in the articles [5; 9; 18], the contour generator lines do not lie
in the horizontal plane.
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Article [2] considers developable surfaces with two prespecified plane curves (1)—(6) in parallel
planes, but with a trapezoidal base. In this case, for the first curve (Figure 1) —1<u <1, i.e. —a<x<a,
and for the second curve —1<v<1, i.e. -b<v<h. If the plane director curves (8) lie in parallel planes,
relation (10) must hold between parameters u and v.

When constructing a developable surface, which has plane director curves of same rise 4 along axis Oz
and two straight generator lines, which coincide with the sides of the trapezoidal base in the xOz plane, the
following additional condition must be satisfied (Figure 1):

tgeo of one curve at x = +a must be equal to tggo of the other curve at x = +b.

After satisfying the above condition and condition (10), parametric equations (11) of the considered
developable surface can be written. In article [2], the construction method is tested on examples of six pairs
of plane curves as directors: ellipse (2) + parabola (1) (Figure 5), circle fragment (3) + parabola (1) (Figure 6),
hyperbola (4) + parabola (1), parabola (1) + biquadratic parabola (5), superellipse (6) with r = ¢ = 2 +
+ superellipse (6) with » = # = 3, hyperbola (4) + biquadratic parabola (5).

General view

General view

View in xOz plane

View in yOz plane View in yOz plane
Figure 5. Developable surface with an ellipse fragment Figure 6. Developable surface with a circle fragment
and a parabola at parallel ends and a parabola at parallel ends
S ource: compiled by S.N. Krivoshapko. S ource: compiled by S.N. Krivoshapko.

Developable surfaces with trapezoidal base with two prespecified plane curves at the two parallel
edges and with straight generators resting on the lateral sides were considered only in article [7] from an
architectural point of view.
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2.1.3. Developable Surfaces with Two Prespecified Plane Curves in Intersecting Planes

Under these conditions, there are two possible cases that are acceptable for practical application: when
the axes of the director curves are parallel (case 1) and when the axes of the director curves intersect
(case 2). The first case is discussed in detail in article [3]. Curves (1)—(6) are taken in pairs as director
curves, and six developable surfaces are constructed. Two of them are shown in Figures 7 and 8.

a b a b
Figure 7. Developable surface with a second- Figure 8. Developable surface with a parabola
and fourth-order parabola in intersecting planes: and a hyperbola in intersecting planes:
a — general view; b — view in xOz plane a — general view; b — view in yOz plane
Source: compiled by S.N. Krivoshapko. S ource: compiled by S.N. Krivoshapko.

The second case is considered in more detail below. Assuming that the two curves lie in intersecting
planes and their axes intersect (Figure 9), then their parametric equations can be represented as:

Curve 1: X, =x,(u),y, =u,z; =0;
Curve 2:  x, =x,(v),y, =V,2, = X,tg0Q. (12)

The coplanarity condition of the three vectors is
written as:

YA
(r2—1’1,1‘1 o )_09

or

or in expanded form:

!/ / /
xx (v—u)+xx, —x,x =0, (13)
by taking
. . s . / / / /
Figure 9. Two director curves with intersecting y @=Ly, (v)=1Lz, =x,tg0,x, =z,,,(v)cos®,
axes in intersecting planes
Source: compiled by S.N. Krivoshapko. ¢ is the angle between the intersecting planes.
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Vector equation (9) for the considered case of director curves (12) can be converted into parametric

form of definition of the desired developable surface:
x = x(u, A)=x(u)(1-1) + Ax, [V(u):l,
y=y(u, \)=y (u)(1-1)+ Ay, [v(u)] =u(l-1) +Av;

z=z(u,\)=x, [v(u)]tgq).

(14)

Example 1. Two square parabolas, which lie in planes intersecting at angle ¢, are specified (Figure 9):

x=x(u)= h[l— uz/az],y1 =y (u)=u, z=0;

X =x,(v)= H[l— vz/bz]coscp, m=Em(V)=v, z=1z,(v) = H[l— vz/bz]sin(p.

W <

a b

Figure 10. Developable surface defined by equations (17):

a — general view; b — view in xOz plane
S ource: compiled by S.N. Krivoshapko.

The relation between parameters u and v is determined by formula (13):

1 a’ 1 a’ ?
Viy=—|ut— |t = | u+—| —4b*.
T2 u 2 u

By taking a = b, one obtains vi = u and v2 = a*/u.

(15)

(16)

By further taking v = vi = u and a = b, parametric equations (14) of the desired developable surface

will be
)
x=x(u,A)=|1-— [h(l—x)+kHCOS(p];
a
y=y(u)=u
i
z=z(u,\)=1H|1-— |sing.
a

Figure 10 shows the surface defined by parametric equations (17), where
h=6m H=5m,a=2m,p=60°, —a<u<a, 0<A<I1.
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Example 2. By assuming that parabolas (15) lie in mutually perpendicular planes, then ¢ = 90°, and

parametric equations (17) will take the following form:

2

xzx(u,X)z(l—u—zJ [A(1-2)];

a

y=y(u)=u;

z:z(u,x)sz(l—”—zJ. (13)

a

Parametric equations (18) can be transformed into implicit form:

It is evident that this implicit equation describes a parabolic
cylinder.

Encyclopedia [13] describes two developable surfaces: one
with parabolas, the axes of which intersect, but the parametric
equations of which differ from equations (15), and another develop-
able surface containing two ellipses in mutually perpendicular
planes.

V.S. Obukhova and R.I. Vorobkevich [19] proposed using two
parabolas in mutually perpendicular coordinate planes as director

Figure 11. Parabolic developable surface ~ curves, with their vertices touching one of the coordinate axes and

384

Source: compiled by S.N. Krivoshapko. the axes of the parabolas perpendicular to this axis (Figure 11).

Example 3. A semiellipse (curve /) and a parabola (curve 2) are taken as director curves:

[ 2
x =x(u)=h I—Z—z, y=u, z=0;

2 2
Xy =X, (V)=H[1—Z—2JCOS@, Y=V, 2z, (v)=H£l—Z—2Jsin(p.

The relation between parameters u and v is determined by formula (13):

2va?
u= . 19
b +1* (19)
Parametric equations (14) of the desired developable surface will be written as
(20)
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Figure 12 shows the surface defined by para-
metric equations (20), where

h=4m, H=5m, a=12m, b=1.8m;
0=60°, -b<v<h, 0<AZI.

In further introduction of developable surfaces
defined by parametric equations (14) for practical
application, the resulting surface can be rotated around
the y-axis, so that the extreme straight generator a b
pnes rest on the spemﬁed base. In tl'ns Ca,'se’ . the Figure 12. Developable surface defined by equations (20):
intersecting planes with director curves will be inclined a — general view; b — view in yOz plane
to the base at corresponding angles (Figure 10, a). Source: compiled by S.N. Krivoshapko.

3. Review of Studies on Strength Analysis of Four Types of Developable
Shells with Proposed Middle Surfaces

G. Monge laid the foundation for geometric research on proper developable surfaces in 1805. Since
then, hundreds of scientific papers have been published on the geometry and application of these surfaces.
Less than two dozen papers are devoted to the study of the stress-strain state of proper developable thin
shells, with the exception of developable helicoids [20] and shells of equal slope [21]. All known
developable shells have their middle surfaces defined in a non-orthogonal conjugate system of curvilinear
coordinates, which significantly complicates the analytical calculation of these shells.

The system of 20 equations for determining 19 two-dimensional parameters, presented by
A.L. Goldenveiser, provided that the mid-surface is specified in the arbitrary system of curvilinear
coordinates, contains internal “pseudo-forces” and “pseudo-moments” as opposed to internal forces and
moments adopted in the system of 20 equations containing 19 unknowns obtained by the author [22]. These
two systems of equations were used in a simplified version only for the momentless analysis of two
types of developable shells. G.Ch. Bajoria [23] applied A.L. Goldenveiser’s equilibrium equations for the
momentless analysis of a developable shell defined in the form:

r=r@u,v) =p(v) +ul(v), (21)

where p(v) is the current position vector of the edge of regression; /(v) is the unit tangent vector to the edge
of regression. B. Bhattacharya [24] also applied A.L. Goldenveiser’s equilibrium equations, but on the
premise of defining the middle surface of the developable shell in the form of (9).

A developable shell with an arbitrary quadrangular base with two plane parabolas lying in intersecting
planes with parallel axes is calculated according to the momentless theory [25]. The results of calculating a
developable shell with a circle and an ellipse in parallel planes, subjected to a linear load on the circular
edge, are presented in [26]. The same shell, but loaded with self-weight, is considered in [27].

4. Results

1. When constructing a developable surface with two n-order algebraic director curves in parallel
planes (Figures 3, 4) passing through opposite sides of a rectangular base 2a x /, any algebraic curves can
be taken as director curves, with the rise 4 (Figure 1) of one of the two curves being arbitrary, and the rise
of the second curve being calculated based on the geometric parameters of the two specified curves from
the condition of equality of angles @o. Distance / between the planes with the curves does not affect the rise
values of the curves.

2. The rise of two superellipses (6) in parallel planes can be any value.
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3. To construct developable surfaces with two n-order algebraic director curves in parallel planes
(Figures 3, 4) passing through opposite sides of a rectangular base 2a x [/, and developable surfaces with
two specified plane curves (1)—(6) in parallel planes, but with trapezoidal base with the parallel sides equal
to 2a and 2b, the same parametric equations (11) can be used.

4. The rise values 4 and H of the two director curves lying in intersecting planes, and the
magnitude of angle ¢ between these planes, do not affect the relationship between parameters u and v (see,
for example, formulas (16) and (19)).

5. It is shown that to date, 6 developable surfaces with director curves in parallel planes and with
specified boundary conditions on the contours of rectangular bases [1], 8 developable surfaces with director
curves in parallel planes and with specified boundary conditions on the contours of trapezoidal bases [2],
5 developable surfaces with director curves with parallel axes in intersecting planes [3], and only
3 developable surfaces with director curves with intersecting axes in intersecting planes have been studied.
In this article, 3 more developable surfaces with director curves with intersecting axes in intersecting planes
are introduced.

6. The literature review has shown that there are currently no studies on the strength analysis of thin
shells with the considered developable middle surfaces, specified in curvilinear non-orthogonal conjugate
coordinates u, A in the form (11) or (14) using the moment theory of shells. Researchers from the Academy
of Engineering of RUDN University, Moscow have published a large number of studies on geometry,
application, approximation of developable surfaces by folds, unfolding developable surfaces onto a plane
and their parabolic bending, and determination of the strength parameters of some special cases of
developable shells. In addition to their studies, some of which are listed in the “References” section, most of
the scientific articles published over the last 25 years are devoted to the implementation of methods for
unfolding developable surfaces with two specified director curves onto a plane with maximum use of
computers [14; 28; 29] and the practical application of developable surfaces [30] in avant-garde architecture,
agricultural machine engineering, shipbuilding [10], the fashion industry [15], as well as the solution of
mathematical problems related to developable surfaces [31].

7. It is established that the only study on finding the optimal cylindrical shell with two variable
supporting curves at the ends is the article by V.N. Ivanov, O.0. Aleshina, E.A. Larionov [16]. Cylindrical
surfaces are improper developable surfaces in which the edge of regression is moved off to infinity.

5. Conclusion

Scientific and technical literature proposes 10 methods for constructing developable surfaces. The most
well-known of them are constructing developable surfaces based on two specified director curves, based on
the specified edge of regression, and the kinematic method of winding a plane with a straight line onto a
cylinder and cone. The first method listed above is recommended mainly for designing large-area roofs in
construction, the second is widely used to create screw and helical products in mechanical engineering, and
the third method is used when studying the trajectory of a straight line in space and when studying the
carved ruled Monge surface.

Despite the fact that there are sketches of architectural objects in the form of developable surfaces with
specified supporting plane curves, they are most commonly used in the design of river and sea vessel hulls.
Virtually all publications on the manufacture of ship hulls use graphic representations of the ideas for design
of these developable surfaces.

The article offers analytical solutions to the problems posed. For convenience of studying developable
surfaces with two specified curves, they are divided into four types, for each of which the procedure for
obtaining explicit or parametric equations is shown, according to which the corresponding developable
surfaces with specified geometric parameters are constructed using computer graphics.

The presented material may encourage architects and practicing engineers to make wider use of the
proposed developable surfaces in the forms of real products, structures, and buildings.

386 ANALYSIS OF THIN ELASTIC SHELLS



Kpusowanko C.H. CTpouTenbHas MexaHuka UHXEHEPHBIX KOHCTPYKLMIA 1 coopyxeruir. 2025. T. 21. Ne 5. C. 377-388

References

1. Krivoshapko S.N. Torse surfaces on a rectangular plan with two plane curves on the opposite ends. Building and
Reconstruction. 2025;1(117):3-15. (In Russ.) https://doi.org/10.33979/2073-7416-2025-117-1-3-15 EDN: ACOCGO

2. Krivoshapko S.N. Torse surfaces on trapezoidal plan with given in advance curves on the ends and straight
generatrixes coinciding with its other sides. Structural Mechanics and Analysis of Constructions. 2025;(4):62—72. (In Russ.)
https://doi.org/10.37538/0039-2383.2025.4.62.72 EDN: BOGAHV

3. Krivoshapko S.N. Torses with two curves in intersecting planes and with parallel axes. Structural Mechanics of
Engineering Constructions and Buildings. 2025;21(2):155-166. https://doi.org/10.22363/1815-5235-2025-21-2-155-166
EDN: NRNOQA

4. Pavlenko G.E. Simplified Shapes of Ships. Moscow: MRF SSSR, 1948. (In Russ.)

5. Gorbatovich J.N. Design of torse surfaces with two plane cross sections. Proceedings of BSTU. Ser. 5. Physical
and Mathematical Sciences. 1995;(2):33-36. (In Russ.) Available from: https://elib.belstu.by/handle/123456789/65082
(accessed: 12.03.2025).

6. Bhattacharya B. Theory of a new class of shells. Symposium on Industrialized Spatial and Shell Structures. Poland,
1973. p. 115-124.

7. Rekach V.G., Ryzhov N.N. Some opportunities of broadening number of problems on design and analysis of shells.
Structural Mechanics. Moscow: UDN Publ.; 1970;48(6):3-8. (In Russ.)

8. Ivanov V.N. Ruled surfaces on the given supporting curves. Structural Mechanics of Engineering Constructions
and Buildings. 2015;(3):9—-17. (In Russ.) EDN: TNEVUR

9. Ershov MLE., Tupikova E.M. Construction of development of a torse surface with the parabolas on the opposite
edges. Engineering Research: Scientific-and-Practical Conference. RUDN University. 2020:31-41. (In Russ.) EDN: JDIESQ

10. Francisco Perez-Arribas, Leonardo Fernandez-Jambrina. Computer-aided design of developable surfaces: designing
with developable surfaces. Journal of Computers. October 2018;13(10):1171-1176. http://doi.org/10.17706/jcp.13.10.1171-1176

11. Chih-Hsing Chu, Charlie C.L. Wang, Chi-Rung Tsai. Computer aided geometric design of strip using developable
Bezier patches. Computers in Industry. 2008;59:601-611. http://doi.org/10.1016/j.compind.2008.03.001

12. Vaskov A.A., Dorokhov A.S., Trushina L.N. Graphical construction of surfaces of plows. Bulletin of the Federal
State Educational Institution of Higher Professional Education “Goryachkin Moscow State Agroengineering University.”
2012;(2):51-53. (In Russ.) EDN: RBFFND

13. Krivoshapko S.N., Ivanov V.N. Encyclopedia of Analytical Surfaces. Springer International Publishing Switzerland,
2015. http://doi.org/10.1007/978-3-319-11773-7

14. Yang J.X., LiuJ.Q., Wang C.Y., LiuJ. Design and development of developable surface based on engineering
requirement. 3rd International Congress on Image and Signal Processing, Yantai, China, 2010:1231-1234. http://doi.org/
10.1109/CISP.2010.5647252

15. Miori 1., Haruki I. A method of predicting sewn shapes and a possibility of sewing by the theory of developable
surfaces. Journal of the Japan Research Association for Textile End-Uses. 2007;48(1):42-51.

16. Ivanov V.N., Aleshina O.0., Larionov E.A. Determination of optimal cylindrical shells in the form of second order
surfaces. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(1):37-47. (In Russ.) http://doi.org/
10.22363/1815-5235-2025-21-1-37-47 EDN: IQCXLS

17. Belyaeva Z.V., Berestova S.A., Mityushov E.A. Tangent developable surfaces elements in thin-walled structures.
VIII International Conference on Textile Composites and Inflatable Structures Structural Membranes 2017. 2018. p. 415-426.
EDN: XYCRPV

18. Olodo E.T., Adjovi E.C., Krivoshapko S.N. Geometrical modeling of a composite folded membrane by a developable
membrane with parabolic guidelines of any order. International Journal of Scientific & Engineering Research. 2013;4(4):
338-343. ISSN 2229-5518

19. Obukhova V.S., Vorobkevich R.I. Analytical description of parabolical torses of the fourth order. Applied Geometry
and Engineering Graphics. 1982;33:16—19. (In Russ.)

20. Rynkovskaya M. Support draft calculation for a ramp in the form of developable helicoid. 2018 IOP Conf. Ser.:
Mater. Sci. Eng.2018;371:012041. http://doi.org/10.1088/1757-899X/371/1/012041 EDN: VBTPRE

21. Ivanov V.N., Alyoshina O.0. Comparative analysis of the results of determining the parameters of the stress-strain
state of equal slope shell with a directrix ellipse at the base. Structural Mechanics of Engineering Constructions and
Buildings. 2019;15(5):374-383. (In Russ.) http://doi.org/10.22363/1815-5235-2019-15-5-374-383 EDN: LZSVVI

22. Krivoshapko S.N., Razin A.D. Comparison of two systems of governing equations for the thin shell analysis.
Conference: Proceedings of the International Conference on Engineering Research 2021 (ICER 2021), Moscow, 2021;
2559(1):020009. August 2022. http://doi.org/10.1063/5.0099905

23. Bajoria G.Ch. Application of a system of equations of A.L. Goldenveiser for analysis of torse shells on momentless
theory. Issledovaniya po Raschotu Elementov Prostranstvennyh Sistem. Moscow: UDN Publ.; 1987. p. 65-72.

PACUYET TOHKUX YMPYTVX OBOMNOYEK 387


http://doi.org/10.22363/1815-5235-2025-21-1-37-47

Krivoshapko S.N. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):377-388

24. Bhattacharya B. Membrane theory of new class of developable shells. Journal of Structural Engineering. 1983;
10(3):81-88.

25. Rekach V.G., Krivoshapko S.N. Analysis of non-degenerated torse shells in curvilinear non-orthogonal coordinates.
Structural Mechanics and Analysis of Constructions. 1982;(6):23-29. (In Russ.)

26. Krivoshapko S.N. Application of tangential developable surfaces in shipbuilding. Shipbuilding. 1983;7:5-7
(In Russ.)

27. Krivoshapko S.N. Design, analysis, and opportunity of application of torse shells in thin-walled structures. Analysis
of Shells of Building Structures. Pross. Moscow: UDN, 1982:54—66. (In Russ.)

28. Bhanage A. An overview of flat pattern development (FPD) methodologies used in blank development of sheet
metal components of aircraft. International Journal of Mechanical Engineering and Robotics Research. April 2014;3(2):
33-43. Available from: https://www.ijmerr.com/currentissue.php (accessed: 12.03.2025).

29. Nelson T.G., Zimmerman T.K., Magleby S.P., Lang R.J., Howell L.L. Developable mechanisms on developable
surfaces. Science Robotics. 20 Feb 2019;4(27). http://doi.org/10.1126/scirobotics.aau5171

30. Lawrence S. Developable surfaces: Their history and application. Nexus Network Journal. October 2011;13(3):
701-714. http://doi.org/10.1007/s00004-011-0087-z EDN: HJZITK

31. Ishikawa G. Singularities of parallels to tangent developable surfaces. arXiv: Differential Geometry. 16 May 2021.
Available from: https://scispace.com/papers/singularities-of-parallels-to-tangent-developable-surfaces-2cdy3p4ifc (accessed:
12.03.2025).



CTPOMTENBHAS MEXAHUKA UHXEHEPHBIX KOHCTPYKLIMIA U COOPYXXEHUIA ® e
STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS

2025. 21(5). 389-398

ISSN 1815-5235 (Print), 2587-8700 (Online)
HTTP:/JJOURNALS.RUDN.RU/STRUCTURAL-MECHANICS

DOI: 10.22363/1815-5235-2025-21-5-389-398
EDN: DQUGGN
Research article / Hay4Has cTatbs

Mathematical Model of Deformation of an Orthotropic Shell Under Blast Loading

Alexey A. Semenov

Saint Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russian Federation
P4 sw.semenov(@gmail.com
Received: August 6, 2025

Revised: September 22, 2025
Accepted: October 4, 2025

Abstract. This paper proposes a mathematical model of the deformation of a thin-walled shell structure under dynamic loading,
specifically, blast loading. To account for the damping of the resulting vibrations, the author’s previously proposed model was
modified by adding a Rayleigh dissipation function to the Euler — Lagrange equations. The mathematical model also accounts for
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1. Introduction

Thin-walled shells deform in a significantly nonlinear manner, and special methods and algorithms
must be developed to calculate them [1-5]. One important task in the study of thin-walled structures is the
analysis of their deformation under dynamic loads.

Dynamic impacts on shells cause vibrations, and one of the important factors in performing
calculations is taking damping into account [6; 7]. It is especially important to consider damping when the
load is applied for a short time, as in the case of explosive impacts, and further behavior of the structure can
only be accurately described by taking into account the attenuation of vibrations. In relation to the
calculation of shell structures, explosive loads were considered in [8—13]. For example, Godoy and
Ameijeiras [12] investigate the deformation of vertical steel oil storage tanks with flat roofs during an
explosion close to the structure. The energy values are analyzed at changing peak pressure and buckling
shape. In [9], calculations of spherical shells made of FGM are performed, and the calculation algorithm
and results are presented in the form of dynamic responses, phase portraits, and natural frequency values.

Mechanics uses the variational principles of Lagrange and Hamilton, which solve time-dependent
problems based on the law of conservation of energy and are therefore not applicable to dissipative systems
[14]. A number of attempts to overcome this problem can be found in literature. One of the first papers
devoted to accounting for dissipation in the Lagrangian formulation was published by Leech [14] in 1958.
The Lagrangian function was extended by the Rayleigh dissipation function (1877). This formulation was
called the modified Hamilton principle [15] (or extended [16]). Effectively, this approach allows the
“classical” Lagrange equations to be extended to non-conservative (i.e., dissipative) systems [14; 17; 18].

The approach based on adding Rayleigh dissipation function to the Euler — Lagrange equations [14;
19-23] was also used in [25-27].

Thus, [24] investigates forced nonlinear vibration of double-curved shells in accordance with Koiter's
theory. Various types of bifurcations are analyzed.

M. Amabili [26] investigates high-amplitude (geometrically nonlinear) vibration of circular cylindrical
shells. The equations of motion are obtained using the energy approach that takes into account damping via
the Rayleigh dissipative function. The results for four different nonlinear theories of thin shells are compared.

The study of E.P. Detina [6] is also worth noting, in which the Rayleigh dissipative function is
modified, called the Kelvin — Voigt dissipative function. The proposed function is proportional to the
square of the material strain rate, in contrast to the Rayleigh dissipative function, which is proportional to
the square of the displacement velocity.

There is also an approach that takes into account energy dissipation by adding to the functional the
ratio of damping energy, dissipated per vibration cycle, to the maximum deformation energy [27-31].
However, implementing this approach is computationally more complex.

The aim of this study is to extend the mathematical model and the algorithm previously developed by
the author [32; 33] to the problems of calculating shell structures under blast load taking into account
damping.

2. Theory and Methods

To obtain the principal relations of the mathematical model, the total energy functional is used
(dissipation is not taken into account at this stage):
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1=jl(Ek—Es)dz, (1)

where Ex is the kinetic energy; ¢ is time; E; = E,—A is the difference between the potential energy of
deformation of the system and the work of external forces

ab
E, _%IJ‘(NXSX+Ny8y+%(ny +Nyx)ny+MxX1 M, +(Mxy +Myx)X12 -

1110

+0, (¥, -6,)+0, (¥, —0,)~2(RU + BV +qW)) ABdxdy.

2
Geometric relations taking into account nonlinearity will take the following form:
€, :la—U+LVa—A—ka+lelz;
Aodx AB dy 2
Sy:la_Vﬁ_LUa_B_ yW+1922;
Bdy AB ox 2
1dV 10U 1 ,04 1 OB
Yo =——t+—-=——ZU—"—=V—+6,6,; 3)
Aox Bdy AB dy AB Ox
0, =- la—W+ka , 0,=— la—W+kV , kx=i, k =L.
A ox Boy 7 R, 7R,
Curvatures ), X, and twist ), functions for this model become the following:
10¥, 1 o4 10¥, 1 oB
A ox AB oy B dy AB ox
1(10¥, 10¥, 1 (04 0B
Xp==| == +———— =¥, +—=Y, || (4)
2{4 ox B dy AB\ dy ox

The geometry of the shell structure is defined by the Lamé parameters and the values of the principal
radii of curvature.

Also, expressions for the forces and moments reduced to the mid-surface of the shell and per unit
length of the cross-section are required for the use in functional (2):

Eh
N, :—‘(ex +u21ey);
1=,y

E h

N, =—2—(e, +UpE, );
g 1‘“12“21< v )

N,=N, = Guhyxy;

E n

M, =—— — (% 12X ) (%)
1—ppoly, (12]
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E n
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JE
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0, =Gy3kh (¥, -6,);
where N,, N, N, N, are the normal forces along axes x, y and membrane shear forces in the xOy
plane; M, M, , M, , M are the bending and twisting moments; Q,, O, are the shear forces in the
xOz and YOz planes; E|, E, are the elasticity moduli; Gy,, G5, G,; are the shear moduli; W;,, WL, are

the Poisson’s ratios.

The proposed mathematical model is based on the hypotheses of the Timoshenko model (Reissner—
Mindlin, FSDT) and allows for the consideration of rotational inertia and transverse shear. Then the kinetic
energy [32; 33]

pab hi/2 aUz 2 aVz 2 aWz 2
E == ABdxdydz, 6
T 5 o5 e o

Us=U+:z¥,, VZ=V+Z‘I’y, W2=w.

By evaluating the integral with respect to variable z in (6), one obtains

2 2 2 3 2 2
L4 ¥
h [B_Uj +(8—Vj +£8—Wj +h— o, + =2 ABdxdy. (7)
ot ot ot 12|\ ot ot
The approximating functions (in accordance with the L.V. Kantorovich’s method) are substituted into

functional (1). After evaluating the integrals with respect to variables x and y in terms of known functions,
functional 7 represents a one-dimensional functional in terms of functions U, (¢)~"¥ ,; (¢). Next, the well-

k_

P
2

S o
O —y

known Euler — Lagrange equation [32; 33] is used:

d OE, oE,
——r
dt oX;(t) oX,(¢)

=0, j=1,2,.,5N, (8)

where X(t)z(U..(t) V.(t),Wu(t),‘sz.j.(t),‘PyU(t))T, i,j=1,.,n/N, and the dot represents the

g \* >V ij
derivative with respect to time.

Next, the Kantorovich method and the Rosenbrock method (for numerical solution of rigid ODE
systems) are used to perform the calculations. The Kantorovich method is used to reduce a multidimensional
functional to a one-dimensional one. For this, the unknown displacement functions and deflection angles are
represented as follows [33]:

& Kyl &L k!
U(x,y,t)= Ukl(t)XIYI’ xy, ZZVM X Y,
=1 =1 =1 =1
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IN IV
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where U, —Y ,, are the unknown functions of # X e XE, Y., Y! are the known approximation

functions.

The Euler — Lagrange equations (8) are supplemented with a term that takes into account damping
based on the Rayleigh dissipation function. In well-known studies, the Rayleigh dissipation function written
for the model of structural deformation does not take into account transverse shear (Kirchhoff — Love,
Koiter, CSDT models) and the membrane thickness

cit(ou VY (ow
_EHMGJ (atj+(athAdedy (10)

At the same time, how exactly coefficient c is defined, as well as its dimension and order, depends on
accounting for the membrane thickness.

In this study, similar to the expression for kinetic energy, the Rayleigh dissipation function for the
Timoshenko — Reissner model is written:

b h/2 QU* 2 Y& 2 oW+ 2
| + + ABdxdydz. (11)
0 ot ot ot
After integrating (11) with respect to variable z, one obtains
ab 2 2 3 2 8‘1’ 2
:5” (an (aV] +(8—Wj M [a\}l"j +| —2 | | |4Bdxdy. (12)
2.0 ot ot ot 12\ ot ot

Now, a term containing the Rayleigh dissipation function (taking into account the proposed
refinements) is added to the Euler — Lagrange equation, as it is done, for example, in [19; 24; 26]

d Ok 0E _ OF
dt 0X ;(t) oX;(1) X, (¢)

=0, j=1,2,..,5N. (13)

System of equations (13) is complemented with initial conditions at =0

Uy =V =W; =W, =¥, =0,U;=V,=W; =¥, =¥ ,=0, i,j=12.JN, (14)

) g y
or

X;=0, X,=0, j=12,.5N.

The system of differential equations (13), (14) is further solved using one of the numerical methods; in
this study, the Rosenbrock method is applied to the problem.
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3. Analysis

To demonstrate the applicability of the above approach, a thin-walled shallow shell of double curvature
with thickness # = 0.09 m, linear dimensions a = b = 10.8 m and principal curvature radii R1 = R2 = 40.05 m
is analyzed. The material parameters correspond to fiberglass T10/UPE22-27 (elasticity moduli
E1=0.294x10° MPa, E>=0.178-10° MPa, shear moduli Gi2 = Gi3 = G23 = 0.0301x10° MPa, Poisson’s
ratio p=0.123, density p = 1800 kg/m?), the edges of the structure are simply supported. The load is

explosive, directed perpendicular to the surface, and depends on time as follows: g=g, exp(—tij +4q,,,
0
qo=1MPa, f0=0.01s.

Self-weight is also taken into account. The analysis is performed with N=4 in the Kantorovich
method. Using a program developed by the author in Maple software, the dynamic response of the system at
different coefficients ¢ = 100 N-s/m* = 0.0001 MPa-s/m, ¢ = 0.001 MPa-s/m, ¢ =0.002 MPa-s/m is shown.
For comparison, the results without considering damping, when ¢ = 0 N-s/m?, are presented (Figure 1).
Hereinafter in the figures it is shown that the curve with a larger amplitude corresponds to the central part
of the structure (x=a/2, y=>5/2), while the one with a smaller amplitude corresponds to the quarter
(x=a/4,y=>b/4). Figure 2 shows the same data for go = 10 MPa.

a W, m t, sec

ML

|| N fi i

 mhdehmhmmlmhm“IhHH.uiHHiHthHhHH“hIdMHJ

0.8

06 | 'llj JIEII“
4{Mhmﬂ““l““i“tﬂilli..‘.uAﬁ‘“'“. |

-0.21

1, sec

=)

~0.4 4

1.2 7

1
0.8 4
0.6

5 H”“'HIL A
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o
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Figure 1. Dynamic response under blast loading (qo = 1 MPa):
a—c=0MPa-s/m; b— c=0.0001 MPa-s/ m; ¢c— c¢=0.001 MPa:s / m; d — ¢ =0.002 MPa-s / m
Source: made by A.A. Semenov.
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Figure 2. Dynamic response under blast loading (qo = 10 MPa):
a—c=0MPas/m; b—c=0.0001 MPa's/ m; ¢c— c¢=0.001 MPa-s / m; d — ¢ =0.002 MPa-s/ m

S ource: made by A.A. Semenov.

It is evident that with a higher value of coefficient ¢, the damping of vibration occurs more rapidly. The
search and analysis of its possible values close to the real data for the materials under consideration will be
the subject of further research.
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To assess how destructive the impact of an explosive load is, the graphs of normal stresses are also
constructed for go=1MPa and ¢=0.001 MPa-s/m (Figure 3), and further — for go= 10 MPa and
¢ =0.001 MPa-s/m (Figure 4). It can be seen from the graphs that at go = 10 MPa the values of stress exceed

the ultimate stress values for this material by several times, and at go = 1 MPa they are close to the ultimate
stress values, and at certain moments they surpass them.

1

‘P 'I !h(l‘h".’ll i

Figure 3. Normal stress values under blast loading (qo = 1 MPa),
¢=10.001 MPa's/ m

Source: made by A.A. Semenov.

Figure 4. Normal stress values under blast loading (go = 10 MPa),
¢=0.001 MPa-s/m

Source: made by A.A. Semenov.
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4. Conclusion

Computer modeling technologies allow to study thin-walled structures taking into account nonlinear
effects. The proposed mathematical model using the Rayleigh dissipation function allows to extend the
applicability of the models and calculation algorithms previously developed by the author to a wider class
of problems. This includes simulating the dynamic response of a structure to an explosive load when the
load application time is short and the vibration process involves damping. The data obtained on the stress
values during vibrations are also of interest, as they may exceed the ultimate values.

Thus, a new mathematical model of the deformation of an orthotropic shell under the action of an
explosive load has been obtained.
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HccaenoBanue reoMeTpruy U HANPSKEHHO-1e¢(OPMHPOBAHHOIO
COCTOSIHH S 000JI04€K €O CPEAUHHBIMU NMOBEPXHOCTAMM,
3aJJaHHBIMHU ABYMS CYIIEPIJIIMIICAMHU U OKPYKHOCTHIO

B.B. Kapuesnu' "™, U.A. MamueBa

Poccuiickuii yauBepcuret apyx0s1 HaponoB, Mockea, Poccuiickas @edepayus
P4 valera.karnevich@gmail.com

IMomyueno: 11 aBrycra 2025 r.
Jlopabotana: 2 okts16ps 2025 r.
IMpunsra x myoaukanuu: 12 okTsops 2025 r.

AnHoTanus. PaccMoTpeHsl ToHKHE 0007T04YKH B (hopMme anreOpandeckux MOBEPXHOCTEH ¢ TeOMEeTPHYECKMM KapKacoM H3 Tpex
CYHEPIINUIICOB, JIEXKAUX B TPEX KOOPAUHATHBIX IUIOCKOCTAX, B Cllyuyae, KOIla TOPHU3OHTANIBHBIN CYNEpIJUIUIC IPEACTaBIsACT
coboii kpyrioe ocHoBanue. Iloka3aHo, 4TO B 3aBUCUMOCTH OT (DOPMBI OCTaNIbHBIX ABYX CYHEP3JUIMIICOB MOXKHO IOIy4UTh KOHUYE-
CKYI0 IIOBEPXHOCTh, IOBEPXHOCTb OTPULATENbHON IayCcCOBOM KPUBHU3HBI, BKIIIOUAS KOHOUJbI, WU IOBEPXHOCTb MOJIOXKUTEIb-
HOH rayccoBoil KpHBHU3HEIL. [IpoMIITIOCTPHPOBAHO NMOCTPOEHHE 12 MPUMEPOB TaKHX IOBEPXHOCTEH HAa KPYINIIOM OCHOBAHHH.
U3 Hux 6 moBepXHOCTEH BIEPBbIC UCCIIENOBAHBI MOAPOOHO MeTonamMu TU(GepeHIINATBHON TeOMETPHH, TIOIyYeHbI UX K03 PuUIm-
€HTHI KBaJpaTHYHbIX (opM. M3 12 mpencraBneHHBIX (GopM 000I0YEK AT CPABHUTEIHHOTO CTATHYECKOTO pacdeTa BHIOPAHBI IBE
IMHeHyaTbie 000I0YKH HYJIEBOM U OTPULIATENbHON raycCOBON KPUBHU3HBI (KOHUYECKAs MOBEPXHOCTh U IIMIUAPOU) C OAUHAKOBBIM
reoMeTPUYECKUM KapkacoM. Pacuer o0onodek ¢ paBHOMEPHO paclpeneIeHHOM Harpy3Koi IPOU3BOMIICS ¢ UCIOIB30BaHUEM METOZA
KOHeuHbIX s1eMeHToB (MKD) B nepeMernenusx, peaau3oBaHHoM B mporpaMMHoM komiiekce SCAD. IToka3aHo, 4To, HECMOTpPS Ha
OIMHAKOBEIN T€OMETPHUYECKHH KapKac 3THX ABYX 000104eK, o 0ompmuHCTBY mapamerpo HJC mydmme moxasareny y KOHHYe-
CKOM 00OJIOUKH.

KiioueBble ciioBa: Kpyrioe OCHOBaHME, anreOpandeckas MOBEPXHOCTh, LMJIMHAPOUJ, KOHUYECKAas MOBEPXHOCTb, CTATHYECKUN
pacuet, MKD

3asBiieHNe 0 KOHGUIMKTE HHTEPECOB. ABTOPHI 3asIBIISIOT 00 OTCYTCTBUU KOH(IHKTA HHTEPECOB.

Bxaanx aBropoB: Kapuesuu B.B. — uccienoBanue, aHajau3, IporpaMMHoe oOecriedeHre, BU3yaan3alus, HalucaHue OPUTrHHAIb-
HOTO npoexTa; Mamuesa U.A. — MeTONONOTHs, BaJUIallMs, HAMCAHUE, PELICH3UPOBAaHUE U pefakTUpoBaHue Tekcra. O0a aBTopa
03HaKOMJIEHBI C OKOHYATEJIILHON BepCHel CTaThi U OHOOpUIIH ee.

Baaromapuoctu: Asrops! Beeraa OynyT noMHUTS podeccopa Ceprest HukonaeBuya Kpupomanko 3a €ero 0T3b61BYUBOCTh, TOTOBHOCTD
NPUHATH Ha MOMOIIb U ITyOOKHiA HHTEepec K paboTe Hax cTaTbeil. Oco0yto MPU3HATETEHOCTh XOUETCS BBIPA3UTh 33 €0 JeTalbHBIC
KOMMEHTapHU U 1LIEHHbIE PEKOMEHJALIMU Ha BCEX JTalax IOArOTOBKH TEKCTA, a TAK)KE 38 KOHCTPYKTUBHBIE MJIEM KACATEIbHO Aajlb-
HeWmux Hay4HbIX u3blckaHuil. Cepreil HukomaeBnd, oka3aBIIMH 3HAYUTEIbHOE BIMSHUE HA PAa3BUTUEC HAyKH B OOJIACTH TOHKO-
CTEHHBIX KOHCTPYKIHH, Onaromapst CBoeMy OOraToMy OIBITY, ITHPOTE B3MIAAOB M CIIOCOOHOCTH JOCTYITHO NPETIOTHOCHTH CIIOX-
HBIH MaTepHal, ChIrpall KIF04YeBYO POk B IPOOYKIEHUH HHTEPECA K HCCIIEIOBAHHIO TIOBEPXHOCTEH 1 060I0YEK.

s untupoBanusi: Karnevich V.V, Mamieva I.A. Analysis of geometry and strength of shells with middle surfaces defined by
two superellipses and a circle // CrpouTenbHas MeXaHHKa MHXXEHEPHBIX KOHCTPYKUUH U coopyxenuid. 2025. T. 21. Ne 5. C. 399-413.
http://doi.org/10.22363/1815-5235-2025-21-5-399-413 EDN: DRENKL

1. Introduction

In descriptive geometry, the frame of a surface is a set of lines, which define the surface. Surfaces
constructed from a geometric frame of three curves lying respectively in three coordinate planes are widely
used in shipbuilding for the design of hulls of above- and under-water vessels. In [1], the author discusses
issues of modelling hull surfaces with discrete points and the computational advantages and geometric
intuitivity of using parametric representation in the surface modeling. In [2], thirteen analytical surfaces for
preliminary stages of hull shape selection and different methods of their construction are presented. There
were suggestions of using superellipses as the plane curves of the geometric frame [3—6], which allow to
significantly expand the number of shapes for ship hulls by varying the parameters of the superellipses.

Kapueguu Banepuit Bauecnasoguu, acunpant kaenpbl TEXHOIOTHI CTPONUTENBCTBA 1 KOHCTPYKIIMOHHBIX MaTepHaloB, HHXKEHEpHas akajemus, Poccuii-
CKMI yHMBepCUTET JpysxObl HaponoB, Poccuiickas ®exnepanus, 117198, r. Mocksa, yi. Mukiyxo-Makunas, a. 6; eLIBRARY SPIN-kox: 4233-3099; ORCID:
0000-0002-6232-2676; e-mail: valera.karnevich@gmail.com

Mamuesa Hpauoa Axcapbezosna, acCuCTeHT Kadeapbl TEXHOIOTHIl CTPOUTENILCTBA U KOHCTPYKIMOHHBIX MaTEpHAIIOB, HH)KEHEpHas akaaemusi, Poccuii-
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Paper [7] presents parametric equations and a technique for generating complex submarine hull shapes,
which are composed of fragments of surfaces defined by a frame of superellipses. In [8], thin shells with
middle surfaces containing three plane superellipses as the geometric frame were originally suggested to be
used in construction and architecture.

In [5; 9], the curves defining the considered surfaces are expressed in the following form:

= the first curve of the geometric frame in the xOy plane (z = 0):

’ =W{1—%J, (1)

= the second curve of the geometric frame in the yOz plane (x = 0):

o =77 Ll _w}, @

Wm

|y

= the third curve of the geometric frame in the xOz plane (y = 0):

N
|z| =T [1 | 3)

where for convex curves r, ¢, n, m, s, k> 1; for concave curves r, ¢, n, m, s, k < 1. Curves (1)—(3) represent
superellipses if the exponents within each equation are equal, or arbitrary plane curves otherwise. The
exponents in equations (1)—(3) can take on any positive value. In this study, only superellipses are considered
to constitute the geometric frame, sor=t,n=m,s=k. lfr=t=1,n=m=1,s=k=1, then curves (1)—(3)
degenerate into straight lines, and superellipses degenerate into rhombs.

Using the method described in [6; 9], it is possible to derive the explicit equations of three algebraic
surfaces with the same geometric frame of curves (1)—(3):

= generated by a family of sections in x = const planes:
1/n

f=r(i-p r2¢)” [1_|y/W|m/(1_|x/L|f) / } , @
= generated by a family of sections in y = const planes:
. 1n . N

= (1= ppf" 17) [1—|x/L| 1=y } , )
= generated by a family of sections in z = const planes:
n 1/m ‘ s tlk Vir

| =ww (1| /1 7") [1—|x/L| /(1=fz 11T } : 6)

where —L<x<L,-W<y<W, 0<z<T.
The explicit equations of surfaces (4)—(6) can be transformed into parametric equations:

1/n

x:x(u):iuL,y=y(u,v):vW[l—u’]m, Z:z(u,v):T[l—uk]l/r[1—|v|mJ ; @)

xzx(u,v):vL[lfur]m, y:y(u):iuW, z:z(u)zT[lfum]l/n [1|v|kT/S; (8)
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xzx(u,v)va[l—us]l/k , yzy(u,v)ziW[l—u”T/m [1—|v|tT/r , z=z(u)=ul, 9)

where 0<u <1, -1<v<1; wu,v are non-dimensional parameters.

The considered surfaces can be referred to as “kinematic surfaces”, since they are formed by the
motion of a generatrix of variable or constant curvature along a directrix. By taking each of the three super-
ellipses of the geometric frame as the generatrix one-at-a-time, three analytical surfaces are obtained, which
are defined by explicit equations (4)—(6) or parametric equations (7)—(9).

Equations (4)—(9) were used in paper [10] for constructing five groups of new ruled surfaces. Some
of these ruled surfaces were taken as middle surfaces of thin shells, which were analyzed for dead load
in[11].

In scientific literature and in practice, thin shells with a circular base are the most popular. Virtually all
shells with a circular base known to date are shells of rotation, for which about three dozens of optimality
criteria have been proposed [12]. Less known is the method of defining the geometry of shells where middle
surfaces contain three plane curves as the frame, and one of these curves is a circle.

The objective of this paper is to investigate shells with middle surfaces defined by a geometric frame
of superellipses in the particular case when the horizontal curve (base outline) is a circle. Some specific
groups of such surfaces are analysed in detail using the methods of differential geometry for the first time to
demonstrate the geometrical equivalence or distinction of surfaces with the same frame, but different
method of generation. In addition, static analysis is applied to shells with middle surfaces from a particular
group to identify the differences in the structural behavior.

2. Methods

2.1. Construction of Surfaces Defined by Two Superellipses and a Circle

Assuming that a surface with the frame of superellipses has a circular base in the xOy coordinate plane,
then the following values of parameters in equations (1)—(9) can be adopted:

r=t=2,L=W=R, 0<z<0,-R<x<R, —R<y<R,

and z-axis is directed upwards. In this case, expressions (7)—(9) can be rewritten as

x=x(u)==ivR, y=y(u,v)=ivR[1—u2]l/2, Zzz(u,v)=T[1—uk]l/s[1—vm]l/n; (10)
xzx(u,v)zivR[l—uz]l/z, y=y(u)==uR, zzz(u)zT[l—um]l/n [l—va/S; (11)
x=x(u,v)=ivR[1—us]1/k, y=y(u,v)=iR[1—u"]l/m[l—vz]m, z=z(u)=uT, (12)

where 0<u <1, 0<v<l; u,v are non-dimensional parameters.

Parametric equations (10)—(12) allow to construct an unlimited number of groups of three surfaces.
And in each group, the three surfaces will have the same geometric frame of two half-superellipses in
vertical coordinate planes and the same circular base in the horizontal plane.

Several specific groups of three surfaces with the same frame are constructed and illustrated below.
Using parametric equations (10)—(12), the first group of three surfaces is constructed for the case of n =m =
=s =k =1 (Figure 1), the second group of three is constructed with n = m = 1, s = k = 2 (Figure 2),
the third group of three has s = k=1, n = m = % (Figure 3), and the fourth group of three is constructed with
n=m=2,s =k= % (Figure 4). The surfaces are visualized using Matplotlib v3.4.2 plotting library for
Python programming language [13].
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a b c

Figure 1. Analytical surfaces with a circular base (the 1st group of three wheren=m=s=k=1):
a — generated using equations (10); » — generated using equations (11); ¢ — generated using equations (12)
Source: compiled by Valery Karnevich.

a b c

Figure 2. Analytical surfaces with a circular base (the 2nd group of three wheren =m =1, s =k =2):
a — generated using equations (10); » — generated using equations (11); ¢ — generated using equations (12)
Source: compiled by Valery Karnevich.

a b c

Figure 3. Analytical surfaces with a circular base (the 3rd group of three where s =k =1, n =m = 3/4):
a — generated using equations (10); b — generated using equations (11); ¢ — generated using equations (12)
S ource: compiled by Valery Karnevich.

a b c

Figure 4. Analytical surfaces with a circular base (the 4th group of three where n =m =2, s = k= 3/4):
a — generated using equations (10); b — generated using equations (11); ¢ — generated using equations (12)
Source: compiled by Valery Karnevich.
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By changing the values of exponents n, m, s, k in equations (10)—(12), it is possible to continue the
construction of various surfaces with a circular base. The surfaces demonstrated in Figures 1-4 can be
implemented as architectural structures in the form of rigid shells or in the forms of tent coverings. The
potential for application of thin shells with middle surfaces shown in Figures 14 was originally considered
in [14].

2.2. Geometric Analysis

Geometric properties of the first two groups of the presented surfaces (Figures 1 and 2) are examined
using the methods of differential geometry.

A two-dimensional manifold (surface) naturally involves the use of two independent parameters. Any
analytical surface defined by parametric equations can be expressed in vector form:

r :r(u,v) :x(u,v)i+y(u,v)j+z(u,v)k,

where u and v are independent parameters. The terminal points of all vectors r=r(u,v) form a surface in

space.

Internal and external geometry of a surface is described numerically by the coefficients of the
fundamental forms. Coefficients £, G, F of the first quadratic form characterize the internal geometry of a
surface, coefficients L, M, N of the second quadratic form characterize the curvature of the surface in space
and coefficient K defines the Gaussian curvature [15]:

E=A*=¢’, G=B> :rvz, F=rr,;

u

L — (ruururv) M — (rMVerV) N — (rvvrurv) .
JA2B - F* JA2B _F? JA2B—F*
_LN-M?
AR _F?
2.3. Static Analysis

Thin shells with the middle surfaces shown in Figure 1 is are selected for a comparative static analysis
under uniformly distributed vertical load. The choice of the analysis method is discussed below.

Four stages of creation and development of the theory of plates and shells, which gave rise to
mechanism of analysis of spatial roof systems of large-span buildings and structures on a contemporary
level, are presented in [16]. The author supposes that the fourth stage of development of the shell theory,
design and construction of large-span structures has begun in the 21 century.

Now, a large variety of analytical, semi-analytical, and numerical methods of analysis of shells and
shell structures exist. In the previous section, it was shown that the considered middle surfaces of shells
can be defined in Cartesian coordinates using algebraic equations (4)—(6) or using parametric equations
(10)—~(12). Curved coordinate lines u, v of these surfaces can be non-orthogonal (F # 0) or orthogonal (¥ = 0),
non-conjugate (M # 0) or conjugate (M = 0).

Taking this into account, one may use Goldenveiser’s system of 20 governing equations [17] of the
thin shell theory for arbitrary curvilinear coordinates containing internal “pseudo-forces” and “pseudo-
moments”, or the system of governing equations suggested by S.N. Krivoshapko [18] containing internal
forces and moments generally used in engineering calculations, or the governing equations of
Ya.M. Grigorenko, A.M. Timonin [19] expressed in tensor form. The linear theory of thin elastic shells is
an approximate two-dimensional case of three-dimensional linear theory of elasticity [20]. The linear theory
of thin elastic shells belongs to classical special two-dimensional models within linear elasticity [21]. The
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governing equations suggested by these researchers contain coefficients of the fundamental quadratic forms,
which have not been previously presented for the specific surfaces examined in this paper.

Relevant literature analysis has shown that these three groups of governing equations of the linear
theory of thin shells have been used only in the case of the simplified momentless theory of shells or for the
analysis of ruled shells with a number of simplifications in geometry or governing equations. Hence,
accurate application of analytical methods for the shells in question cannot be realized at present time.

Several numerical methods were considered for the analysis of the shells in this study. Such included:
method of numerical integration of the system of governing differential equations, asymptotic semi-
analytical method with a small parameter, finite difference energy method, finite element method in terms
of displacements, and others [22]. It was decided to use displacement-based FEM [23]. In the 21* century,
such FEM software as LIRA, SCAD, STARK, MicroFE, STADIO, ABAQUS, ADINA, ANSYS, LS-DYNA,
COSMOS, MSC/NASTRAN, SOFISTIC, and other were successfully used for similar tasks. It was decided
to select SCAD [24], which allows to conveniently define shell geometry using parametric equations and set
the mesh discretization step along the curved coordinate lines. By changing the overall dimensions of shells,
selecting appropriate exponents of algebraic curves (1)—(3) of the main frame of the shells, and by assuming
a particular parameter of optimization, one can select an optimal structure among a large number of shells
in automatic mode.

3. Results
3.1. Geometric Analysis

3.1.1. First Group of Three Surfaces

The coefficients of the fundamental forms of the surface in Figure 1, a can be expressed in the following
form:

E:A2:ruz=R2+R2u2v2/(1—u2)+T2(1—v)2; (13)
G=B"=r; =T"(1-u)" + R (1-u’) = B’ (u); (14)
F=rr=-Ruw+T*(1-u)(1-v); (15)
R*Tv(1-u)
L=-— 7 (16)
VA B - F? (1-u* )2
R*T(1-u) _
M= T 17)
VA B = F? (1-u? )2
N =0; (18)
K=-M’/(4’B*-F*)<0. (19)

In expressions (13)—(19), the coefficient of the first fundamental form F # 0 shows that coordinate
lines u, v are non-orthogonal. The coefficient of the second fundamental form N = 0 shows that coordinate
lines v coincide with the straight generators of the surface. The coefficient of the second fundamental form
M # 0 shows that the coordinate grid u, v is non-conjugate. The ruled surface presented in Figure 1,a is a
surface of negative Gaussian curvature, since K < 0.

PACUYET TOHKUX YMPYTVX OBOMNOYEK 405



Karnevich V.V., Mamieva |.A. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):399-413

The coefficients of the fundamental quadratic forms of the surface shown in Figure 1, b are also
determined by expressions (13)—(19). Since the ruled surfaces presented in Figure 1, a and 1, b have the
same coefficients of the fundamental forms, they are identical surfaces. They are both cylindroids [25].

The coefficients of the fundamental quadratic forms of the surface in Figure 1, ¢ are expressed as
follows:

E=A =’ =T+ R*; (20)

F=rr =0 21)

G=B"=r] =R*(1-u)" /(1-V*); (22)

L=0; (23)

M =0; (24)
~TR(1-

N — (rvvrurv) — ( u) (25)

NAB —F _(T2+R2);(1—v2);

2

In expressions (20)—(26), the coefficient of the second fundamental form L = 0 shows that the curved
coordinate lines u coincide with the straight generators of the surface. The coefficient of the first
fundamental form F' =0 shows that coordinate lines u, v are orthogonal and the coefficient of the second
fundamental form M =0 shows that the coordinate grid u, v is conjugate. Therefore, the introduced
curvilinear system of coordinates u, v is defined in lines of principal curvatures. The ruled surface shown in
Figure 1, c is a surface of zero Gaussian curvature, since K = 0.

This ruled surface is a right circular cone. Differentials of the corresponding arclengths of coordinate
lines u and v can be determined using the expressions

ds,=Adu, ds,= Bdv.
3.1.2. Second Group of Three Surfaces

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, a have the
following form:

E’:A2 =ru2 =u2v2R2 /(1—u2)+u2T2(1—v)2 /(1—M2)+R2; (27)
G=B"=r}=(T?+R*)(1-u?) =B (u); (28)
F=rr,=—vRu+T u(l-v); (29)
2
L= RT : (30)
VA B - F (1-u7)
M =0, (31)
N=0; (32)
K=0. (33)
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Expressions (27)—(33) indicate that the system of curvilinear coordinates u, v is non-orthogonal (¥ # 0),
but conjugate (M = 0). Coordinate lines v coincide with the straight generators (N = 0) of the cylindrical
surface (K = 0) shown in Figure 2, a.

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, b have the
following form:

E=A =5} =R+ RV /(1-17 )+ T7 (1-17); (34)
G=B=r}=R* (1= )+ T5* (1-u)’ / (1-1); (35)
F=rr,=—Ruv+vT*(1-u); (36)
RzT(l—u)v2
L= 3 I (37)
NAB —F? (1-u7 )2 (1-7 )2
R*T(1-u)v

A*B? - F? (l—uz);(l—vz )5

!
v RT(1-u)(1-*) 59

VeF—r (1)

2
K= R4T2£1_”) " >0, (40)
(4°B>-F?) (1-*)(1-77)

The corresponding coefficients of the fundamental quadratic forms of the surface shown in Figure 2, ¢
have the following form:

E=& =5} =T’ + R /(1-* )+ R (1-77); (41)

G=B"=r) =R (1-u )+ R (1-u)" / (1-*); (42)

F=rr,=vR*(1-2u); (43)

o RzT(l—u)vj » (44)
J£2B - F? (1-02)2 (1)

e RT(1-u)v . 45)

1
v RZT(I—u)(l—uz)z | o)

VA*B? - F? (1—v2 )3
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- R4T22(1—u)2 vt .0 @
(A2B2—F2) (1—u2)(1—v2)

By comparing equations (34)—(40) and (41)—(47), it can be observed that the surfaces presented in
Figures 2, b and 2, ¢ have the same values of the coefficients of the second fundamental form (L, M, N),
only with the opposite signs, and the same positive Gaussian curvature (K > 0).

The geometry of the remaining two groups of three surfaces (Figures 3 and 4) can be investigated in
a similar manner.

3.2. Static Analysis

The shells with the middle surfaces shown in Figure 1 are subjected to a uniformly distributed load
g = 1 kN/m?. The load acts in the opposite direction to the fixed axis Oz.

It is assumed that 7= R = 5 m, constant shell thickness # = 7 cm, elastic modulus of the shell material
E»=32500 MPa and Poisson’s ratio v = 0.17. The shell is fixed at the base along the contour z = 0.

It was previously established that the surfaces in Figure 1, and 1b are identical, despite being
constructed differently by the process of moving the straight generators within the geometric frame. Thus,
the static analysis is performed for two cases of the middle surface: cylindroid (Figure 1, @) and cone
(Figure 1, ¢). The finite element models are developed in SCAD v21 software for the two cases of shells
and are depicted in Figure 5, including the directions of curvilinear coordinates u# and v. The geometry of
the models is defined by parametric equations (10) and (12) respectively. The meshes of FE-models consist
of plane shell elements.

Figure 6 shows the exaggerated deformed shapes of the analyzed shells under the applied vertical load.

Figure 5. Finite element model:
a — shell with cylindroidal middle surface; b — shell with conical middle surface
S ource: compiled by Valery Karnevich.

-----

Figure 6. Deformed shape:
a — shell with cylindroidal middle surface; b — shell with conical middle surface
Source: compiled by Valery Karnevich.
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The left-hand sides (a) of Figures 7-12 demonstrate the computed strength parameters of the shell with
the middle surface shown in Figure 1, a. Correspondingly, the right-hand sides (b) of Figures 7—12 show the
computed stress-strain state parameters of the shell with the middle surface shown in Figure 1, ¢. Vertical
displacements (Figure 7) are positive in the upwards direction. Normal stresses N. and N, (Figures 8-9)
are directed along coordinate lines u and v respectively; positive values of normal stress indicate tension.
M, and M, (Figures 10-11) represent bending moments, which act in the sections orthogonal to coordinate
lines u and v respectively and are calculated as moment per unit length of these lines. Equivalent
compressive stress (Figure 12) is computed as von Mises stress.
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Figure 7. Distribution of displacements along z-axis (mm):
a — shell with cylindroidal middle surface; b — shell with conical middle surface
Source: compiled by Valery Karnevich.
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Figure 11. Distribution of bending moments M, (kN-m/m):
a — shell with cylindroidal middle surface; b — shell with conical middle surface
Source: compiled by Valery Karnevich.

§.515 0.548 6.69
28.822 6.69 12.831
52.129 12831 18973
75435 18.973 25114
98.742 049 25114 |31.256
122.049 145.356 31.256  [37.397
. 145.356 168.663 37397 |43.539
168.663 191.97 43.539  [49.681
191.97 215.277 49.681 |55.822
215277 [238.584 55822 |6L.964

3

y 4 X

a b

Figure 12. Distribution of equivalent von Mises compressive stress at the middle surface (kN/m?):
a — shell with cylindroidal middle surface; b — shell with conical middle surface
Source: compiled by Valery Karnevich.

4. Discussion

This paper shows the construction of 4 groups of three surfaces, based on the previously obtained
analytical and parametric equations of surfaces with the geometric frame of three superellipses. All 12
surfaces contain a circle as one of the plane curves of the frame. The presented surfaces are visualized
graphically (see Figures 1-4) for better perception by architects and engineers. Using the methods of
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differential geometry, the detailed analysis of 6 algebraic middle surfaces of shells was performed for the
first time. As a result of the geometric analysis, two surfaces in one group of three surfaces (see Figure 1)
came out identical, and in the case of the other group (see Figure 2) all three surfaces are geometrically
different. In the opinion of the authors, these surfaces can be taken as a basis for the shapes of civil and
mechanical engineering structures. At least, these surfaces can be in the reserve of surfaces waiting for their
implementation [26] within the framework of one of the modern architectural styles. The number of new
forms of thin shells can be significantly expanded by taking fragments of different superellipses as the plane
curves of the geometric frame [27].

The comparative static analysis of two thin shells (see Figure 5), the middle surfaces of which belong
to one group of three surfaces with identical frames, was undertaken to provide insight into the structural
differences. It is clear from the deformed shapes (Figure 6), displacement distributions (Figure 7), stress and
moment distributions (Figures 8—12) that the behavior of the two shells with the same dimensions, material
and applied static load differs drastically. All distributions of the strength factors in the circular cone are
rotationally symmetric. In the cylindroid, these distributions are symmetric about the radial edges of the
shell, which lie along the x and y axes. The maximum vertical displacement of the cylindroid is about
8 times higher than that of the cone (see Figure 7). The maximum stresses and moments (see Figures 8—12)
are about 3—4 times greater in the cylindroid. The greatest normal stresses along curvilinear coordinates u, v
in the cylindroid concentrate at the bottom of the radial edges (see Figure 8). The normal stresses in the
circular cone are more linearly distributed and are larger near the circular base (see Figure 9). Moreover, the
cylindroid shell has areas of tensile stress, whereas the cone exhibits pure compression. The maximum
bending moments in the cylindroid concentrate along the radial edges (Figure 10). The bending moments in
the circular cone are slightly greater near the base (see Figure 11), but are very small overall. It should be
noted that the values of the strength factors along curvilinear coordinates u, v cannot be compared directly
for the two shells, since their curvilinear coordinate grids are different (Figure 5). Hence, the distributions
of von Mises compressive stress were obtained for the two shells (see Figure 12). These equivalent stress
distributions roughly locate the dangerous areas of the shells.

5. Conclusion

Developments in mechanical and civil engineering require new more efficient solutions. One possible
method of improving the load-bearing capacity of shell structures is modification of their geometry. This
paper examines thin shells, the middle surfaces of which are defined by three plane curves of the geometric
frame: a circle in the horizontal plane and two superellipses in the two vertical planes. It is shown that by
varying the values of the exponents of the superellipses, it is possible to obtain a variety of outstanding
shapes.

1. The method of defining the geometry of surfaces by using the curves of their frames allows to obtain
a group of three surfaces — one for each curve of the frame. Further geometric analysis is required to
determine the differences within the group. Some surfaces within a group may be identical, and in the other
group some may share particular geometric characteristics, but be different overall, as confirmed by the
findings in this paper.

2. It is shown that shells with geometrically different middle surfaces, but defined by the same frame,
exhibit completely dissimilar behavior under static load. The presented static analysis of the two shells
formed by the same main frame shows advantage of the circular cone over the cylindroid. However, a more
detailed analysis is required for selecting the optimal shell, by testing for different dimensions, material
properties and constraints. In some cases, material consumption, the simplest method of shell fabrication, or
enclosed volume may be taken as the optimality criterion, which can be potentially satisfied by particular
shell shapes demonstrated in this paper.

The analysis of available sources allowed to conclude that in the beginning of the 21st century the
period of decline of interest for shell structures and thin-walled shells was over. This happened owing to the
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appearance of new structural materials, expansion of the inventory of analytical, point, spline and frame
surfaces suitable for use as middle surfaces of shells, the development of more accurate calculation methods
and computer software on their basis, and most importantly there was an increased demand for the creation
of curvilinear large-span shell structures. These conclusions are confirmed by appearance of new
architectural styles, directions, and style flows in the recent decades. Most architects and designers believe
that curvilinear structures can become an alternative to traditional forms of buildings, while others, on the
contrary, believe that the curvilinearity of buildings will quickly bore the inhabitants.
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AHHoOTanus. YCTaHOBJIEHO KBa3WIMHEHHOE NPEICTaBICHUE HEIMHEHHOrO peoJoruueckoro ypaBHeHUs COCTOsSIHUS OETOHA, BbIBE-
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K AedopMalui TON3YyYeCTH Peaqu3yeTcsl O MPUPAIIEHUIM CTPYKTYPHOTO HAIPSDKEHUS! CHOCOOHBIX K CHIIOBOMY COIPOTHBIIE-
HUIO (Ppakiuii Ipy HeyObIBaIOLIEM HarpyKeHuu. s cTaperolero 6eToHa B OTIMYUE OT NPEIIECTBYIOIUX OIXO00B pealn3oBa-
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(yHKIMH cTapeHHs NMPOYHOCTH, MOAYJS YHIPYTOCTH M IOJ3Y4ECTH IMO3BOJSIOT CBEICHUE YPABHEHUS ION3Y4YECTH K JMHEHHOMY
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Abstract. A quasilinear representation of a nonlinear rheological equation of concrete state has been established, derived on the
basis of the concept of statistical strength distribution of individual fractions combined to form a structural element. In the
nonlinear formulation for ageless concrete, L. Boltzmann’s well-known principle of superposition of creep deformations is realized
by increments of structural stress of fractions capable of force resistance under non-decreasing loading. For aging concrete, in
contrast to previous approaches, the superposition of partial increments of deformations generated by increments in stress levels is
implemented. This leads to the correct consideration of concrete aging, clarifying the type of known rheological equations.
Quasilinear forms of rheological equations that are convenient in applications are given. The concept of the strength structure of
concrete and the identity of the aging functions of strength, modulus of elasticity and creep make it possible to reduce the creep
equation to a linear differential equation with constant coefficients. This simplifies, in particular, the solution of stress relaxation
problems, which are important in the calculations of structures for long-term safety.
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1. BBenenue

VYpaBHEHHSI MEXaHMYECKOTO COCTOSIHUS 3HAYMMBI B TEOPUU OETOHA, M UM TOCBSAIIEHO OOJIBIIOE KO-
4eCTBO paboT, OTPaXCHHBIX YacTUYHO B [1; 2]. DT ypaBHEHUS MPEACTABISIOT TEOPETUYECKHEe 000CHOBA-
HUS KCIIEPUMEHTAJIBHO BBISBICHHBIX MPH 3TAJOHHBIX HATPYKEHUSIX (DEHOMEHOIIOTHYECKHUX 3aBUCHUMOCTEH.
B HepaBHOBeCcHOM Tpolecce CUIOBOTO J1e(hOpPMUPOBAHUS CYIIECTBEHHYIO POJIb UTPAET SIBICHUE MPHUPOCTA
nedopMaIiy NPy MOCTOSIHHOM HAlpsDKEHUH, Ha3bIBAEMOE MOJI3YYeCThI0. YUeT MON3y4ecTH OeTOHa, ecTe-
CTBEHHO, MPUBOJIUT K PEOJIOTUYECKUM YPaBHEHHSIM COCTOSHUS. TpaJullMOHHBIA BBIBOJ STUX ypaBHEHUU
MCIOJIb3yeT NPUHLUI HAJIOKEHUS Ae(opMaluii U 3aKII04aeTcs B CYMMUPOBAaHUU B HEKOTOPHIA MOMEHT f

YACTUYHBIX pHpameHnii Ag,,. (1,7;) nepopmanyii nonsydecTy, MOPOkKIEHHBIX YACTHHBIMHA PHPAIIEHHSAMH
Ac(t;) HanpsokeHust G(T) B MOCIEIOBaTENbHBIE NIPEABLTYIME MOMEHTBI BpEMEHH T;. B uHEiiHON Teopun
MOJI3y4YEeCTH HUIeaJbHOro (HecTaperonero) 6eToHa MPUHIUIT HAJIOKEHUST U3BECTEH KaK MPUHLHUII CyIIep-

no3unuu JI. boneimana [3] — nedopmanus Ascr(t,rl-) OIpENENsIETCSl HAPSIKEHUEM Ac(rl-) U €ero mpo-

JOIDKHTENBHOCTBIO (£ —1T;) M HE 3aBHCHT OT Ac(r ]-) u (t— T ]-) npu i # j . BzaumonezaBucumocts aedopma-
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n—1
uuit A, (7,7;) IO3BONSET HAXOKACHHE OTBEYAIOLIErO NPUPALICHUIO HampsbkeHus Ac(1,fy)= > Ac(t;)
=0

nosHoro npupaienns Ae., (¢,4y) nepopmaimu nonsydectu cyneprnosuuueii (Hanoxennem) A, (¢,1;):
n—1 n—1
Ascr(t’tO):ZAgcr(l’Ti):ZCO(t’Ti)AG(Ti), (1)
=0 i=0
e Cy(2,7;) — Mepa moN3y4ecT! HIEaIbHOrO GETOHA B MOMEHT / NPH HATPY)KEHHUH B MOMEHT T; .

[Ipu nmocTosHHOM Moayie ynpyroctTu E mNnpupamieHHIo Ac(t, fp) OTBEYaET MPUpAIIEHHE MIHOBEHHOM

nedhopMarum:
n—l AG T:
Aoy (1tg) = 3 20001, )
iz £
Cormmacho (1) u (2) moryauM paBeHCTBO
n—1 1
AS(t,to): ZI:E+C0(t,Ti):|AG(Ti), (3)
i=0

BbIpakarolliee MPUHIMI HaJIOXKeHus Jedopmaliuii B HacaeICTBEHHOM Teopuu monsydectd bonbliMaHa
— Bonsreppa.
[IpenenbHblil nepexon B (3) MO3BOJSAET MOIYUYUTh BBIpaKEHHUE

As(t,t@=%+j.CO(t,r)a’o(r)_ @

fo

1
JloGasnenne k Ag(t,t) nepopmarnyuu {E +Co (2,7 )}G(to) MIPUBOJIMT K YPaBHEHUIO

o(1)

elttg) ==+ }Co(faf)dG(T)JfCo(fJo)G(fo),

peodpasyromeMycs K BUAY

M—EG(T)—aCOa(:T) dr . )

)

e(t.ty)=

I[J'IH CTapCrouIcro OeToHa IMPUHUMACTCA MEpa MOJI3YyICCTU
C*(1,7)=0(1)Co(1,7),  Co(1.1)=Co(==28) f(1.7), (6)

e O(t) — dynkums crapenns; Cj(e°,28) — npenenshas mepa nomsydectu Co(7,7) npu £y =28 cyTok;

f(2,1) — dyskums Hakorenns aeopmaumii MOI3y4ECTH, IPHYEM

f(t1)=1- ke Y(%0) ,

e 0<k <1,y — sMOupuuecKuid KodPPHIUEHT.
3aBUCHMOCTh (QyHKIUU f (t,t) OT apryMeHra (t—t) ONpenenseTCs NPUPOAOH 3aMa3gbIBAOIINX

nedopmariii mon3y4ecTH.
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Pemennem nuddepennnanbHOro ypaBHeHUS

%

dc” (1,7)

dt -1|¢

(=7)=C(2,7) |, )

OTpPaKAIOIIEro MPOIOPIIHOHATBHOCTH CKOPOCTH 3aTyXaHHs Ae(opMaruii mon3ydecTu ee qeQUIuTy, SBIsSET-
cs1 QYHKIHS

f(8,7) —1-¢ M), (8)

Bameuanue. onaras k<1 B hysxumn f(¢,7), npn T=¢ noryunm
C*(t,)=O(1)Cy (=,28)(1- k) 0.

DTO COOTBETCTBYET HAJMYMIO TaK HA3bIBAEMOM KPaTKOBPEMEHHOM IMOJI3YY€CTH, YTO MPOTUBOPEUUT UHEPLIM-
o o *
OHHOI PHUPOJIE 3ama3bIBaONNX AeopMaruii monsydecti. Bmecre ¢ Tem coornomenne C (7,¢)# 0 xop-

peNUpyeT ¢ 3KCIEPUMEHTAIBLHO HaOII0jaeMbIM HaYaJIbHBIM BCIUIECKOM KPUBOM MOJ3y4YecTH, paccMaTpuBa-
€MBIM KaK CJIeJICTBHE OBICTPO HATEKAIOMIEH MOJI3ydeCTH.

B [4; 5] ans craperomiero 0eToHa 1Mo aHAJIOTUU ¢ ypaBHeHHeM bonbimana — Bonbsreppa npennaraercs
JUHEMHOE PEeoIOTnYeCcKoe ypaBHEHUE

—ﬂ—jc(t)—aca(:r)dt. )

G(t)

A.A.T'Bo3neB, mpUHUMAsl JIMHEHHYIO 3aBHUCHUMOCTH JJIi MTHOBEHHOW AedopManuu sel(t)=—,

(1)

t
oy [ * o
ToJIarajl, 9To TOJ3y4eCTh COCTOUT W3 JIMHEHHOW YacTh scr(t,t0)=IC (t,7)do(t) u menumeitnoi uacTu
%

t
sg (t,10)= fL(t ,7,6)do (1), mopokaeHHO# CTPYKTYpHBIMU MOBPEKIACHHsMH [2].

)
B.M. Bonnapenko, Hapsiay ¢ nedopManuei mon3y4ecTd €., (t,to) , TToJIarajl HeIMHEWHON 3aBUCUMOCTh

¥ MTHOBEHHOH Jiedpopmanmn €, (¢) ot o(¢) u BbIBeN HeMHEIHOE peoornyeckue ypasHenue [1]

oC (t’r)dr,
ot

Ser (1) (10)

e(t.10) =

tae S, (t) u S, (t) — HenuueiHble GyHKUMM HANPSDKEHWH, TOPOKIAIOIIME MIHOBEHHBIE M 3aI1a3/IbIBAIO-

mue gegopMalui COOTBETCTBEHHO.
B [6; 7] Ha ocHOBe KOHLENIMHY IPOYHOCTHOM CTPYKTYypbl O€TOHA MosyuyeHa MoAU(UKAIUS TPUHIUIA
cynepnosuuuu JI. bonbiiMana ¥ BBIBEIGHO HEIMHEMHOE PEOJIOTMUECKOE YPaBHEHHE C €IMHON Ul MTHO-

BEHHBIX M 3aNa3/blBAIOIKX Aepopmanuii pyHKumer Hanpsokenuid S(¢) .
CormacHo KOHLEMIMHA MPOYHOCTHON CTPYKTYphl BeanunHa S(T) MPEACTaBIsIeT HANpsKeHue Gy, (1),

CIIOCOOHBIX K CHJIOBOMY CONPOTHBIICHUIO (paKiMii OETOHHOTO AJIEMEHTa, HA3BaHHOTO B [6] CTPYKTYPHBIM.

Tpu 51oM Gy (1) = 59 (t)o(1), s° (t) sBisieTcs HenMHEHHON (yHKIHEH yPOBHS HAPSDKEHHIT M =—;ET)) u
T

BBIBOJMTCSI HEJIMHEMHOE PeoJIorn4ecKoe ypaBHeHue [ 7-9]
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S%()o(r) L aC”" (1,7)
ttg)=——————=—| S ——dr. 11
S( 0) E(t) Z_{) (T)G(T) ot T (11)
[Ipu OONyIEHUM PABEHCTB Sel(t)=S£1(t)0( t)u S, (1)= Sg,(T)G(T) ypasuenue (10) nmpusogurcs
K BUJLY

SY( ac™ (¢,
e(t,1) == t(t) j #dr. (12)

B npuoxenusx ynoOHa KBasWIMHEIHas (opma HEJIMHEHHBIX YpaBHEHMH, O3HAYaIoOIas MpezcTaBiie-
HUe JedopMaLuu s(t,to) KaK IIPOU3BEICHUE TOPOKICHHON HAPSKECHUEM cs(r) nedopmanuu sel(t,to) Ha

MHOXUTEIH KBa3UWJIMHENHOCTH S 0 (t) :

8(t,t0)=3’0(t)0(t)[ : -j“(’) ac*(t’r)dt}. (13)

E(t)

W3 pasencts (12) u (13) siBcTBYeT, 4TO S0 (¢) ectb peleHne ypaBHEHHS

. 1 to(r)aC (1) | SY(1)s(r) L aC” (1,7)
5%(r)o(t - dt |==¢ ~[s — . 14
(t)o( )[E(t) I{G(t) poll 20 r{ or (1)0(1)—— (14)
B [10; 11] nonarator S (¢)=1+V,[n(¢)]" £) =147, [n(6)]", §°()=1+V[n(:)]". Mapa-
Metpsl ¥ u i onpenensior coracHo (14) npu G(r):R u o(t)=vR, 0,6<y<0,8 u npexbABIAIOT pa-
BCHCTBO
{1+I7[n(t)]ﬁ1}0(t)
e(t,19) = (15)

Efp (1,29)

KaK KBa3WJIMHEWHOE MPeICTaBICHNE HEIMHEHHOTO ypaBHeHus (12),

- o

-1
d’C:| — BpEMEHHbIN JINHEHHBIA MOYIb Je(OopMalIHii.

A

®dynkuus [ [n(t)] =1+ I}[n(t)]m SBISeTCS. TPy0GOil ammpoKcHManuell pemenHns S° (t) ypaBHeHus

(14), n paBenctBo (15) He BeIpaxkaeT KBa3WJIMHEHHOE MpeacTaBieHue ypaBHeHus (12).

Taxum 0Opa3oM, BO3HHUKAET 3a7a4a KOPPEKTHOTO KBa3WIMHEHHOTO MpecTaBlIeHus ypaBHeHmH (11)
u (12).

VYpaBuenue (9) B [4; 5] BBIBOAMTCS MO TPHUBEACHHOW BBINIE CXEME HAJIOKECHHEM aedopMariuii

*
Ag,, (1,7;)=C (£,7;)Ac(7;). IIpu 5TOM He yUUTBIBAETCS MPOYHOCTH GeTOHA R(T;) B MOMEHT IIPUJIOKEHNS
HaIpsiKSHUS Ac(ti) , UTO MIPUBOJIUT K HEKOPPEKTHOMY siApy moi3ydectu B [12; 13].

3ajaya yTOYHEHHUS M3BECTHBIX ypaBHEHUI Moaudukanueil npuHumna cynepnosunuu JI. bBoneivana
peanu3yercs B KOHTEKCTE.
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3ameuanue. HemnHelHblE OTHOCUTENHHO (5(’[) YpPaBHCHUA COCTOSSHUSA OeToHA SBISIOTCS JIMHEH-

HBIMU OTHOCUTCIIBHO O ¢4 (’C) , 1 B PCIIAKCAITMOHHBIX 3aJla4aX HAXOKXKACHHE Ggﬂ. (l ) OCYHECCTBIIACTCA U3BECT-

0 0| o(2) _0
HBIMH METO/IaMH, & HaIpsDKEHHEe G ({) ONpemensercss peuleHneM ypasHeHus S- | —— |o(t) =0y, (1)
R(1)
[14: 15].
UnenTiaHOCTh (QyHKIMI CTapeHust MEPBI MOJI3YYECTH U MOMYJIS YIPYTOCTH TIO3BOJISAET CBEJIECHUE HMH-
TETPANBLHOTO YPABHEHHS COCTOSHUS K JIMHEHHOMY MU (epeHIIMATbHOMY yPABHEHHIO C MOCTOSHHBIME KO-

o t
>ddummentaMu oTHOCHTENBEHO JAedopMamun €, (f) :L(). Pemenne 82, (t) sToro ypaBHeHHs ompese-

E(t)

mwer % (1) = E(1)5 (1),

2. JIuneiinple peojioruyecKue ypaBHEeHHsI COCTOSTHUSA

DU3MKO-MEXaHUYECKUE TPOLECChl BICKYyT W3MEHEHHME IoKasareneil mpounoctu R(t), ympyroctu

*
E(t) nmepsl nomsyuectn C (1,1).
Ha ocHoOBe skcriepUMeHTaNbHBIX JaHHBIX [16] BbIABICHA OOIIHOCTH (DYHKIMH CTApEHMs STHX MOKa3a-
TeJiel U YCTaHOBJIEHO PaBeHCTBO [17]

@(r)=%. (16)

[py MocTosIHHOM Ha MHTEpBase (7,T) Hanpshkennn o(1)

tor (1) =0(2) Cy (1.7)o(x).

WIN
ter (1,1)=Co(1,7)6(1), 6(1)=0(1)o(1), (17)
u cornacHo (11)
fer (1:7) = Co (1.7 R(28)n(3). (18)
rae 1(1)= o(v) — YPOBEHb HaNpPSUKEHUH, G(T) — NMPUBEIEHHOE K MOMEHTY T €TI0 NMPUJIOKEHHs Hampsi-

R(7)
xenue, 6(t)=R(28)n(1).
Tpuparienue yposHs Hanpsikenuit A7(T;) moposkiaet npupaiienue aedopmaruii monsyuecTy
A, (1,7;)=Co(1,7;)AG(7;) = Co (1,7 ) R(28) An(T; ) . (19)
Tonarast B IMHEHHOI MOCTAHOBKE 3aBUCMMOCTb NPUPAIIEHHS JIUIIL OT BeuduHbl AG(T;) U ero muim-

TeIBHOCTH, MONyYrM aHanorugHoe (19) paBeHCTBO

n-1
Ae,, (1,t9) =2 Co(1,7;)AS(T; ), (20)
i=1
a Iepexo/Is K peIeny:
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A, (t,ty)= jco (t,1)d5(t [CO (t,T)R(28)dn(1). 21)
fo )

Tockoneky d6(t)=0(t)do(t)+0(1)O(1)dr, 10

A, (tty)= jc t,7)do(t jcom o(1)0(1)dx. (22)

0} fo

WHTerpupyst nepBelii UHTETpaJl 10 YacTAM, IOIYYUM

N LA (t1) |t .
Ae,, (1,19)=—C (t,9)o(19) - [o(7) ™ di+ [ Cy(t,1)0(1)O(1)dx. (23)
ly lo
YuuTeIBas, 4TO
Lo ac(t, ! AC, (1, L
[o(7) (£.7) di=[0(1)o(1) ol T)a’r+J.C()(l,r)ci(r)G)(r)dr
h Jt h Jt h
0 0 0
1 ypaBHeHHe (22), umeeM
aC
Ae,, (t,5)==C" (t,y)o j@ )%dr,
fo
a, 100aBJIsIsl HAYAIbHYIO 1e(OPMALIHIO, TOTYYHM
L aCy (¢,
sc,,(t,to)z—f@(r)c(r)ﬂdr. (24)

ot

to

Cymma &(t,ty) =€, (1) +¢.,(t,1)) npencrabiser coboii IMHEHHOE PEOTOTNIECKOE ypaBHEHHE COCTOSI-

HUsl OETOHA HACJIEACTBEHHOM Teopun cTapeHus. Takum oOpazoM,

! dC, (1,
e(t,1) _EL—j %dr. (25)
1

3ameuanue. Jlns mepsl nomsydectu C (2,71)=0(1)Cy(2,7) ypaBHeHue (9) IPEACTABICHO B BHAC

s(t,tO)Z%— j @(I)G(r)acoa—(:ﬂdr— .tf Co(t,7)0(1)O(1)dxr. (26)

Paznuune ypaBuenuii (9) u (25) Bo3HUKaeT U3-3a yyeTa IMpU BBIBOJIEC YpaBHEHUs (25) HE TOJIBKO BEJIH-
YMHBI TIPUpPAIIEHAs HanpsokeHust AG(T;), HO U npodHocTH R(T;) B MOMEHT €ro MPHIOKEHHS. DTOT ydeT
pean3yeTcs IPH HAIOKEHHH YaCTHYHBIX IpUpatenuii nedopmarmn nonsydectn Ae,,. (7,1;) cormacHo pa-
BeHCTBY (19), BeIpaxkaromeMy Moaudukanuio npuHuna cynepnosuuuu JI. bonsumana [3].

Bameuanue. Jus craporo 6ertona Benmuuaa O(1)=0 u I0MycTUMO IIPEHEOPEYb TIOCIETHAM Cla-

raeMbIM B ypaBHeHHH (26).
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Hapsany ¢ npuMeHeHneM MpUHIUIA HAJOXKEHUS YaCTUYHBIX NMpHpAIleHU aedopManuii moisydecTH
BeNU4YMHYy Ag,, (t,to) MOKHO ONPEACNUTh IyTEM HHTETPUPOBaHUs oiaHoro auddepenimana [14]

[ (x)o()|=C" (1 )do() o) 2D e LT @7
bynkunn ¢, (1,1)=C (1,1)0(1).
L« * ! aC*(l,T)
Tockomsky [C (1,t)do(t)=—C (t,t9)o(1p)— jc(r)a—dr , ¢ y4eToM (8) B pe3ysbTare Mmoxydum
0
% ly

aCO (t,T)
ot

Moy (110) = =C (110 )o(10) ~ [ ©(2) (1) 22
o)
E(1)

3amevyanue. [Ipeanaraemslii cnoco0 npeacTaBisieT Apyroi MOIXo AJs BbIBOJA YPAaBHEHUS COCTO-
As(1;)

E(1)

u no6asnenuem nedopmaruii C i (t,to )G(to) u , IPUXOJMM K ypaBHEHHIO (25).

aHus (25) m  ¢dopmanbHO peanM3yeT IPUHLUI HAJOKEHUs YacCTHYHBIX JedopMaruii
&) (t,rl- )R(28)A77(rl-) C YY€TOM 3BOJIFOLIUU MOIYJISl yIIPYTOCTH E(t) Y IPOYHOCTH R(t) .

3ameuanue. lpencranenmem  medopmammii  &(7,7)= {L +C' (1, r)} o(t) B Bume

E(1)

+C (I,T):|G(T) BBOAMTCS Mepa nomsydectd C(4,7), He yIUTHIBAIOIIAsS SBOMIOLMIO MOYIIS

s(z,r)z[E(lt)

ynpyrocti E(1). DTo 06CTOATENHCTBO BIEYET CIEAYIOUIEE COOTHOLICHAE MEXKAY MEPamMH IMOJI3y4eCTH

c" (t,7) m C(t,7):

* 1 1
C (l‘,T)—C(l‘,T)'l’E(T)—m. (28)
Cornacho (28) ypasaenue (9) npuoOperaer Buj
_9(0) o2 g 2|
s(t,to)—E(t) tj(')cs(r) . dt t{cs(r)aI 207) dr. (29)

Hens0e)xxno Bo3HHMKaroliee MpH IMOACTaHOBKE cooTHomieHus (28) B ypaBHenue (9) ciaraemoe

t
2| 1
Jo :_IG(T)G_{T} dt B pabote [12] omrO0YHO OOBSIBICHO JHIIHKM, YTO MOCIYXKHIO TOBOIOM IS
T T
i

3asABJICHUA ((HpI/IHLU/IH HaJIOXKCHHA KaK OCHOBOIIOJararonias omnobKa B TCOPHHU ITOJIZYUCCTH. . .» [13]

3. HesqiuHelinble peoJioruyeckue ypaBHeHHsI COCTOSTHUSA

CornacHo IByXKOMIIOHEHTHOW mon3yuyectd 1o A.A. ['Bo3ieBy [2] mpu 0HOOCHOM HaIPSIKEHHOM CO-
CTOSTHUU
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G(t) ! a t Omax
s(t,t0)=T—jo( - [o(t 9l 4 j f(o)F[T(o,t)]ds, (30)
t) | E s
0
rie f (0) — HeJWHEeWHas (QYHKIUS HaNpsDKeHuH, F [T (cs,t)] — (QYHKIUS OT CyMMapHOW JITUTEIbHOCTH

T (o,t) HanpsKEHMI K MOMEHTY £ .

B [4] nns HenuHENHOM Teopuu NpeaaraeTcs ypaBHEeHUe

aC(t,1)

[ (T)}dt—t{f[a(t)]a—;dt. 31

e(t.p ‘%—tf

Henunelinoe peonornyeckoe ypaBHEHHE COCTOsHUsS OeToHa BIiepBbie BbiBen B.M. bonmapenxo [1].

[Ipencrasnennsie B (10)  QyHKIMU Sel[n(t)] u Scr[n(r)] B BHIE Sel(n):Sgl(n)o(t) u

S (m)= Scor (n)o(t) mpeobpasyror ypasuerue (10) B hopmy
59 (m)o(?) E)C*(t,r)
tty)=—"——"t—2 T)———"dr. 32
(t0) =55 jsy o (32)

)

B ommume oT TpaAMIOHHOTO NMOAX0a OETOH paccMaTpUBAETCS KaK OOBEMHEHHE TBEPIBIX (paKIuid
(3epeH), COeAMHEHHBIX YNPYTHMHU CBSI3IMU — IIEMEHTHBIMH BOJIOKHAMHU CO CTaTUCTHYECKH PaCIpEIeieH-
HBIMH TIPOYHOCTSIMU. KOHIIENIINST POYHOCTHON CTPYKTYpPBI TIO3BOJISIET 0OOCHOBATh MPUHIUI HAJIOKCHHUS
nedopMalii B HeTMHEWHOM mocTaHoBke [6; 7].

CTpyKTypHbIE OBPEXK/IEHNS [IPH HeyObIBatoLIeM HarpyskeHud N (T) MOPOKIAIOT IepepactpeieieHne

HaHpﬂ)KeHHfI C pa3pyuI€HHbIX CBsI3ell Ha CIIOCOOHBIE K CHUJIOBOMY COIIPOTUBJICHHUIO LICJIBIC CBA3H, YBCIUYU-
Basg UX PACYCTHOC HAIIPAKCHUEC

N(7)
=— 33
()= (33)
J0 TaK Ha3bIBACMOI'0 CTPYKTYPHOI'O HAIIPSIXKCHUA
N(1)
GSZ}" (T): A(T) » (34)

rne A(T) — mIomans HOPMATBHOTO CeYeH s IENbIX (Pab0MX) B MOMEHT BPEMEHH T CBs3el M (paKumii.
Cormacho (33) u (34)

o(1)=5(1)o(). (35)

Oynkms S 0 ()= OTIPE/IENISET MEPY YBEJMYEHHs PACYETHOTO HANpPSUKEHHs G(T) 10 CTPYKTyp-

A
A(t)
HOTO G, (T) B IpoLecce MOCTENEHHOTO paspyLIeH s 4acT cBsizeil. [I0CKObKy paspylueHune Kaxao0i CBsi-
31 B MOMEHT T 3aBHCHT OT €€ IIPOYHOCTH B 3TOT MOMEHT, CJI€I0BAaTEIbHO, Mepa s° (t) sBsiercs GyHKIMEH
o(t)

R(x)

OT ypOBHS Hanpsvkeruii 1(T) =
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Hampuwmep, no I1.1. Bacunsesy [18]:

$0(r)=1+7| 2

; 36
R(x) (36)

rae V u m — smnupuueckue kodpuimeHTsl.

[Tepepacnpenenenue HaPsHKCHUH BIICYET HETMHEHHYIO 3aBUCHMOCTD JtehopMartuit S(T) OT HarpsiKe-
HUH G(T) M B3aMMO3aBUCHMOCTh YAaCTHYHBIX MpHUpaleHuii negopmanuu nomydectu Ae,, (7,1;) [6], u6o
3 GEeKT KaKI0TO AOTPYKESHHS Ac(t,-) oTpenenseTcs Ioaabo padbounx Gpaxiiuii A(ri) , 3aBUCSAILIEN OT
BCEX MPEIUIECTBYOUINX JOTPYKEHUN Ac( ) J<i.

Peonornueckoe ypaBHEHHE ONMUCHIBACT HAMPSKEHHO-I€(POPMUPOBAHHOE COCTOSIHUE IENIBIX Ha IMPO-
MEKYTKE (to,t) cBs3el U (Qpakiuil, 00beJUHEHNE KOTOPbIX 00pa3yeT pabouyto 4acTb V; OETOHHOrO 3Je-
MeHTa V.

pupauenne Ao, (T;) He paspymaer cBsi3u U Gpakuuu V,, ¥ HMEHHO 3TO BIIEYET HE3ABHCHMOCTh

npupaiieHuit 1epopmMannii Moji3y4yecTd B MOMEHT T; :

Ae,, (1,1;)=Cy(1,7;) Ao, (1;) (37)
OT OCTaIbHBIX TIPUPAIICHHIT B MOMEHT T; (i# j), a moToMy
£cr (1:00) = Zco( i) A0 (17). (38)

Cootnomenue (38) sBnsercs aHanorom npuHiuna HanoxeHus: JI. bonbpiimana B HennHeWHOHW mocTa-
HOBKE M ITPUBOAMT K YPaBHEHUSM COCTOSIHHS JUIsl HECTAPEIOIIero OeToHa

‘ AC, (1,
o) = 0o (07 )
nIn
0
g(z,to)=m—jso(r)c(t)acoa—i“)dr. (40)

i
Ilo ananoruu ¢ nMMHENHON NOCTaHOBKOW MOJyYMM HEJIMHENHHOE ypaBHEHUE COCTOSHUS AJIS CTaperolle-
ro OeToHa:
t
s (1) dCy (2,7)
str 0\b
6(1.19) === [ O(t) 0 (1) =2~ dr. (41)
E(t) at
lo
PacueTHast MOJenb CTPYKTyphbl OETOHA B CTaTUCTHUYECKOW TEOPUH MPOYHOCTH Mpe]CTaBiseTcs Habo-
POM 3€peH, COEIMHEHHBIX HEPAaBHOBECHBIMU CBSI35IMH, IPOUYHOCTb KOTOPBIX SBJSETCS CIIydallHOM BeJINYU-
HOH. OTa Mozienb BocxoauT K BeitOymy [19] u pa3Buta B [20; 21].
l'unoresa, 4T0 B npowecce Harpykerust N (1) cBsizu 1eOpMUpPYIOTCS IMHEHHO ¢ OAMHAKOBBIM MOJLY-
JeM yIpyrocTH, IPUBOAUT K JTMHEHHON quarpaMMe C—&. DKCIIepUMEHTAIbHbIC JHarpaMMBl, sl TOCTpOe-

HHSA KOTOPBIX UCIIOJB3YHOTCA HAIIPAXKCHUA G(T) , HC 3aBUCAIIIHUEC OT ILIOIIadn pa60q1/1x CBs3eH A(T) , IIOJIy-
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YAIOTCs HEMMHERHBIMHU. 10 KOHIENIMA IPOYHOCTHON CTPYKTYPBI GETOHA 3aBUCHMOCTD O, (¢) u €(t) sB-

(1)

JIA€TCs JIMHEMHON U OTHOILICHHUE S(I ) = Ha Juarpamme u3o0pakaeTcs MpsSMOM, Ha3BaHHOW B [22;

23] (hukTUBHOM 1HArpaMMOIA.
3ameuanue. C NO3UIUU IPOYHOCTHOHN CTPYKTYpbI OETOHA 3Ta NpsiMas NPECTaBIAET rpadHIECKyI0

MHTEPNPETALMIO Ie)OPMHUPOBAHHS ENbIX Ha oTpeske [0,7] cBsi3eil Mpu HeyOBIBAKONIEM HAIDYKEHHUN.

3ameuanue. [lpu pasrpyxenun paboTarOT JUIIb IIEJIbIE CBSI3U U HKCIIEPUMEHTAIBHO MOCTPOCHHBIN
napayuienbHeid puKTHBHON (cormacHo [22; 23]) mumarpamme OTPE30K TMOATBEPXkIACT JTHHEWHYIO 3aBHCH-
MOCTb G (1) or (7).

4. KBasuimnHeiiHble npecTaBJIeHNs YPABHEHHUI COCTOSHUA

aC (2,7) _ (1) oC” (¢,7)
ot ot

Cornacro paseHctBam (7)o (1) u o, (1)=5(1)o(t) ypauenns (25) u

(41) mpencraBiieHbl B BUJIE

e(t,t9)=0(t) E(t)+I (42)

=" 9 ! T
e(t,t9)=5"(t)o(1) E(t)+t0 (1)l du|. (43)

~—
Q
~

Beenem BenuunHb O; (t,to) u O,y ( t,to) , TIPEJICTABIAIOINE COOOH JIMHEIHbIE ¥ HEeTMHEIHbBIEe TTO/IaTIIH-

BOCTH COOTBETCTBEHHO. Torja Ha OCHOBaHMU ypaBHEHMH (42) u (43) nonyduM BpeMeHHbIE YIPYTroIIacTH-
YeCKHE MOIYJIU B TMHEWHOW W HENNMHENHOMN MTOCTABKAX:

-1

t *
B (1) =e | +Ic(r)ac (£1) | )
8 (t.59) | E(1) tocs(t) ot
t 0 oC” B
B (1) = e = | — +jSO(T)G(T) €Ut g (45)
8, (t.79) | E(2) o 8% (1)a(?) ot
VYpaBHenuto (25), npencTaBIeHHOMY B BUJE
1 o(t) aCy(2,7)
t,tg)=o(t) ——| O ——dt|=0(1)0;(1,ty),
8( 0) G() E(t) t_([ (T)(S(Z‘) ot T G()l( 0) (46)
COOTBETCTBYET BPEMEHHBIN JTUHEHHBIN MOAYIb
-1
! aC, (t,
E (1) =~ — = l—j@(r)G(I)Mdr : (47)

8 (t.ty) | E(t) o(t) ot

fo
a B HEIMHEHHON MTOCTAaHOBKE — BPEMEHHBIA MOAYITh
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-1

§%(t)o(t) 9Cy (1,7) al 48)

S%(t)o(r) ot

505 oy 71O

fo

CornacHo (43) u (45) npu cyneprno3uly 0 IPUPALLEHUM YPOBHS HaPsKEHUH

(
(tslo) = — , (49)
ul (6io)
a MpH CyNEPIO3ULMHU 10 IPUPALICHUSAM HAIPSKEHUN
NOEI
s(mo)=%- (50)
ET (1,1))
IIpencrasienus nepopmanuu s(t,to) B HEJIMHEHHOW ITOCTaHOBKE
S%()o(t
o(t19) =) (51)
E” (1,4)
S%()o(t
e(t,09) = 61(9 Jo(?) (52)
E (t.19)
C COOTBETCTBYIOIMMHU (DYHKIUSAMU KBa3UIMHEHHOCTH §0 (1) m 50 (¢) Ha3BIBAIOTCS KBA3WINHEHHBIMH.
IIpu noCTOSHHOM Ha OTpE3Ke [to,t] HapsDKCHUH G(‘L’)
$%(1)=5"(1). §°(1)=5"(1). (53)
a npu HeyObIBaromeM 6(T) 9T GYHKIMH ONPENENAIOTCS U3 PABEHCTB
$%(1)3(1,10) = 8" (6)3, (1.10) S (1)3 (1,10) = 8" (1)8, (1,00 (54)
Cornacho (54) u paBeHcTBaM (42)—(45)
5 EP (1, . EP (1.t
So(t)zso(t)—fep( 0), §0(r)=5s° z—’ep( o). (55)
Enl (t’to) Enl (t’t())

lpu weyGsBaromem Hanpsoxennn (1) uveem S°(1)<S°(¢), a motomy 8, (1,4)) <, (6,ty) m

E® (t,t9)> E{F (t,1y) . Ananormano nonyunm EF (1,t9)> E{¥ (t,4y) u ¢ yaerom (55)

S0(6)<8°(2), S°(0)<S°(z). (56)
CornacHo S’O(t)<S0(t) npescTasnenue &(t,%)) B BHIE

$°(1)o(1)

5 57
Efp(t,to) ©7

e(t.tg) =

MMPpEABABIACMOC KaK KBaSHHHHCﬁHOC, MoJIy4acTCs U3 KBa3UIUHEHHOIO
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(58)

samenoit $°(7) ma S (¢), uto B ey (55) IKBUBAIICHTHO 3aMeHe ET (1,ty) na E* (1,19) .

PagencTBoM (57) cormacHo (55) naercs OLEHKa BelMUnHbI €(,%)) CBEpXy.

m
3ameuanue. [lpu So(r)zSO[n(t)]=1+V{6(r)} paBeHcTBO (57) mpu HANPSDKEHUSIX G(T),

R(7)
6mu3kuX K R(T), SBISETCS anNpOKCUMALMEN KBA3UIMHEHOTO IIPEICTABIECHHUS.

Vnes KkBaswiIMHEHHOTO mpezcTasienus aedopmauun €(t,)) WIS COMIACOBaHMs YPaBHEHHH C DKCIIe-
pPUMEHTAILHBIMH NaHHBIMA NTpuHAICKUT FO.H. PaboTHOBY [24], pemiokuBieMy I HecTaperomero oe-
ToHa (E(t)=E, ©(t)=1) ypaBHeHue

t) L oC, (t,
S[s(t,to)]:ﬂ— jc(r)ﬂdr. (59)
E o Jt

3ameuanue. B [24] npuHnMaeTcs OXMHAKOBOCTD (YHKIMH HeNMHEHHOCTH HanpsokeHud Sg (1) u
S¢.(t). DTo KOppeIUpyYeT ¢ IMPOYHOCTHOM CTPYKTYPOil OETOHA, COMIACHO KOTOPOH (YHKIHMH HANPSDKCHHIT
Sy (t) m S, (t) npencrasusor cTpyKTypHOE Hanpskerne Gy, (1)=S°(t)o(1). U3 Sy (1)=0g4 (1) n
S. (1) =04, (1) cnenyer S, (t)=S,, (1)=5"(t)o(r), a notomy S, (1)=S,, (1)=S°(1).

B [1] dyuxumn Sy (1) u S, (1) npurumarores B Gpopme [18]:

a[n(x)]=1+7,[n(x)]™, (60)

So.[n(t)]=1+7.[n(r)]™, (61)

rae V,, V., m,, m. — sMnupuyeckue KodpQUIreHTsI.

[puHsTHE B PaBEHCTBE Scr(r):SO(r)c(t) GyHKIHMA So(r) B aHajoruuoit popme (mo IL.U. Ba-

A
cumbesy [18]) ecrectsenno, ugo S°(1)= M COOTBETCTBYIOLUAs. IIPU HANPSDKEHUAX O(T) LeIbIM

A(7)
Ri(1)  o(7)
dbpaximam mromans A4(t) onpenensercs yenosueM R; (1) 26(1), 4o SKBHBaIEHTHO R(7) > R(7)
T T
[Ipyu MOCTOSHHOM Ha OTPE3KE BPEMEHU [to,t] Hanpsbkenun 6 (1), cormacuo [1]
59 n)o(t
o(ttg) = LU (110) 58 (o). (62)

E(1)

Ionaras, 4T0 NOCTOSAHHOE Ha (f),!) HaNpsvKeHHE G, (T) =50 (n)o(t) mopoxaaer Takyo xe neop-

Maluro, rnojry4Ymm

$°(n)s (1)

E(1)
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CormacHo ypaBHeHUsIM (62) u (63)

0
(1) 57+ 0ol [ 50 )

SO (Tl _ Sgl (n)+S£)r (n)E(t)C* (t’tO) ‘

- (64)
1+ E(t)C (t,19)
U3 paBencts (60), (61), (36) u (64) mpu n=1 momyunm
14V, +(1+ V) E(£)C (1,1
S0(1)=1+V= + e+(+ c)*() (’0)’ (65)
1+ E(1)C (t.5))
v=s(1)-1. (66)
§%(mo) - % (n9)-1
ITpu uexoropom 0<n, <1 umeem Ing :So(no)—l, no' :&, mlnn, =ln0(n—0) u
4 s°(1)-1
1 S%(mp)-1
1 S_0) (67)

CImg $O(1)-1

3ameuanue. OnpeneneHnas no 3aganabM GyHKIHsIM Sgy (1) u So. (1) QyHKIMS So(n) He obec-
IeYnBaeT KBa3HIMHEHHOE TpencraBnenue €(f,fy) mpu o(tT)#const. Kpome TOro, He MCKIIOYEHO, YTO

HaOmonaemoe pasnuuue V, u V., m, u m, B ypaBHeHUsX (60) u (61) mpuHaUIeKUT AUANa30Hy MOTPEmI-

HOCTEH U3MEPEHUIA.
CornacHo (59) nmeet MecTo paBEeHCTBO

Sle(t.ty) =2 (t.10). (68)
_g(th) 0 _ _
Ipu S[s(t,to)]— ) e Sg () (c yuetom E(t)=E n ©(t)=1) onpenemnsiercs BIOPbIM U3 pa-
el !
BEHCTB (55), MOMy4YrM KBa3WJIIMHEHHOE MPE/ICTABICHHE
S%(1)o (1
(i) = 1(, Jolt), (69)
E” (1,1)
Jlyis peoormueckoro ypaBHEHUS COCTOSTHUS OeToHa [ 1]
t %
~o(td0)/er(D g (4 1 Y= () L — o(t)aC (t,r)d 0
€ 8( ’0) G( ) E(t) t'!;G(l‘) o Tl ( )

e(t,ty) = ooAtho)/ SR(Z)SZ (#,¢p) ¥ KBa3WIMHENHHOE MPE/ICTABICHNE
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es(fafo)/ﬁze(f)c(t)

e(t,tg)=

(71)

B (t.1)
IpU KPAaTKOBPEMEHHOM Harpyxenuu, monaras &(t,fy)=¢, o(t)=o, R(f)=R, Elep (t,to) =FE, coracHo
(71) momyuum QyHKIIHIO
o = Ege t/e , (72)
OTHCHIBAIONIYIO JHarpaMMy 6 —¢ (BKIIIOYas HUCTAIA0Iy o BeTBb) B (hopme B.M. bonnapenko [1].

[Ipn 6 =R umeem RZE?,Re_1 u E=eR/ep , a notomy

Gzﬁge—g/ﬁze ’ S _ & gz ' (73)
ER R ER

Benmuunel ¥ & SABIAIOTCS YPOBHAMHM HANpsDKEHUH U 1eopMannii, a paBeHCTBO

_e 1=
n==&e (74)
NPEICTaBIIICT YPaBHEHUE COCTOSIHUS OETOHA, ONUCHIBAEMOE B IMapaMeTpax n u &.

. —1 m € —1 m
IIpu So(t):em Le(tt0)/ex(1)] JMarpaMMa c—¢ momyuaercs B Buge o=E—é" (¢/er) [25]

€R

b

a TTapaMeTpuvecKkoe ypaBHEHHUE

n=ge" (75)

< i
Eciu marpaMma G—¢ 3ajaeTcs comiacHo 6 =R a;(&/eg) [26], To cooTBeTCTByIOIIEE TTAPAMETPH-
i=l1
YECKOE YPaBHEHHE UMEET BU]L

n=Yat . (76)
i=1

3aBUCUMOCTb G—¢& Ha IUIOCKOCTH B KoopAmHaTax (&,6) m3obpakaercs rpadukom GpyHkuun 6= f(€).
JlnmurenpHOE HArpy)KeHHUE OMUCHIBACTCS (PYHKIUEH © = (p[t,s(t)} , KOTOpOW OTBEYAET MOBEPXHOCTH B KOOP-
JUHaTax (t,s,cs). Ee nepecedennem ¢ miaockocThio T=¢ (MapajuieIbHON TUIOCKOCTH €—G ) SIBISIETCS KpH-
Bas I', , mo xoTopoii, ¢ yuerom TOro, yTO &= S(t,to )/SR (t) un= G(t)/R(t) , CTpPOUTCS KpUBas fz Ha mJoc-
KOCTH €—0G. JTa KpUBas OMUCHIBACT TUArpaMMy G—&, a COOTBETCTBYIOIIAs QYHKIHS M= F (&) IIpeacTaB-

JseT coO0M mapaMeTpUYecKoe ypaBHEHUE COCTOSHUSI.
Takum oOpa3om, mapameTpsl N U & A HEPAaBHOBECHOTO Iporiecca 1e(hOpMUPOBAHUS SBISIOTCS aHA-

JIOTaMU MapaMeTpoOB O U € JUISl PABHOBECHBIX MEXAaHUUYECKHUX CHCTEM.
3ameuanue. CTpyKTypa napaMeTpHUECKOrO YpaBHEHUs, onpenensemMas pyHKIen 50 (¢), He 3aBu-
CHUT OT PEeXKHMMa Harpy>XeHHs. DTO TO3BOJISET MO HAWACHHBIM IIPU KPAaTKOBPEMEHHOM HarpyKeHUU 3HAYECHU-
am M u & onpenenuts napamerpsl 6(7)=nR(t) n &(t,fy) =& (1) mmTenEHOrO HArpyXKeHNs.
[NapameTpuueckoe ypaBHeHHE (74) MPH YCIOBUH HICHTUYHOCTH SS, (1) u Sgr (¢) BeBen B.I. Hasa-

PEHKO, paccMaTrpuBas COCTOSHUC 0eTOHA KaK COCTOSHHE HepaBHOBeCHOﬁ TepMOHHHaMquCKOﬁ CHUCTCMbI
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[27]. TTapameTpbl 1 U &, XapaKTepU3YIOIIHE POYHOCTHBIC U Je(hOPMAIMOHHBIC CBOMCTBA OETOHA, CBA3BI-
BAIOTCS C TIOMOIIBIO €TO YACIbHON SHEPTUU MEITOCTHOCTH W(t) [28]. Bemnunna W(t) SIBIIIETCSA MaKCH-

MaJIbHBIM YHEPTETHYECKUM PECYpPCOM CONPOTUBICHUS 1e(HOPMUPOBAHUIO €IMHHIIBI 00beMa OETOHA U TPe/I-
CTaBJISIETCA IUIOUIA/1bI0, OTPAHMYEHHON OJTHON AMAarpaMMoil 6 —& (UTypBIL.

AnanTanys TeOpUH MOI3YYEeCTH K METOy KOHEUHBIX JIEMEHTOB IpU (POpPMYIHPOBKE ypaBHEHHUN T1OJI-
3y4ecTd B IpUpAILEHUsX BBIIIOJHEHa B MOHOTrpaduu [29].

5. 3akJilouenue

B pesynbrare npoBeieHHOr0 HCCE0BAHMS aBTOPaMHU ClI€NIaH Psiji BBIBOJIOB.

1. HamoxxeHneM 4acTHYHBIX MpHpaIleHui 1edopManuii, MOpoXKASHHBIX TOCIEI0BaTEeIbHBIMU MIPHpa-
HICHUSIMA YPOBHSI HaNPsDKEHUH, BHIBEICHBI YPaBHEHHSI MEXaHHUECKOTO COCTOSHUSI OETOHA. YYeT MpPOYHO-
CcTH OETOHa B MOMEHTHI NMPUJIOKEHUSI HATPY)KEHHsI YTOYHSET €ro M3BECTHBIC YPABHEHUS COCTOSHUS B JIH-
HEWHOH U HEJINHEWHON NTOCTAaHOBKE.

2. O0uwii JU1s MTHOBEHHBIX M 3aIa3AbIBAOIIUX Je(OpPMaIii MHOKHUTEIb HEIMHEHHOCTH HAPSKEHUH
NPEBBIIIACT MHOXXHTENb KBa3HWJIMHEHHOCTH, YMHO)KEHHEM Ha KOTOPBIM JIMHEHHOW YacTu AedopMaiyuu mo-
JTydaeTcs ee KBa3WIMHEHHOe TpeicTapineHue. [lenenneM HenmnHeRHON nedopMaIiii Ha STH MHOKHTEITH BbI-
JEIISIFOTCS] COOTBETCTBEHHO 0OpaTtnuMast 1 JIMHEHas ee 9acTH.

3. O6patumble geGopMaluy pean3yIoTcs IebIME 10 MOMEHTA Havyalla pa3TPyKEeHHs CBS3SIMU 3a CUET
HAKOIUIEHHOTO UMM IpHUpaLIEHUs MOTEHI[MAIbHOM SHEPTUU MPU HarpyxeHnu. OTCYTCTBHE B MPOIIECCE Pa3-
TPYXEHHUsSl TepepaclpeneyeHus HAnpsLKEeHUH MEXAy STUMH CBA3SMU BJIEUET JIMHEHMHYIO0 3aBHCHUMOCTD
HanpspkeHU oT aedopmanuii. 970 000CHOBBIBAET HAOMIOMAEMBI B SKCIIEPUMEHTaX (aKT, M3BECTHBIN Kak
npu3HaK SlcuHCKOro — DHreccepa.

4. OTMeuyeHHas BBIIIE HEKOPPEKTHOCTh YPAaBHEHUI MEXaHHMYECKOTO COCTOSHUS OeTOHa MOPOXKIeHA
HE TPUHIMIIOM HaJOKeHHs 1edopManunii, a ero peaqn3anienl Mo NpuparieHusIM HarpspDkeHUH Kak I ujie-
anpHOTO OetoHa. Hanmoxenue nedopmaruii mo mpupamieHusIM YpOBHSI HANPsHKEHUN MPUBOAUT K KOPPEKT-
HBIM ypaBHEHHUSIM COCTOSIHHSA, YTO O3HAYaeT HEOOOCHOBAHHOCTH 3asBICHUN 00 OMIMOOYHOCTH NpPUHLMIA
HaJIOKEHUSL.

5. [IpaBoMEpHOCTh MPUHIMIA HAJIOKEHHS B TEOPHHU TONI3YyYECTH OETOHA CO37aeT BO3MOKHOCTH MPUMeE-
HEHHUS 3TOW TEOPUH B pacueTax OETOHHBIX U JKeJIe300€TOHHBIX KOHCTPYKIIUH METOIOM KOHEYHBIX JIEMEHTOB.
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AnHoTanusi. Moaenupyercst pacipeesieHue HaNpsHKeHUH B TPEXCIOWHOW KapKaCHOM CTEHOBOW MAHEH C JKECTKUM KOHTAKTOM
MeXIy ciaosMu. J[jis pacuera UCIonbp30BaH KOHEYHO-dNeMeHTHBIH makeTr ANSYS Workbench. 3HaueHuns: kputepueB pa3pymeHus
(TIaBHOTO W AKBHBAJICHTHOTO HANPSDKEHWIT) BEIYHMCIICHBI BONN3U KOHIIEHTPATOPOB HANPSDKEHUH, T.e. pebep, pasnesiomux Harpy-
JKCHHbIE U 3aKpeIUICHHbIe rpaHy naHenu. [lonyueHo, 4To pa3pylleHue HaYMHAETCs Ha TPaHULE HAIPY>KEHHOI'O U HEHArpy>KEeHHOTO
cioeB u3zenus. ITokazaHo, 4TO TEIIOU3OSIIUOHHBIN CIION U3 KPYITHOIOPUCTOro OETOHA, PAaCIIOIOKEHHBIH B ICHTPE IaHEIH, CIIO-
cOOCH y4acTBOBaTh B BOCIPHUATHU YaCTH HArpy3KH, MPHUXOJSIIEHCS Ha HECylMi cioil. B cBa3uM ¢ 3TMM Hecymias crocoOHOCTh
KOHCprKI.IPIﬁ, HU3rOTOBJIICHHBIX I10 KapKaCHOﬁ TCXHOJIOTUH, CYHIIECCTBCHHO MOBBIIIACTCA 3a CYET YACTUYHOI'O HArpy>XCHUS TEILIO-
n3onupyromtero ciosi. [loaToMy kapkacHasi ITaHeJIb MOXKET BBIICP)KUBATH OOJBIIE HATPY3KU IO CPABHEHHMIO C ITaHEISIMU, UMEIO-
muMH THOKKE CBsi3H. KpoMme Toro, mokaszaHo, YTO TEPMUYECKOE CONPOTUBIICHHE TPEXCIOWHOIN KapKAaCHOH MaHeNn BIBOE BBHIIIE,
4eM Yy OZHOCJIOMHOM MaHe Iy TakoM ke TONMIMHBL. TeM caMbIM UCIOIb30BAaHUE KapKACHBIX MaHenel aBngeTcs 3QEeKTUBHBIM cpell-
CTBOM COXpaHCHUS TCIJIa B 3JaHUAX.
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st uurupoBanusi: Coipomsicos A.O., Maxapos I0.A., Envuuwesa T.@., Epogees B.T., Koowcaros /].A. MexaHuka pa3pylicHHS
TPEXCIOWHOM CTEeHOBOM TTaHEeNN Ha OCHOBE KapKacHOro 0etoHa // CTponTeNbHasi MEXaHHKa HHXKEHEPHBIX KOHCTPYKIHI B COOpYKe-
Huid. 2025. T. 21. Ne 5. C. 432—-440. http://doi.org/10.22363/1815-5235-2025-21-5-432-440 EDN: EDACPF

1. Introduction

The walls of a building are one of the main structural elements that carry loads and provide spatial
rigidity and stability for the entire structure [1]. In addition to their load-bearing function, exterior walls also
serve as enclosures, creating a favorable microclimate for the people inside the building. Therefore, effective
materials and technologies are increasingly being used in their manufacture to ensure the strength and
resistance of the products to aggressive environments and external loads [2], as well as sufficient thermal
and sound insulation properties [3].

The required values for the load-bearing capacity and thermal resistance of building structures are
determined based on various criteria, including economic ones [4]. It is known that walls made of
prefabricated single-layer and multi-layer reinforced concrete panels are the most economical in terms of
material consumption and construction technology.

Single-layer panels are sufficiently strong and technologically advanced, but their thermal insulation
properties are insufficient for residential buildings in regions with cold climatic conditions. Therefore, such
walls are currently used in regions with warm climate or in the construction of industrial and agricultural
buildings.
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Compared to single-layer panels, multi-layer panels are significantly more effective in terms of thermal
performance. Such a panel consists of an insert (insulation) made of a material with low thermal
conductivity, density, and strength [5], for example, mineral wool or glass wool, confined between the outer
and inner layers. The outer layer, made of structural concrete, protects the insulation from external
influences. The inner load-bearing layer is designed to carry the load transferred from the floor slabs; the
insulation layer and the outer textured layer are attached to it by means of flexible ties, reinforced concrete
ribs, or dowels.

However, along with their advantages, layered panels have significant disadvantages [6; 7]:

= short service life of the insulation and ties, which require anti-corrosion protection;

= Jack of reliable connection of the insert to the concrete layers due to discrete arrangement of the ties;

= formation of cold bridges between the outer and inner layers due to high thermal conductivity of
metal ties;

= uneven heat distribution in the wall and condensation in the interlayer space due to differences in
thermal characteristics of the layers.

The consequences of these shortcomings are the exclusion of joint action of concrete layers in
resistance to external loads, a tendency to develop significant shear strains due to deformation of the middle
layer, and the short service life of such panels.

An alternative to such layered panels are three-layer wall panels based on two-stage concrete with a
continuous connection between the layers, manufactured using a special technology [8]. Such products consist
of two layers of dense expanded clay concrete, between which there is a middle layer of porous expanded
clay concrete. The use of the latter type of concrete as insulation allows for the creation of materials with
increased strength and stiffness and reduced thermal conductivity, as well as eliminating the structural
disadvantages inherent in the three-layer panels with inserts. For example, the layer of porous concrete can
effectively remove condensed moisture [9]. In operating conditions with biologically active environments,
panels based on two-stage concrete are less susceptible to biodegradation [10; 11]. In turn, biostability
contributes to the preservation of physical and mechanical properties of the construction products [12].

Porous concrete has reliable adhesion to the external concrete layers and is capable of resisting shear.
Rigid contact between the layers allows the panel to be considered as one-piece, while panels with inserts
are composite structures. The joint action of different types of concrete forming a single continuous section
has been studied, for example, in [13; 14].

There are known calculation methods and additional hypotheses that take into account the aspects of
deformation of three-layer structures [15]; in Russia, they are also regulated by state standards. Nevertheless,
the behavior of these structures under different deformation modes is still insufficiently studied, which
hinders their introduction into construction.

Computer modeling using CAE systems offers broad opportunities for studying this type of structure.
In this article, such modeling is applied to the behavior of a loaded three-layer wall panel made on the basis
of a two-stage composite using the technology described in [8] and implemented at OAO “ZhBK-1" in
Saransk, Russian Federation.

The aim of the study is to test the hypothesis that the middle porous concrete layer not only acts as an
effective insulator, but is also capable of carrying part of the load acting on the load-bearing layer.

2. Methods
2.1. Panel Geometry and its Physical and Mechanical Characteristics

The panel is modelled as a rectangular prism of length /=6 m, height # = 1.2 m and total thickness of
all layers b = 0.4 m.

The layers perform the following tasks:

= inner layer 1 is the load-bearing layer designed to carry load from the supported floor slabs; the
thickness of this layer is &1 = 80 mm;
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= middle layer 2 is heat-insulating, designed to provide effective thermal
protection for the building; its thickness is calculated based on the thermal
properties of the materials used and the thermal insulation requirements for
buildings of various types; in this study it is assumed to be 62 = 240 mm,;

= outer layer 3 is protective and decorative; it protects the insulation
from external climatic effects and creates architectural expressiveness of the
structure; the thickness of this layer 0s is also equal to 80 mm.

The physical and mechanical characteristics of the layers are different ™~
and are shown in Table 1. The cross-sectional diagram of the panel is shown L 80,
in Figure 1. =T

Poisson’s ratio for all structural layers is the same and is v= 0.18.
Thermal conductivity is specified for type A service conditions of enclosing
structures in accordance with the regulatory documents in force in Russia —
design code'.

The use of technologies such as fiber reinforcement and the like allows to obtain concrete, shear
strength Rs of which is close to prismatic strength R». Therefore, it is assumed that Rs = Rp for the layers
of the studied panel.

.99,
===

240

Figure 1. Sectional view
of the three-layer wall panel
Source: made by Yu.A. Makarov.

Table 1
Physical and mechanical characteristics of the wall panel layers
Laver Densit Prismatic Initial modulus Thermal
ID and name of the structural layer matzrial k /lmy3 P> strength Ry, of elasticity E, conductivity 2,
g MPa MPa W/(m-°C)
1 — inner (load-bearing) layer Dense concrete 1800 40 10000 0.483
2 — middle (thermal insulation) layer Porous concrete 700 10 3500 0.206
3 — outer (decorative) layer Dense concrete 1800 40 10000 0.483

S o ur ce: data on mechanical properties by V.T. Erofeev.

2.2. Verification of Panel Insulation Performance

First, the hypothesis that the studied three-layer panel is an effective heat insulator was tested. To do
this, its thermal resistance was compared with the equivalent characteristic of a homogeneous panel of
standard single-layer structure and of the same thickness.

The heat transfer resistance of a multilayer enclosing structure is determined by the following formula:

Ro=1/ap + X(8/\) + Van, (1)

where o = 8.7 W/(m?x°C) and au =23 W/(m?x°C) are the heat transfer coefficients of the internal and
external surfaces of the enclosing structure, respectively; &; and A; are the thickness and thermal conductivity
of the i-th layer of the wall.

In this analysis, the parameters of the panel layers were taken from Table 1; the thickness and thermal
conductivity of a single-layer panel were assumed to be 8 =400 mm and A = 0.58 W/(mx°C), respectively.

2.3. Modelling Panel Loading

Several options for loading the two-stage concrete panel were considered in the study, and the one that
provides the maximum linear load that the panel can withstand without failure was selected.

'SP 50.13330.2024. Thermal performance of buildings. Intr. 2024-06—16. Moscow: Russian Standardization Institute,
2024. 70 p.
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In the model it was assumed that the bottom and both side faces of the panel were fixed, and the width
of the restrained strip by =9y;in other words, the load-bearing layer and (partially) insulation layer are

fixed. A downwards normal force (pressure) P is applied to the section of the panel selected in this way;
moreover, self-weight G is also applied to the structure (Figure 2).
The described methods of restraint and loading
simulate the interaction of the panel with its neighbors
lG below and to the side (through a layer of cement
mortar), as well as supporting the floor slab.

The method of computer modeling of three-layer
two-stage concrete panels under such loads is described
in detail in [16]; since in this study not only the load-
bearing layer but also the thermal insulation layer is
loaded, minor adjustments had to be made to it. The
method takes into account the fact that, due to only a
part of the panel cross-sectional area being loaded, its
material is in a combined stress state, and the critical
% strength parameters cannot be described by a uniaxial

stress state model. Therefore, when evaluating the load-
bearing capacity of the panel, several strength criteria
are used, the values of which are examined at several
different points.

The ANSYS Workbench finite element software, installed under license on the Mordovia State
University computing cluster, was used for the calculations. Figure 3 shows one of the calculation results —
an overall distribution pattern of equivalent stress (von Mises) on the external surface of the panel loaded by
P =4.55 MPa and with loaded layer thickness bo =200 mm.

~_

AN
N\

AW

S\

Figure 2. Panel loading diagram
S ource: made by A.O. Syromyasov.

0,000 1,000 2,000 (m)

0,500 1,500

Figure 3. Distribution of equivalent stress on the panel surface
S ource: made by A.O. Syromyasov in ANSYS Workbench software.
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The panel is most likely to fracture in the area of stress concentration, i.e., near two symmetrical
edges e and e’, where the fixed side faces are adjacent to the loaded upper face. Therefore, internal stresses
in the panel should be calculated along the control line segment L, which is located at a distance of 1 cm
from the side and 1 cm from the upper face parallel to edge e. Particularly, the principal normal stress o1
and equivalent stress Geq according to the Huber — Henky — von Mises theory was calculated.

3. Results and Discussion

When calculating the thermal insulation properties of the panel in (1), it was found that the thermal
resistance of the single-layer structure Ro=0.848 m*°C/W, and for the proposed three-layer structure
Ro=1.655 m*-°C/W. Thus, the use of multi-layer enclosing structures based on two-stage concrete instead
of standard single-layer panels of the same thickness significantly reduces heat loss in buildings.

The graphs of 61 and G¢q along segment L provide a general idea of the stress distribution inside the
panel. Thus, Figure 4 presents the graph of Geq at bo =200 mm and P =4.55 MPa. The value at x=0
corresponds to the interior boundary of the load-bearing layer, and the value at x = 400 mm — to the exterior
face of the panel. At other values of ho and P, the graphs of 61 and Geq look similar.

S5,00E+06 [

C 002 004006 008 01 012 0,14 0,16 0,18 0,2 0,22 0,24 0,26 0,28 0,3 0,32 0,34 0,36 0,38

Figure 4. Distribution of equivalent stress (von Mises) along the control line

S ource: made by A.O. Syromyasov.

Two peak values of the failure criterion are reached at x = 81 and x = by, i.e. at the boundary between
the load-bearing and insulation layers, and at the boundary between the loaded and non-loaded layers.

Based on the calculation results, the stress arising in the outer layer is many times smaller than that in
the inner layer. This implies that the loads in the outer layer can be disregarded. Indeed, the mechanical
characteristics of the two layers are identical, which means that failure will occur sooner in the more
intensely loaded inner layer.

Based on the above, the failure criterion for the studied panel is considered to be the fulfillment of at
least one of the following conditions:

= at the boundary between the load-bearing and insulation layers (on the load-bearing layer side),
principal normal stress 61 exceeds the prismatic strength R» of the load-bearing layer or equivalent stress
Ocq exceeds the value of 1.15Ry;

= at the boundary between the load-bearing and insulation layers (now on the insulation layer side)
stress o1 exceeds Ry of the insulation layer or equivalent stress Geq exceeds the value of 1.15R» of the same
layer;

= at the boundary between the loaded and non-loaded regions (inside the insulation layer) 61> R»
or Geq > 1.15R», in which case the prismatic strength of the insulation layer is considered.

AHAIUTUYECKVE W YACHEHHBIE METOZbI PACHETA KOHCTPYKLIMIA 437



Syromyasov A.O. et al. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):432-440

In doing so, the values of 61 and Geq are examined at three points P;, P{ u Py, located at the intersection
of line L and the boundaries of the aforementioned layers.

To investigate the influence of the thermal insulation layer on the magnitude of fracture stress and the
load-bearing capacity of the structure, the panel was loaded with an increase in the total width of the loaded
strip bo from 80 to 200 mm with a step of 40 mm. The results of the analysis are presented in Table 2.

Relationship between of the fracture stress and the width of the loaded layer fable
Value, MPa Value, MPa Value, MPa Value, MPa
Type of criterion | Critical value, MPa (b0 =80 mm) (b0 =120 mm) (b0 =160 mm) (b0 =200 mm)
P=9.04 MIla/MPa | P=578 MIla/ MPa | P=5.15MIla/MPa | P=4.55 MPa
oi(Pr) 30 30.77 22.99 2247 21.22
oeq (P1) 34.5 34.17 27.50 26.37 24.62
o (P) 10 9.92 8.23 8.01 7.62
oeq(P) 115 12.10 10.16 9.53 8.80
o (P) 10 - 9.55 9.85 10.01
Seq (1) 115 - 11.49 11.47 11.36
v (P ) - 7.03 8.86 8.69 8.14
T (Pl* ) - - 2.65 2.72 2.57

S ource: obtained by A.O. Syromyasov using ANSYS Workbench software.

P indicates the pressure at which the panel fails. For every bo, criteria values close to or exceeding the
maximum allowable values are highlighted in bold. For reference, shear stress values Tx: at the layer

boundaries are also given; as can be seen, their values are quite far from the critical value Rp.

The data in Table 2 shows that failure always occurs at the boundary between the loaded and non-
loaded layers — at point P;' (when bo = 80 mm it coincides with Pr1).
By increasing width bo the value of failure pressure P drops. However, it is not the value of P itself that
plays a key role, but rather the maximum allowable load per unit length = Pbo that can be resisted by the
panel. The value of /' depending on the width of the loaded layer is presented in Table 3.

Table 3

Relationship between the linear load and the width of the loaded layer

bo, mm P, MPa f= Pbo, kN/m
80 9.04 723.2
120 5.78 693.6
160 5.15 824.0
200 4.55 910.0

S ource: obtained by A.O. Syromyasov using ANSYS Workbench software.

Thus, supporting floor slabs by a 200 mm wide strip instead of standard 80 mm allows to increase the
maximum allowable load by more than 25% — from 723.2 kN/m to 910.0 kN/m.

Multilayer panels with inserts lack such properties, since their insulation layers are made of materials
that cannot carry loads. All loads in such panels are resisted exclusively by a thin inner load-bearing layer.
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Further improvement of the load-bearing capacity of products based on two-stage concrete can be
achieved, for example, by modifying the cement binder with polymer compounds [17; 18], finely dispersed
fillers [19; 20], and nanoparticles [21; 22].

4. Conclusion

Thus, the article examined the behavior of a loaded three-layer panel manufactured using the two-stage
technology. The interaction of the panel with adjacent panels was modeled by fixing three of its side faces,
with pressure applied to the upper face reflecting the load carried by the panel. The study tested the
assumption that the middle (thermal insulation) layer of the two-stage concrete panel is capable of partially
resisting the external forces. It was necessary to determine at what loads the panel would begin to fracture
and where exactly this fracture would begin.

The ANSYS Workbench software, which implements the finite element method, was used for
calculations. Special attention was paid to calculating the failure criteria near the edges, along which the
loaded face “joins” with the fixed ones. The principal and equivalent (according to von Mises) stresses were
selected as such criteria; it was assumed that fracture would begin if at least one of them exceeded the
“dangerous” value. The magnitude of the applied pressure and the width of the loaded part varied in the
calculations.

The obtained results allow to draw the following conclusions:

1. The panel fractures at the boundary between the loaded and non-loaded layers near the edge, which
is the stress concentrator.

2. When the width of the loaded part increases, the failure pressure may decrease due to the fact that
the load is applied to the less strong insulation layer. However, the linear load at failure increases due to the
increase in the area of the section that carries this load.

3. It follows from the previous conclusion that by partially loading the thermal insulation layer, the
load-bearing capacity of the panels manufactured using the two-stage technology can be significantly
increased compared to panels containing mineral wool or other thermal insulation inserts, since such inserts
cannot be loaded.

In addition, the article shows that three-layer panels based on two-stage concrete have twice the
thermal resistance of standard single-layer panels of the same thickness, making the use of two-stage
products an effective method of heat conservation.
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JSIOIINe cOO0H OTHEeTbHBIC 3IEMEHTHI ¢ Pa3IHYHBIMU CcBOicTBaMH MaTepuana. [Ipenmaraemas GopMynHpoBKa HE3aBHCHMO yUH-
TBIBA€T IIEPEMEHHBIC NOJISI CMELIEHUH 1 KOMIIOHEHTBI HAIPSDKEHUH BHE IIOCKOCTH, YTO IO3BOJISIET TOYHO YCTAHABIUBATh Y3JI0BOE
HaIpsUKeHHE ¢ TIOMOIIBIO ONPEeASIIOMNX COOTHOMEHHH. [ MpOCTpaHCTBEHHOH IHUCKPETH3AIMH HCIIONb3yeTCs TPEYTONbHBII
3JIEMEHT C TPeMsl y3JIaMH, IIOIeP>KUBAIOLINI HENPEPBHIBHOCTH nopsifka C1, a OCHOBHBIE ypaBHEHUsI OTYUYCHBI C UCIIOIb30BAaHUEM
TEOPHH MHOTOCIIOMHBIX TPEYTONBHEIX IIAacTUH. CpaBHUTENBHBIE MPOBEPOYHBIE HCCIIEA0BAHNS OATBEPAMIN TOYHOCTD BBIYHCIIE-
HUH U 3()HEKTUBHOCT METOJA, IIPU 3TOM IOIPEHIHOCTb PE3YyJbTaTOB pacueTa mporuba cocraBiseT oT 2,59 % (MuHMMYM) 10
11,2 % (makcumyMm). BcecTopoHHHE YHCIIEHHBIE SKCIEPHMEHTHI AEMOHCTPUPYIOT, YTO MPEATIOKEHHBIH METOA MHOTOCIOMHBIX
TPEYroJIbHBIX KOHEUHBIX 3JIEMEHTOB 00ECIeuUBAET BBICOKYIO TOUHOCTb PELICHUH IPU 3HAYUTEIBHOM CHMXXEHUM BBIYMCIUTENb-
HBIX 3aTpaT.

KuaroueBble ciioBa: KHHEMaTHUSCKHH CIIOM, onie nedopmariuid, moje HanpsHkeHHid, pasduenne Ha MHorocioiHsle KD, uncien-
HBIE Pe3yJIbTAThI

3asBiieHHe 0 KOH(JIUKTE HHTEePecOB. ABTOPHI 3asIBIISIOT 00 OTCYTCTBUM KOH(IINKTA HHTEPECOB.

Bruax aBTopoB: Masgnyo /[.A. — cOop n 06paboTka MaTepuasoB, aHAIU3 U MHTEPIPETAIMS JTaHHBIX, TOATOTOBKA U PEAaKTHUPO-
BaHue TekcTa; Kosnkun A.A. — pa3paboTKa KOHIEIINH, YTBEPXKICHHE OKOHYATEIbHOTO BapraHTa crarb. Oba aBropa 03HaKOM-
JICHBI C OKOHYATEJIbHOM BepCHEll CTaThU U 0Z00OPHIIHN ee.

Hdas uurupoBanusi: Mawlood D.A., Koyankin A.A. Triangular layered finite element method for reinforced concrete slabs //
CrpoutesnbHas MEXaHUKa HHKEHEPHBIX KOHCTPYKIMH U coopyxkenuit. 2025. T. 21. Ne 5. C. 441-461. http://doi.org/10.22363/1815-
5235-2025-21-5-441-461 EDN: DEEXQA

1. Introduction

From the 2010-2025 construction period, reinforced concrete (RC) slabs are essential structural components,
serving as flooring systems while carrying vertical loads. Accurate performance analysis is critical to ensure both
safety and cost-effectiveness in RC building designs [1; 2]. However, predicting the nonlinear response of RC
slabs remains a significant challenge due to the complex behavior of reinforced concrete structures, making it an
active research area [3; 4]. This complexity arises from material nonlinearity in concrete and steel, cracking,
imperfect bond-slip behavior, and time-dependent effects such as creep and shrinkage [5].

Several material models have been developed to capture the layered nonlinear behavior of RC slabs. For
reinforcing steel, a uniaxial elastic-plastic stress-strain relationship is typically employed, exhibiting symmetrical
response under both tension and compression. Similarly, concrete behavior can be effectively represented using
a bilinear stress-strain approximation that incorporates tensile capacity [5; 6].

To address the limitations of conventional 3D finite element models, researchers have developed innovative
layered methods [7; 8]. Unlike simplified effective stiffness approaches, these layered FE models enable precise
prediction of ultimate bending and shear capacity in RC slabs [9; 10]. The methods employ triangular plate
elements composed of perfectly bonded, superimposed equivalent layers representing both concrete and steel
reinforcement. This layered triangular element facilitates detailed tracking of concrete failure mechanisms
(including cracking and crushing) and progressive steel yielding throughout the slab depth [11; 12]. Although
numerous layer-based FE models exist for RC slab analysis, current implementations remain predominantly
limited by Kirchhoff-Thin Plate Theory (KTPT) assumptions [13; 14].

Current research indicates a strong preference for displacement-based formulations in finite element
modeling of RC slabs and plate structures [15; 16]. While these layered triangular elements derive stress
components indirectly through numerical differentiation of displacement fields, the resulting post-processed
stresses particularly out-of-plane components, often demonstrate reduced accuracy compared to their
displacement counterparts. In contrast, advanced layered FE formulations for composite structures treat stresses
and displacements as independent variables, thereby achieving superior stress prediction accuracy [17; 18].

Although layered finite element formulations have been widely adopted for laminated composite analysis,
their application to nonlinear RC slab modeling remains relatively limited. Recent advances by Liguori et al. [19;
20] introduced a mixed finite element formulation for nonlinear material analysis of RC shell structures. These
layered triangular elements utilize conventional Mindlin-Reissner plate theory to describe displacement fields in

Magnyo /lapa, MarucTpaHT Kaenpsl CTPOUTEIBEHBIX KOHCTPYKIUH U YIIPaBIsIeMbIX cucTeM, VIHkeHepHO-CTPOUTEINBHBIH HHCTUTYT, CHOMpCKUi denepanbHbIil
yauepcuret, Poccuiickas ®eneparms, 660041, . Kpacnostpek, mp. Coboxnusrii, 1. 79; ORCID: 0009-0003-2819-3107; e-mail: dara.mawloud@univsul.edu.iq
Koankun Anexcandp Anexcanopoguy, KaHounaT TEXHHYECKUX HAyK, JOLEHT Kadeapbl CTPOHTENbHBIX KOHCTPYKIHH U yHpaBIsIeMbIX CHCTeM, MHKeHepHO-
cTpouTeNbHbIi uHCTHTYT, CHOUpCKUiA (eaepanbHblii yHUBepcuTeT, Poccuiickas Menepanust, 660041, r. KpacHosipck, np. CBoboansiid, a. 79; eLIBRARY
SPIN-kox: 2779-8314, ORCID: 0000-0001-5271-9904; e-mail: KoyankinAA@mail.ru
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RC structural analysis. In contrast to their methods the present study implements an innovative global-local
kinematic framework for displacement field representation in plate analysis. Notably, while Liguori et al. [20]
treated both membrane/flexural stresses and displacement fields as primary unknowns in their formulation, the
current approach adopts a distinct strategy for variable selection. Wang et al. proposed an efficient quasi-three-
dimensional mixed finite element formulation based on a refined layered global-local plate theory for nonlinear
analysis of RC slabs. In this approach, the cross-section is discretized into distinct concrete and steel layers, with
each layer modeled as an independent plate element characterized by unique material properties [21].

This study introduces an innovative computational framework for nonlinear analysis of RC slabs, based on
an advanced triangular-layered global-local plate theory formulation. The proposed triangular layered plate
methods offer optimal computational advantages, combining superior geometric flexibility with adaptive finite
element analysis capabilities for RC slab modeling. The framework employs a 3-node triangular composite
plate element augmented with additional nodal degrees of freedom to explicitly represent out-of-plane stress
components. While requiring additional field variables, this approach enables direct computation of through-
thickness stress distributions during nonlinear solution procedures.

The formulation is derived through a parameterized mixed variational principle, providing rigorous
mathematical foundations for the methods The RC slab is modeled as an assembly of perfectly bonded concrete
and steel layers, with material nonlinearities addressed through: (1) a smeared crack formulation for concrete
behavior, and (2) elasto-plastic theory for steel reinforcement response.

2. Methods

For reinforced concrete slab elements, the principles of membrane and plate bending theory exist, as will be
demonstrated in the subsequent steps.

2.1. Membrane Element Analysis

For the membrane component, a standard 3-node triangular element is defined by its node numbering and
their (x, y) coordinates. (Figures 1 and 2) [6; 13].

u=Nu, +N,u, +N,u,,
v=Ny + Ny, +N,v, (1)

where (u;, v;) represent the horizontal and vertical displacements at node i, and »N; denotes the corresponding
shape function for that node.
The shape functions for the 3-noded triangular element are derived as follows:

u=o1+o2x+a03)y,

v=_P1+p2x+Psy. )
The system was solved for coefficients, and substituting these solutions back into Equation (2) produces:
u=1/ (2A(6) )[(a1 +bx+cy)u +(a,+b,x+c,y)u, +(a, +bx+ c3y)u3],

) is the element area and,

where 4
i’j ai :xjyk _xkyj7 bi :yj _yk’ ci =X _xj i’j’k:1’293'

The coefficients a,, b, and care determined through cyclic permutation of the indices (i, k).

A comparison of Equation (2) with Equation (1) yields the explicit expressions for the shape functions:
N, =1/(24)(a,+bx+c,y) i=1,2,3. 3)
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L

Figure 1. Discretization of a structure
into 3-noded triangular elements

S ource: made by H. Werkle [6].

u-Nru1 N.u, Niu.‘

v=N \|+I\.v,+l\1\=

Figure 2. Shape functions
for the 3-noded triangular element

S ource: made by E. Ofiate [13].

2.1.1. Membrane-Induced Strain

The strain components (¢, €, v,,) are computed via differentiation of the displacement fields u(x,y) and

v(x,y) represented by their respective shape functions:

_ .
o Y[, a2 oaws ][
c ox ox ox ox Vi
gy = ? = 0 @ 0 8N_2 0 % U , (4)
y dy dy W ||V
o/ 1 9u dv| |ONI ON1 9N2 N2 N3 N3 ||u,
dy dx) [ dy ox dy dx dy  Ix ||y
Sm :Bm ue’ (5)
where
0
1
mi 2Ag i
¢, b

2.1.2. Membrane-Induced Stress

The stresses in the element are calculated from the strains by applying Hooke’s law, as shown in [11; 12]:

c, I p O €,
—_— E —_—
o, _1—u2 po1 0 €, or O, =
T 0 o =RV
L 2
Gm:DmBmue
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and with the strains defined in (eq. 5), as:

Sm = DmBmue’ (6)
where ) .
d, d, 0 p I p 0
D,=|dy, d, 0 |= — 2 pol 0
—u
0 0 d 0 0 I—p
L 2

These stresses are also referred to as membrane stresses [13].

2.1.3. Membrane Stiffness Formulation

Based on the stresses obtained from Equation (6), which were derived from displacement shape functions,
the equivalent nodal forces are calculated using the principle of virtual displacements. The element stiffness

submatrix K;e) , representing the interaction between nodes 7 and j within the element, is typically calculated as:
K!' = (B D, B,dxdy (7

substituting Equation (5) and (6) into Equation (7), yields:

dl] d]2 0 bi 0
T 1 L L | PP I dA
U(e)_J:;[ 2491 0 c bi 21 2 24 ¢; t .
4 0 0 d, c; b,

For a homogeneous material, the integrand in Equation (8) remains constant, leading to:

o [t Obbd, +ccdy bed,+bcd, ®
"9\ 44) |cbdy,+be,dy bbdy+cedy, |

2.2. Component for Bending

The Reissner — Mindlin plate theory is an advanced plate theory that incorporates shear deformation
effects. This theory is commonly preferred for formulating finite plate elements. Plate deformations are

described by the vertical displacement (W) and the rotational angles ((an (py)at each point on the plate.

Consequently, every node in the plate element possesses three degrees of freedom: one translational
displacement (W) and two rotational components ((an (py). The corresponding nodal forces consist of

a transverse force (F;) and two bending moments (M ;, M ,i)- Figures 3, a, b show that, this 3-node element

possesses nine degrees of freedom in total. The shape functions of a 3-node triangular element are constructed
through bilinear interpolation of the nodal variables [6; 12].

w(x,y) =0 +a,x +ay+a,x’ +oxy +o’ +0,x +ox’y +ogxy’, )

where
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S ource: made by E. Ofiate [13].

= o

=z o o

1 2

S ource: made by R.-Wang [21].

Figure 3. 3-node triangular element:

a — Triangular plate elements; » — Graphical illustration of the displacement field:
1 — in plane components, 2 — transverse component

=2 o
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=2 o
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(pxl
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Z o o

(Px3
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(Py3_

2.2.1. Bending Strain Components

The strain state of a plate element is determined by its curvature components and transverse shear
deformations [5; 6]:

"‘» %» x;\’\‘

y

446

aq)xi
ox
o 0) i
dy
| oy

ox |

O%O
ox
00%
dy
) NN,
dy  ox

0

o
- vxl
oN, 0 0 oN, 0 0,
ox ox W,
0 Mg oo Mg,
dy dy 0
ON, N, ON, ON, 2
0 w.
dy  ox dy  ox | 3
(px3
_(pyS
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and shear strain

. Ow oN, oN. oN.

+— — N, O 2 N, 0 LN, 0| W

{sz}_ 2o or [YXZ}: ox : ox 2 ox ’ ’
Vel Ny oy My, W

dy dy dy

0 N,

Yy=B u (11)

s e

2.2.2. Stiffness Matrix for Plate Bending

The stiffness matrix establishes the proportional relationship between applied nodal forces/moments and
resulting nodal displacements/rotations. The virtual displacement field utilizes identical interpolation functions
as the real displacement field, satisfying:

=NT, (12

The virtual curvatures (k) and virtual shear strains (y ) derived from the virtual displacement field are:

k=B u or k'=u B ;

—€

Y=Bu, or ET=:TZ_3ST.

=5 =

The internal virtual work comprises two terms: the product of real bending moments and their
corresponding virtual curvatures, plus the product of actual shear forces and associated virtual shear angles.

W, = [ K" mdxdy+ [ ¥ vdxdy;

W, =@ B! D,B,u.dvdy+ [ B! D,Bu,dxdy; (13)

—§—5—¢

W, = (| B/ D, B,dxdy+ [ B! D, Bdxdy)u,.

The virtual work done by external loads consists of force-displacement and moment-rotation products at all
nodes:

W =u'F. (14)

The principle of virtual work is satisfied when the sum of internal virtual work equals external virtual work:

r BI'D, B, dxdy+ | B’ D.B dxdy)u, =u’ F, :
(J’ —b =b —b y J‘—: —s == y)_e Ze —e
B

i
([ B D, Bydxdy + [ B! D, B dxdy)u, = E,;

Klu, =F; (13)
K!=[B/D,B,dxdy+ [B] D, B .dxdy.
(Bending) (Shear)
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The plate element’s stiffness matrix [ K ] comprises two distinct sub-matrices: a bending stiffness component

and a shear stiffness component. As a conforming element, it maintains C° continuity across both displacement
and rotation fields.

2.3. Mathematical Principle

Among existing analytical approaches, the layered finite element method (LFEM) with triangular
formulation demonstrates high efficacy in evaluating the flexural behavior of RC slabs. The methods employs a
stratified representation of plate elements, discretizing the cross-section into distinct concrete and steel layers, as
illustrated conceptually in Figure 4 [5; 22; 23]. This layered approach facilitates accurate modeling of stress
distributions across the RC slab using an assembly of plane stress elements.

P
//
e / 1 z
7 4 e
Steel k=NC~ g
) (@] thvind = N p
— layer h/2
As Reference Surfaces ) xl S . L
N s e~ Concrete R T
L C layers 5.7 3 h22
o] d k=2- _:Z;

Figure 4. Typical triangular plate element for reinforced concrete plate structures
S ource: made by D.A. Mawlood.

In this modeling approach, the RC slab is idealized as a composite system of perfectly bonded, uncracked
concrete layers and equivalent steel layers. The reinforcement is represented using a smeared-layer
approximation, with horizontal steel layers positioned at the centroidal levels of the actual reinforcement bars.
The computational model employs the same number of smeared layers as physical reinforcement layers in the
cross-section. Each equivalent steel layer is assigned uniaxial material properties corresponding to the

orientation of the actual rebars. The equivalent thickness (Z,) of each steel layer is determined from the rebar

cross-sectional area ( 4, ) and spacing (§) according to the relationship: ¢, = A /s[21].

Reddy’s Third-Order Shear Deformation Theory (TSDT) overcomes the fundamental limitations of
classical plate theories by eliminating both the normal hypothesis constraint and the requirement for planar
cross-sections to remain plane after deformation [11]. The theory is founded on the following kinematic
relations:

u(x,y,2) =2y, (x, )+ 270, (x, y) + 2°A (x, y);
v(x,y,2) =2y (x, )+ 270, (x, ) + 2L (X, »); (16)
w(x, y) = wo(x, y).

0., A

x° v X °

The kinematic functions , , 0 and A_ represent undetermined parameters that
X y )% p p

characterize the cross-sectional warping deformation. Within the TSDT framework, these functions collectively

introduce seven independent displacement variables. Specifically, the bending rotation components W, and v

describe the slope of the warped cross-section at the neutral plane z = 0, while the remaining variables account

Ju dv

for higher-order deformation effects [11]. y»=—, v, ==, where z=0.
/4

o oz
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The displacement field is mathematically represented by Equations (1) in h

the following form: ,'M'ﬂ ‘7

3 2 L' |
u(x,y,z)zzwx(x,y)—(4z )/(3h )((\Vx(x,y)+aw0(x,y))/ax); .
z ;L_’_ﬁ'_\r_r_”%o‘rmud

v(x,y,z)=zy, (x,y)—(4z3)/(3h2)((\Vy(x,y)+8w0(x,y))/ay);

w(x, ) = wo(x, y), (17)
Figure 5. Unreformed
where and deformed plate segment
awo aWO S ource: made by C. Mittelstedt [11].
\Vx = b \V - *
ox 7 ay

Consequently, Reddy’s Third-Order Shear Deformation Theory incorporates just three degrees of freedom,
as depicted in Figure 5.
2.4. Interconnections Between Layers

2.4.1. Strain Distribution Field

Based on the derived displacement-strain relationships, the strain components in the i-th layer of the RC
slab can be determined [11], as illustrated in Figure 5.

du dy, 4z’ (dy, 9w,
=— =z A
Toox ox 3n°( ox  ox’
ou oy, 47 {a\vy 9’w, j
== +

b

€

8”)_5_2 d 3y o )
e. =20
0z
¥y oz dy AN dy dy
_Ou_ ow_ o A4z 0 Ow ) ow
Ve 0z Ox Vs /S N ox
d 3 0o 2
yxyza—u+ﬁzz 8\|1x+ v, _4z2 8\|1x+ \|!y+28 W |
dy ox dy ox ) 3h°\ dy  ox 0xdy

These can be represented in vector form as:

2
v ik
e ox O X X
8(1) — 8(’C;C) — a\Vy . 8(3) _ 8(3) _ B 4 [awy N a2w0j ‘
S0 dy yﬁ) 3 oy 9y
xy BL_,_% y 4 oyx N v, o 9w,
o o 329y x| oxdy
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ow, 4 ( ow,
Y, v, ot
v = [Y(yg)J I ) A v = (Y(yi)j _ )
) ’ @ |
e |y, + 2% s _i(‘lfx I j

The strain field can be expressed as follows:

e=2ze" +277;

2,,(2)

y=7"+297 (18)

2.4.2. Stress Fields in the Out-of-Plane Direction

The normal stress components are obtained from the strain field by applying Hooke’s law, as given below:
[6; 13]

1 0 €
x Ei u X
Gy = 1_M2 1) 1 0 Sy 5
xy 0 0 l_l"l 'ny
L 2
o =D'g'.

Using the strain definitions from Equation (18), the strains can be expressed as:
o' = D' (26" +206). (19)

The transverse shear stress components(r T ) for each layer in the reinforced concrete slab are

xi® ~yi

determined using the following expressions:

.| E [1o]v.]
.| 20+w|0 17, |

=D
v =D (Y(O) +z9y? ) , 20
where E; represents the elastic modulus of the i-¢h layer in the reinforced concrete slab system, and [l denotes

the Poisson’s ratio characteristic of the reinforced concrete layers.
The layer-wise constitutive formulation accounts for material heterogeneity through distinct elastic modulus

E;, and Poisson’s ratios [ for each layer i. The governing equations employ standard stress resultants obtained

via thickness integration of stress components [24]:

0 h
Mxx +£ Gxx Q +,5 T
M=\ My, |=[}|o, |zdz Q= 7 |=[] 7 |d=. @1
0 2 Qx h sz
Mxy Txy 2

Here’s a rigorous academic formulation of the additional force/moment resultants in TSDT:
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P +ﬁ (¢ 2
XX 2 XX Ry 2 ’[:Z
p=|p |=[|o, ba: R:(R j:j[y}wz. @)
h X h sz
P,) =\1, -

2.4.3. Layer Interaction Mechanics in Reinforced Concrete Slabs

2.4.3.1. Layer of Steel Reinforcement

The reinforcing steel layers exhibit elastoplastic behavior, characterized by an idealized bilinear response.
For the i-th reinforcement layer in the pre-yield regime, the constitutive [11] relationship is expressed as:

Giteel = theelgi s
where (¢&') is represented by Equation 19. The sectional properties D, for steel;
E 0 0
—sl:teel =10 0 0 (23)
0 00

In Equation (23), E, represents the elastic modulus of the i-h reinforcing steel layer. Upon yielding, the

constitutive relationship transitions to a plastic regime, with the post-yield behavior described by the following
incremental formulation:

E, 00
l—) ;teel = 0 O O .
0 0 O

The term E s refers to the plastic modulus of the steel layer after it has yielded [21].

2.4.3.2. Concrete Layer Properties

In its uncracked state, the concrete material exhibits isotropic, homogeneous linear elastic behavior. The
constitutive relationship governing the i-¢th concrete layer’s pre-cracking response is expressed as:

GiU"lCre[e = l—)(il)rlcrete El > (24)
E I o O
where (&') is defined by Equation (18),and D', = " —p 1 0
—u
0 0 1K
L 2 ]

The transverse shear stress components T,_andt_in each concrete layer can be evaluated through

application of the appropriate constitutive relationship:

i i i E 1 0
Tc‘oncrete = l—)s Y > Ds = : > (25)
- 20+p)| 0 1
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where E, denotes the elastic modulus of the i-th concrete layer, and (W) represents the Poisson’s ratio
characterizing the concrete material’s transverse strain response.
When the principal stress state exceeds the concrete’s tensile capacity ( f,), the elastic constitutive relations

(Egs. 24-25) no longer apply. This investigation adopts a smeared crack formulation [24] to model post-cracking
concrete behavior. The smeared crack approach necessitates a material symmetry transition from isotropic to
orthotropic behavior in the local coordinate frame (&, m, (). Here, the & -axis normal to the crack plane defines
the material softening direction, while the n- and (-axes plane (aligned with principal stresses) maintains elastic

stiffness. In the post-cracking phase, the constitutive relationship for the i-th concrete layer transforms to an
orthotropic formulation in the local crack-aligned coordinate system (&,m, (), expressed as:

_Gi_ 5 I n 0 €
S, :1—;,L2 po1 0 | & |5 (26)
_Tin_ 0 0 p(l_uj Yeq

— 2 -
T | _E |1 0ffvg 27)
T ] 2040 p[ Ve ]

Note that (pe (0.1]) represents the shear retention factor, which is utilized to model the effects of
aggregate interlock.

2.5. Mixed Element Stiffness Formulation

The element stiffness matrix components can be decomposed into membrane and bending contributions as
follows:

K, = iKZ,’,- +K;.; (28)
i=1

K:f; = J.J.L B; l_)m,i Bm,idxdy ;

K!,=|[B}, D, B, dvdy+|[Bl, D, B, dxdy.

The stiffness contribution exhibits material-specific behavior: the steel reinforcement provides only
membrane (in-plane) stiffness, while the concrete contributes to both membrane and bending (flexural) resistance.

Ke,i = Kconcrete + steel = [K6,6] 5
m b Kéné 0
K, =K' +K, = ’ , (29)
’ ’ ’ 0 K,

where K, gjé and K;”g represent the membrane and bending stiffness matrices for the element, respectively.

2.6. Discretization of Finite Elements

The reinforced concrete slab is modeled using a three-node, triangular layered plate element that accounts
for thickness effects. The development of this composite finite element requires discrete approximations of three
key field quantities: (1) geometric configuration, (2) displacement fields, and (3) stress distributions. The
proposed layered plate formulation incorporates 15 degrees of freedom (DOFs) per element, with the complete
nodal configuration detailed in Figure 6.
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Plane element:

late node

reference plane/

Figure 6. Meshing process of the RC slab using layered plate elements
S ource: made by D.A. Mawlood.

2.7. Load Distribution Elements

The element loads are converted into equivalent nodal loads that yield identical external virtual work under
virtual displacements as the original loads. This relationship is defined by Equations (10) and (15):

K u=F or [K][d]=][P].

e —e —

The reinforced concrete slab, subjected to element loads combining membrane and bending effects, can be
expressed as:

Ké':ﬁ O dﬂ’l B Pﬂ‘l
0 Kj,l|ld"| |P[
where: d”, d”...membrane (us, us, us, vi, v>, v3) and bending(w,, @_,, P> Wys Orps @y, Wy, @5, @) element

displacement; P", P ..... membrane and bending element loads.

The nonlinear algebraic system is solved using a mixed-step iterative method that combines incremental
loading with Newton — Raphson equilibrium iterations. Figures 7 and 8 illustrate how this approach applies
loads incrementally while performing iterative corrections at each step to satisfy equilibrium conditions.
Although the Newton-Raphson method improves solution accuracy, it requires additional computational effort.

The computational algorithm for the non-incremental Newton — Raphson method (Figure 8) executes the
following sequence:

1. In the initialization phase, the structure is loaded with aF, followed by computation of the first

displacement approximation according to:
dy =[K,(E)]"'aR, (30)

where the global stiffness matrix is computed using the initial elastic modulus Ej,.
2. From the computed displacements, element stresses G (or strain €) and updated moduli Ei™ are
determined. Equilibrium verification with the updated stiffness matrix yields residual forces:

Ty :IZ1(E1)‘70 _AI_)I‘ GD
3. The residual forces induce corresponding corrective displacements:
ad, =[K,(ED]'7;. (32)

4. The iterative correction process computes successive deflections a_’1 :EO +ad , where each step

generates residual forces 7, and displacement increments ACZ , until equilibrium is attained. The algorithm’s

general form is given by:
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7 :Izj+1(Ej+1)67j ~P;

_ _ L for j=12,3.. (33)
ad, =[K, (B, )T,

The iterative process terminates when the residual forces diminish to a negligible magnitude. The total plate
deflection is subsequently obtained through superposition of all incremental displacement components [5].

d=d,+) ad,, . (34)

The described numerical procedure is successively applied to all load increments aF, (i =1,2,...,n).
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T
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& ko)
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<
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dl d: d; d
Figure 7. Step iteration or mixed procedure
S ource: made by D.A. Mawlood.
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Figure 8. Iterative tangent stiffness procedure
S ource: made by D.A. Mawlood.
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3. Results and Discussion

This work presents a MATLAB implementation, based on the preceding theoretical framework, for nonlinear
layer-wise finite element analysis specialized for triangular element formulations. To evaluate computational
performance, the proposed method was applied to analyze three experimentally validated reinforced concrete
slab specimens. All test cases had been previously characterized under controlled laboratory conditions, enabling
direct comparison between numerical predictions and experimental results.

3.1. Analysis of One-Way Reinforced Concrete Slabs (S1)

A semi-precast one-way RC slab with dimensions 75 mm x 600 mm x 1650 mm was analyzed using the
proposed layered finite element method with triangular elements. The slab incorporated mesh reinforcement
consisting of 12 mm diameter steel bars spaced at 200 mm center-to-center, with a 25 mm concrete cover.
Figure 9 illustrates the slab’s geometric configuration, loading conditions, and boundary constraints.

The material properties were defined as follows: concrete with a modulus of elasticity of 26.420 GPa,
Poisson’s ratio of 0.15, and compressive strength of 31.6 MPa; steel reinforcement with an elastic modulus of
190 GPa, Poisson’s ratio of 0.3, and yield stress of 535 MPa. This configuration replicates the experimental
setup by Mohamed et al. [25], employing a two-point loading system with 516.7 mm spacing at mid span. The
loading was applied through a hydraulic jack on a spread steel beam to create a pure bending region, with
continuous load monitoring via a calibrated load cell. Strain gauges and LVDTs provided comprehensive
deformation measurements through a high-frequency data acquisition system.

Taking advantage of symmetry, the finite element analysis modeled only half of the slab structure. Mesh
convergence studies determined an optimal 3x4x2 grid of triangular laminated plate elements, with the thickness
layered into six layers (five concrete layers and one equivalent steel layer). Figure 10 illustrates this configuration.

1650.00mm

’— 516.70mm: —|

75,0H7m a 3 J, i " & l i " &
50.00mmJJ \¢12mm@200mmclc T !

Figure 9. Schematic of the one-way RC slab: geometrical parameters, loading, and boundary conditions
S ource: made by D.A. Mohamed et al. [25].

r—258 35mm—’

150.00mm

600.00mm

1550.p0mm e steel layer concrete layers

1 2

Figure 10. FE mesh of semi precast of reinforced concrete slab with toping concrete
1 — plan discretization; 2 — cross section discretization
S ource: made by D.A. Mawlood.
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Figures 11 and 12 compare the predicted load-deflection response with experimental data from Mohamed et al.
and 3D ABAQUS simulations [25]. The proposed model demonstrates excellent agreement, showing a maximum
deflection prediction error of 11.2% while maintaining a 99% correlation coefficient for the load-deflection
relationship.

20 16
a 14 M Theoritical Data
15 7 —@— theoritical Data 12 )
-/0/ = Experimental Data
/ ®— Experimental Data E10 Al bat
Z aquse Data
= 10 &Y S 8 1
= 8 Abaqus Program 2 6
I o §
- 5 }'/ 4
y ’ [
0 0 _a |
0 2 4 6 8 10 12 14 16 18 20 22 24 1 2 3 4 5 6 7 8 9
Displacement (mm) Deflection Point
Figure 11. Load-deflection curve of the one-way RC slab at the mid-span Figure 12. Deflection chat area
S ource: made by D.A. Mawlood. S ource: made by D.A. Mawlood.

3.2. Two-Way Reinforced Concrete Slab with Single-Layer Reinforcement (S2)

The specimen had dimensions of 2.2 meters by 2.2 meters and a depth of 160 millimeters. All slabs had a
loaded span of 2 meters in each direction, with a 0.1-meter overhang extending from the center of the supports
on both sides. This study examines the two-way square reinforced concrete slab tested by Sara Nurmi et al. [26].
A point load is applied to the center of the slab, which is supported at all four corners. The tensile region of the
reinforced concrete slab contains bidirectional steel reinforcement (X and ) directions), with equal reinforcement

ratios of p. = p, =0.23% . The mechanical properties of the slab are presented in Table 1, while Figure 13

depicts the geometric configuration and reinforcement arrangement. A central load was gradually applied to the
slab using a hydraulic jack during testing, as conducted by Sara Nurmi et al. Deflections were measured at
multiple locations, including the slab center, using LVDT sensors in Sara Nurmi’s experimental setup [26].

Table 1
Material parameters of two-way slab with one layer of reinforcement

Material | Elastic modulus, MPa | Poisson’s ratio | Yield stress, MPa | Compressive strength, MPa
Concrete 28,200 0.15 36
Steel 190,000 0.3 450 -

S ource: made by D.A. Mawlood.

_',- HSS 203 x203x 9.5 Gap filled with shim (flat or lapered}\__
/" 100 x 10 support plate (typ.) 150 x 150 x 20 Loading Plate
“ ‘ ¥ ] Slab 250 support roller (typ.)~._ h
- 2000 %
2200 ,
2300

7@10mm in each direction\
160.({§m » e ; L : e 4 e, ‘ \
ry [ 3 Iy . ry [ ] ry 'y

Figure 13. Geometrical parameters and reinforcement details of two way reinforced concrete slab

S o ur ce: made by Sara Nurmi’s [26].
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Figure 14 shows that the RC slab cross-section was discretized into five concrete layers, complemented by
two equivalent steel layers representing reinforcement in orthogonal directions (x and y).

Figures 15 and 16 show the slab deflections computed using the proposed layered approach with triangular
element discretization, along with the corresponding numerical results. For validation purposes, Figure 15
compares the model predictions with both experimental data from Nurmi et al. [26] and nonlinear finite element
results obtained from Abaqus simulations. The comparative analysis demonstrates the effectiveness of the
layered model in predicting deflection responses across the complete loading spectrum, from serviceability
conditions to ultimate capacity.

1000mm

1
1000w I ctee| ayer 1 steel layer 2 concrete

Figure 14. FE mesh of RC Slab: cross-section discretization
S ource: made by D.A. Mawlood.

The benchmarking study reveals that the proposed layer method achieves superior accuracy in predicting
two-way slab behavior compared to conventional Abaqus nonlinear solutions. The proposed model demonstrates
excellent agreement, showing a maximum deflection prediction error of 2.59% while maintaining a 99.6%
correlation coefficient for the load-deflection relationship.
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Figure 15. Load-deflection curve in the center of RC slab Figure 16. Deflections point
S ource: made by D.A. Mawlood. S ource: made by D.A. Mawlood.
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3.3. Two-Layer Reinforced Two-Way Concrete Slab (S3)

The experimental investigation conducted by Yao Xiao et al. examined a two-way RC slab system featuring
dual reinforcement layers and full peripheral restraint. The test specimen comprised a 1200x1200%100 mm slab
subjected to center-point loading. Key experimental parameters including material characteristics, are summarized
in Table 2. The slab’s reinforcement configuration consisted of orthogonal steel reinforcement distributed in both
top and bottom layers, with detailed arrangement illustrated in Figure 17 [27].

Table 2
Material parameters of two-way reinforced concrete slab
. . . . Longitude reinforcement . Compressive
Material Elastic Modulus, MPa Poisson’s ratio diameter, mm Yield stress, MPa strength, MPa
Concrete 30,784 0.15 - — 42.9
Steel 190,000 0.3 10 576 -
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Figure 17. Reinforced concrete slab details
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The two-way slab was reinforced with 10 mm diameter
deformed steel bars (Grade 500) in orthogonal arrangements
for both top and bottom layers, maintaining a uniform 15 mm
concrete cover throughout. Figure 17 details the cross-sectional
reinforcement layout and corresponding finite element discre-
tization scheme. Figure 18 shows the load-deflection response
at the slab center, capturing the complete nonlinear behavior
from initial loading to ultimate capacity. This study presents
the experimental results obtained by Yao Xiao et al., along
with numerical results from nonlinear ABAQUS simulations
and predictions from the triangular-shaped layer method. The
load-deflection relationship predicted by the proposed methods
shows excellent agreement with experimental observations.
Compared to the nonlinear ABAQUS simulations, the tri-
angular layer method demonstrates comparable accuracy in
predicting both the ultimate load capacity and maximum
deflection of the RC slab. The proposed model demonstrates
a 7.32% error in maximum deflection prediction while main-
taining a strong correlation coefficient of 99.6% between the
predicted and experimental curves (Figures 19-20).

mmstee! layer 1 steel layer 2 concrete

Figure 18. FE mesh of RC Slab: cross-section discretization
S ource: made by D.A. Mawlood.
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Figures 21-28 present the ABAQUS-simulated deflection patterns and stress distributions throughout the

RC slab.
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Figure 21. Stress in reinforced steel layer (S1)
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Figure 25. Effect of stress distribution on concrete slab (S2)
S ource: made by D.A. Mawlood.

AHAIUTUYECKVE W YACHEHHBIE METOZbI PACHETA KOHCTPYKLIMIA

U, Magnitude
+1.529¢+01
+1.401e+01
+1.274e+01
+1.147e+01
+1.019e+01
+8.918e+00
+7.644e+00
+6.370e+00
+5.096e+00
+3.822e+00
+2.548e+00
+1.274e+00
+5.454e-04

Figure 22. Deflection of concrete slab (S1)

+9.0B3+00
+6.053¢+00
+3.030e+00
+0.000e+00

S ource: made by D.A. Mawlood.

Figure 24. Effect of deflection on concrete slab (S52)

5, Max. In-Flane Princioal
{ANg: 7595)

+
+2 5418
+2.268e+02
1976402
+1 RAde+0?
+1.a118+02
+1.128+02
+8.463e+01
+5.646e401
2,823+ 01

2
+0. 000+ 00

S ource: made by D.A. Mawlood.

Figure 26. Stress in top and bottom reinforcement bars (S3)
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4. Conclusion

1. The proposed triangular-layered finite element model enables direct computation of out-of-plane stress
components in RC slabs, eliminating both the need for through-depth integration of equilibrium equations and
the requirement for shear correction coefficients.

2. The proposed triangular-layered formulation maintains a constant number of unknown parameters for
displacement and stress fields, independent of the number of layers, while preserving its layer-based framework.

3. The static nonlinear behavior of RC slabs up to failure was analyzed using a partial mixed stress-
displacement variational principle combined with a three-noded triangular plate element.

4. The eftectiveness of the proposed triangular-layered finite element model in predicting nonlinear structural
responses was validated through comprehensive analyses of RC slabs with diverse geometries, reinforcement
configurations, and boundary conditions.

5. Numerical results demonstrate that the proposed formulation accurately predicts both the ultimate load-
carrying capacity and failure deflection of RC slabs.

6. Benchmark validation studies confirm the method’s accuracy and computational efficiency, with ultimate
deflection predictions exhibiting errors ranging from 2.59% (minimum) to 11.2% (maximum).

7. The proposed triangular-layered model accurately captures the complete load-deflection behavior of RC
slabs while simultaneously predicting detailed structural responses, including deformation characteristics and
stress component distributions.

8. The triangular-layered finite element model achieves an optimal balance between computational efficiency
and predictive accuracy. Future work will extend this stress-displacement formulation to coupled material and
geometric nonlinear analysis of reinforced concrete plate structures.
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Maisbie eopmanuu. Llens ucciienoBaHus — YUCIICHHBIM aHAMU3 HanpshkeHHo-nedopmupoBanHoro cocrosHus (HIC) rubkux
CTEpIKHEH ¢ y4eTOM reOMeTpHIEeCcKON HENMMHEHHOCTH B TPEXMEPHOI MOCTAaHOBKE. B KauecTBe MaTeMaTHYeCKOTo anmapara HCIoJb-
30BaH METOJ KOHEYHBIX AIEMEHTOB B (hopMe MeTona nepeMenienuii. [Ipomecc GopMON3IMEHEHUSI CTEPKHS MOICIUPOBAIICS MyTEM
WHKPEMEHTAILHOTO HArpy>KeHUsI B COYETAHHHU C TIEPECTPOCHHEM T'€OMETPHU MOJCIH C YYeTOM MONYYEHHBIX Tepemelnenuii. Crep-
JKEHb MOJIETUPOBAIICS] HAOOPOM MPSMOTUHEHHBIX OATOYHBIX KOHEUHBIX JIEMEHTOB, COCAMHEHHBIX B CMEXHBIX Y37aX JINHEHHBIMU
Y TIOBOPOTHBIMU KOMOMHUPOBAHHBIMH JIEMEHTAMH € EPEMEHHON KECTKOCThIO. JIJIsl MPOBEACHHS BEIYUCIUTENbHBIX YKCIICPHMEH-
TOB HAallMCaHbI U BEpUPHUIIUPOBAHBI Makpochl Ha si3bike APDL, BctpoeHHoro B mporpamMHbiii kommieke ANSYS Mechanical. Boi-
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CTPAHCTBCHHBIX KHHEMATUYCCKU U3MCHACMBIX CTCPIKHEBBIX CUCTEM.
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Abstract. Flexible bars experiencing large displacements and small strains during loading are investigated. The purpose of the
study: numerical analysis of the stress-strain state of flexible bars, taking into account geometric nonlinearity in a three-
dimensional formulation. The displacement-based finite element method is used as the mathematical framework. The process of
shape changing of the bar was modeled by incremental loading in combination with the restructuring of the geometry of the model,
taking into account the resulting displacements. The bar was modeled using rectilinear beam finite elements connected at adjacent
nodes by linear and rotational combined elements with variable stiffness. To conduct computational experiments, macros in the
APDL language, embedded in the ANSYS Mechanical software, were written and verified. Numerical experiments were
performed using finite element models with elastic hinges and without hinges. Based on the results obtained, it is established that
the proposed direct incremental algorithm for solving geometrically nonlinear problems of structural mechanics is absolutely
convergent. The developed method of defining the stiffness of rotational springs can be used in modeling spatial unstable frames.
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1. BBenenue

VYnpyrue rubkue CTep>kHH, oONaarone U3rnOHON KECTKOCThIO, HAXOAAT IIMPOKOE MPUMEHEHHE B
pPacUYeTHBIX CXeMaX ra3olpOBOJIOB, HECYIIUX KAaHATOB OOJBIICTIPOJIICTHBIX BHCAYMX MOCTOB, TPAHCMHUCCH-
OHHBIX BaJIOB PA3JIMYHOTO HAa3HAUEHUS, MPUBOJIOB U3MEPHUTEIHHBIX MPUOOPOB, MPOCTPAHCTBEHHBIX CTPOU-
TeNnbHBIX KOHCTpYKIHi [1-3]. KoHeuHO-31eMeHTHOE MOJIETMPOBaHNE TIPOCTPAHCTBEHHBIX CTEPKHEBBIX CH-
cTeM 0a3upyeTcsl Ha UCTIOJIb30BAaHHH MATPHIIBI )KECTKOCTH 0alouHOT0 KOHEYHOTOo 31eMeHTa (KJ) ¢ mecTthio
crenenamu cBo6osl B y3ne!' [4]. Kak npaBuiio, npu IuHeHOM aHAIU3E MepeMelleHus yIibl OBOpOTa 6a-
noyroro K3 cunrarorcs manbivMu. Bmecte ¢ Tem mpu pacuere THOKUX CTEpKHEH MMEIOT MECTO OoJbIIne
JMHEHHBIE U YTJIOBBIE MIEPeMEICHUs U MallbIX aedopmanusx [5; 6]. B aToM ciaydae 4nciaeHHOE pelieHne
reOMETPUUYECKU HEIMHEHHOM 3a/1auu CTpOoUTCs Ha O6a3e uTepaloHHoi npoueaypsl Hetorona — Padcona u
METO/a «KOPPEKTUPYIOIINX JyT», CyTh IOCIEIHEr0 COCTOUT B aAAaNITUBHON KOPPEKTUPOBKE BEITMUMHBI I1a-
ra Harpy><eHusi Ipu NpUOIIDKEHHH U TIOCIe MPOXOKIAeHUs TOUKH «oudypkanum» [7-10]. Crexyer oTme-
TUTh, YTO NPH pacyeTe CTPEHKHEBOW CUCTEMbI METOJOM KOHEYHBIX JIEMEHTOB C YUETOM OOJBIINX MepeMe-

! Mavenxos B.H1., Manvyes B.I1., Maiibopoda B.I1. u Op. PacdeTsl MalIMHOCTPOMTENbLHBIX KOHCTPYKIMI METOMOM KOHEd-
HBIX 3JIEMEHTOB : crpaBoyHUK. MockBa : MammHocTpoenue, 1989. 520 c.
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MICHUI WCIIONB3YETCs KacaTelibHasT MaTpHUIla KeCTKOCTH. OOMISTTPUHSTHIN TOX0 K TIOCTPOSHUIO JTaHHOM
MaTpPHIIbI B JIATPAH)KEBBIX KOOpJAMHATAX 0a3MpyeTcs Ha MHHHUMH3AIMH MOTCHIMAIA YHEPTUH JehopMaIiuu
JuckpetrHoi mozenu [11]:

oIl

—= [l uy,..,uy) =0, 1I<m<N),
du,

rae I1 — notenumansHas sHeprus aedhopManyu; uy,uy,...,u — 0000IIeHHbIE epeMenieHns. B pe3yiib-

TaTe JMHeapu30BaHHas (KacaTellbHas) MAaTPHIIA )KECTKOCTH KOHCTPYKIIMHU TTOTy4aeT B

[K']= % 0 fn(th, Y- ty)

n=1 aun

(uy={u’}

[Tpu sTom pekyppeHTHas popmyna Herorona — Padcona npunumaer Gpopmy
(KN au}+{r} =0, fu D)L A} L) [k, 7).

rne { f } — BEKTOp 00OOIICHHBIX CHIL.

B [7] ans MMHUMH3alMM NOTEHIMana SHEPruu Aedopmanuu MPUMEHEHO CIEIyIOIee ypaBHEHHE
(ucrosIb30BaHbI paHee NPUHATHIE 0003HAUCHHS):

2
o M {1
ofu}? 8{ }

OTMeuaeTcsi, 4TO B CTPYKType MPUBEICHHOTO YPAaBHEHUS MEPBOE CIaraeMoe sIBJISIETCS aHAJIOTOM MaT-
puibl xecTkocT KD, a Bropoe ciaraemoe npeacTasiseT co0oi KOppEKTHUPYIOIIYIO COCTABIISIONIYIO JUIsl BEK-
TOpa y3JIOBBIX CHJI. Bbruncnenne xacarenbHONW MaTpuilsl kecTkocTH KO cBonuTes k ABykpatHoMy audde-
PEHIIMPOBAHMIO YHEPruu edopmanuii Mo 0o00OUICHHBIM MEPEMELICHHIM, a BEIYUCICHNE KOPPEKTHPYIOIIEH
COCTABIIAIONIEH BEKTOpa ynpyrux cuil KO — K COOTBETCTBYIOIIEMY OAHOKpAaTHOMY AH(QPepeHITUpOBaAHHIO.

Crnenyer OTMETUTh, YTO MPH YUCIEHHBIX pacdeTax T'MOKHX CTEepK-
HEl B reOMETPUYECKH HETMHEHHON MOCTaHOBKE aKTHBH3UPYETCS OIHO-
BPEMEHHO y4eT OOJBIINX MOBOPOTOB M YMEHBIICHHE >KECTKOCTH, 00y-
cloBieHHOE opMmounsMenenueM [9; 10].

AJIBTEpHAaTUBHBIM YIIPOIICHHBIM METOJIOM pacueTa TMOKHX YIPYTUX
CTEpIKHEH SIBISACTCS MPEACTABICHUE CTEPXKHS HAOOPOM MPSMOIMHEHHBIX
0anounbix KD omuHaKoOBOH JUIMHBI, COSMHEHHBIX NpyKuHaMu. [Tpumep
0aJIOYHO-TIPYKUHHOI CXeMBI KOHCOJILHOTO CTEp KHs MOKa3aH Ha puc. 172,

HOJ’IaFaeTCH, 4dTO MCXKAY Y3JIOBBIM MOMCHTOM M ; 1 COOTBCTCIBY-

OIXM YIJIOM ITOBOPOTa ai CyHICCTBYCT JIMHEWHAs 3aBUCUMOCTh

Mi =k0{l', i=1,2,3,

Puc. 1. banouno-npy>xuHHAs cxeMa
THOKOTO CTepIKHS

WcTounuk: asrop B Yciokum. rae k — KOB(I)(I)I/IL[I/ICHT OpONOPpUHUOHAIIBHOCTH, XAapPaKTCPHU3YIOIIUN B
. . . aHHOM CIIy4Yae KECTKOCTH ITIOBOPOTHOM IIPYKUHBI. I pacyeTa THOKHX
Figure 1. Beam-spring diagram A . ¥ N p 3 Py Anst p N
of a flexible bar CTepXKHEH B JBYMEPHOW MOCTAaHOBKE® WCIOJB30BaH CICAYIONIHMHA (yHK-
S ource: author V.I. Usyukin. OuOoHaJI:

2 Verokun B.M. CTpoutenbHas MEXaHUKA KOHCTPYKIHMI KOCMMYECKOH TEXHUKH : y4eOHMK JUIS CTYAEHTOB By30B. MOCKBA :
Mammaoctpoenne, 1988. 392 c. ISBN 5-217-00147-X
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l 1 M2
3—£EE—JdX—Z(Miai) e +1II.

i 2

[Ipy sTOM cuuTaeTcsi, YTO >KECTKOCTh MOBOPOTHBIX MPY>KUH TPSIMO MPONOPIMOHATbHA H3THOHOU
KECTKOCTHU CTEPIKHS.

B [12] Ha 6a3e KOHIEINH JIOKAIbHOCTH JIMHEHHBIX MEepeMEIIeHUI 1 OPTOTOHAIBHOCTH BHPTYaJIbHBIX
YIJIOB MOBOPOTOB cTepkHEeBoro KO mpezcraBieHa METONMKAa KOHEYHO-3JIEMEHTHOTO MOJEIMPOBAaHUs THO-
KHX COCTaBHBIX OAaJIOK, IMOJBEPTalONIUXCS 3HAYUTEIbHBIM CTATHUYECKUM U JTUHAMUYECKHM JedopManusiM.
OTmeuaercsi, 9To pa3pabOTaHHBIN KOHEYHBIH 3JIEMEHT MO3BOJISIET C BHICOKOH TOUHOCTBIO Y4€CTh T€OMETPH-
YEeCKYyI0 HeJIMHEHHOCTh B COUETAaHUH C HaYaJbHOM MOTUOBI0 COCTABHOW 0aIOUHOM KOHCTPYKIMH. AJITOPUTM
MOCTPOEHUS] MATPHULIBI KECTKOCTH OAJIOYHOTO KOHEYHOT'O 3JIEMEHTa TPyO4aToro Ce4eHus, OCHOBAHHBIA Ha
runotese Dilnepa — bepHyyn, B coueTaHUM C allPOKCUMALUAMHU MEPEMEILIEHUI ¢ TOMOLIbIO TOJIMHOMOB
Opmuta npemioxked B [13]. lns ydyeta reoMeTpuyeckoil HEIMHEHMHOCTH BBEIEH TEH30p HampsKEHUN
ITnonsr — Kupxroda u renzop nedopmanuii I'puna — Jlarpanxa.

Jlns peneHus 3a1a4 MEXaHUKH 000JI0YEK C YUeTOM KOHEUHbIX TepeMerenuii B.3. Binacos* paspa6oran
METOJI TOCIeNoBaTeIbHbIX HarpyxeHuil. CyTh METOa COCTOUT B IOCIEIOBAaTEIbHOM HAarpy>K€HHUH KOH-
CTPYKLIMU BHEIIHUMHU CHJIAMHU, TIOAOOPaHHBIMHA TaKUM 0Opa3oM, YTOOBI Ha Ka)KJOM IIare mepeMelieHus u
yIJIBI IOBOPOTA OCTaBAINCHh MainbiMU. B nanpHeitem 3toT Meton B.A. Cemuikuit [6] pacripocTpaHu Ha
KpUBOJIMHEHHBIE IMHEHHO ynpyrue ruokue crep>kau. B [14] npuBeneH BapuaHT MeTo/1a MOCIEI0BaTEIbHBIX
Harpy>KeHHH Ui peleHus IUIOCKUX 3a]ad MEXaHUKU THMOKUX CTep)KHeH. 3/1ech ke oTMevaeTcs, 4To JaH-
HBIN TTO/IX0/] MOKET OBITH PAcIPpOCTPAaHEH U Ha MPOCTPAHCTBEHHBIE CTEPKHH CO CIIOKHOW TeOMeTpuei.

OpuruHaibHbBII METOJl KOHEYHO-3JIEMEHTHOTO MOJEIMPOBAHUS CTEPKHEBBIX CHUCTEM B YCIOBMSX
OoNBIIUX TIEpEMENICHN U YIJIOB TIOBOPOTa IpeyiokeH B [15]. laHHbIi MeTo, Ha3BaHHBIA METO]] MaTepH-
anpHOU Toukn (Material Point Method), 6a3upyeTcst Ha MOCTPOCHNUN YPABHEHHUS COCTOSTHHS MEXaHUIECKOM
CUCTEMBI, OOJIAJaONIe CYIIECTBEHHOW Te€OMETPHUECKON HEIMHEHHOCThIO, B THOPHIHBIX JIarpaH>KeBO-
9ilsIepoBbIX KoopauHaTax. [Ipu 3TOM reoMeTpust MOJIENH 3a/1a€TCsl B JIArPAHKEBBIX (MaTepUaIbHBIX) KOOP-
JIMHATaX, a YpaBHEHUE IBW)KCHUS PEIIAETCS C HCIONb30BaHWEM (UKCHPOBAHHOW diiiepoBoit ((OHOBOIA)
KOOPJIMHATHOM CETKH.

B [16] pa3paborana 2D-moznens GpepMeHHONW KOHCTPYKLHUHU, COCTOSIIEH U3 YINPYIHMX HEPaCTSKUMBIX
CTEpI)KHEH, CBA3aHHBIX MEXIYy COOOW Ha KOHI[aX YNPYTOBA3KMMH Y3JIOBBIMU HIAPHUPAMH, JOIYCKAIOIUMHU
Oonpime yriel moBopora. Otmeuaercs, 4yTo GopMon3MeHeHHe (EepMEHHOW KOHCTPYKLMHU W3 HAYaIbHOTO
HOJIOXKEHHsI B KOHEUHOE pabouee OCYILIECTBISIETCS C IOMOIIbI0 KUHEMAaTUYECKOTO BO3JEHCTBUS, UMUTHPY-
IOILIETO TPOC C U3MEHSIEMOM JJTMHOM.

[TocranoBKa 3a7a4y KOHTAKTHOTO B3aWMOICHUCTBUS AC(POPMUPYEMBIX CTPOUTEIBHBIX KOHCTPYKIHH C
y4eTOM TpeHus MpH caBure paccmorpeHa B [17]. Ilpeanaraemslii mogaxon 6a3upyercs Ha IIaroBOM ajro-
putme Jlemke B BHJIe METO/Ia IEPEMELLICHUH.

Pe3tomupys, MOKHO OTMETUTH, YTO PACCMOTpPEHHbIE croco0bl unciaeHHoro anannza HJAC rudxux
CTep)KHEH He MO3BOJIAIOT BBIMOJHHUTH MOJCIMPOBAaHHE Iporecca (HOPMOUZMEHEHUsI MPOCTPAHCTBEHHOM
KOHCTPYKIIMU C PETYISIPHOM PELIeT4aToON CTPYKTYpOil IIPHU YNpPaBISIEMOM KHMHEMAaTHYECKOM BO3/IEHCTBUMU.
JUis KOHEYHO-3JIEMEHTHOTO MOJENHMPOBAHMS TaKMX KOHCTPYKIMOHHBIX pelIeHuil Tpelyercs pa3zpaboTka
NPUHIUITHAAIBHO HOBOTO TO/IX0/a, 0a3UPYONIETocs Ha KOHIIETIIUH YHHBEPCAILHON JUCKPETHO CTEPKHEBOM
CXEMBI C YNPYTrO-IaPHUPHBIMU y3JIOBBIMH COEIMHEHUSIMHU.

B kadectBe oOvexma nacmoswezo ucciedoéanus B 00IIEM Clydae pacCMOTPEH MPOCTPAHCTBEHHBIH
THOKHIA CTeP)KEHb B YCIIOBUSAX OOJNIBIINX MEPEMEIIECHHI, COIPOBOKIAIOIINXCS MaBIMU feopmanusimu. [lers
uccneooeanus — pa3paboTKa JUHEHHO YNPYrol MEXaHUKO-MaTeMaTHYeCKOM MOAEIM IeOMEeTPUYECKHU He-
JMHEHHOTO (OPMOM3MEHEHHS UCXOAHOM reoMeTprH r'MOKOr0 CTEPKHS Ha OCHOBE MOAU(UIIMPOBAHHOTO Me-

3 Veiokun B.M. CTpouTebHas MEXaHHKA KOHCTPYKIHMI KOCMMYECKOH TEXHHKH : yIeOHMK JUIS CTYICHTOB By30B. MOCKBA :
Mammunoctpoenue, 1988. 392 c¢. ISBN 5-217-00147-X
4 Brnacoe B.3. 36paunsie Tpyasl. O6mmas Teopus obonouek. T. 1. Mocksa : U3n-Bo Akagemun nayk CCCP, 1962. 528 c.
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tona Jlarpana, cyTb KOTOPOIO COCTOsJIA B IOIIArOBOM IEPECTPOESHUN KOHEYHO-AIIEMEHTHON CETKH C y4e-
TOM TMOJTYYEHHBIX HHKPEMEHTAIBHBIX NepeMenieHnid. B 3a0auu uccredosanus BXoQUI0 mocTpoeHne 6amod-
HO-IIPY’>KMHHOI MEXaHMUYECKOM MOJIEIH IIyTEM BBEICHMS B CMEKHBIX y3JIaX JUCKPETHOM CTEPIKHEBOU MOjie-
JM TPEXMEPHBIX OJIOKOB M3 KOMOMHHMPOBAHHBIX KOHEUHBIX JJIEMEHTOB B BUE JIMHEHHBIX M MOBOPOTHBIX
TIPY’KUH; HaIlUCaHUE U OTIa[ka Makpoca Ha s3bike APDL nporpammuoro kommiekca ANSYS Mechanical®,
MO3BOJIAIOLIETO YAAIATh U 3aHOBO CTPOUTH KOHEYHO-3JIEMEHTHYIO CETKY C COXPaHEHHEM MCXOIHOM TOIIONO-
THH MOJIETIN; TAPUPOBAHHE )KECTKOCTEH KOMOMHUPOBAHHBIX 3JIEMEHTOB; pEIIeHNe TECTOBBIX 3a/1ad.

2. MeToa uccjaea10BaHus

KoneuHo-anemMeHTHOE MOAENMPOBAHUE JIMHEHHO ymnpyroi aedopmaiii TMOKOTO CTEPXKHSA C y4eToM
OONBIIUX TEPEMEIIEHUI MPH CTaTHUYE€CKOM HArpy>KEHHH BBITIONHSIIOCH B Cpe/ie MPOrpaMMHOTO KOMILIEKCa
ANSYS Mechanical. Crepxenp pa3zduBaics Ha npocTpaHcTBeHHBbIE (3D) nByXy31moBble OamO4YHbIE KOHEY-
HBIE 3JIEMEHTHI. B nanpHeiineM ObUIM pacCMOTPEHBI 1B€ KOHEYHO-3JIEMEHTHBIE MOJIEIH Y3JI0OBbIX COEAMHE-
HUM: 0OBIYHAST MOJIEIb, CBS3BIBAIOIIAS y3JIOBBIE MEPEMEIICHHS U YIJIbl TTOBOPOTa cMEeXHBIX KO, n Mozaens,
B KOTOPO# 0aJ0uHBIE HIEMEHTHI COSTUHSIIICH B CMEXHBIX y3JIaX ¢ IOMOIIbI0 KOMOMHUPOBAHHBIX (TPYKHH-
Heix) KO. [Ipouecc Tpancopmanuu GopMbl CTEPIKHS U3 HCXOIHOTO COCTOSHUSI B KOHEUHOE MPEICTABIISICS
B BHUJIE MOCJIEIOBATEIBHOCTH maroB. Ha kak1oM 1are BBITTOMHSIACH KOPPEKIIHS U TIEPECTPOCHUE TeOMET-
pPHM CETKH C YYEeTOM IOJIyYeHHBIX NepeMelIeHni Ha mpeapinymeM mare. Ilpu mepecTpoeHun ncXomHas
TOIOJIOTHYECKash MH(OPMALIUST MOJIEIH TIOJTHOCTBIO COXpaHsiach. B o0miem ciydyae KOOpAWHATHI B y3nax i
u j KO Ha k-M mare Harpy>xeHusi BBIYUCISUTUCH IO hopmynnam (puc. 2):

, S=1, ] .

K D g® | 0D BB D

N

Jlia HanMcaHus MaKpOCOB MCIOb30BaJICA S3bIK porpammupoBanust APDL, Bctpoennsiii B ANSYS.
bnok-cxemMa Makpoca, peaau3yolero MHKPEMEHTaIbHOE HAarpyKEHUE M KOPPEKLHUIO Y3JIOBBIX IepeMelle-
nuii KO, npencrasnena Ha puc. 3.
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Puc. 2. Cxema tpanchopmanuu reomerpun 6anoqHoro KO (#step — YUCIIO MIArOB HATPYKEHHS)
W c 1o uHuk: Bemonneno ILI1. aitxypoBbim.

Figure 2. The diagram of transformation of the geometry of the beam finite element
(nstep — the number of loading steps)
S o urce: made by P.P. Gaidzhurov.

5 ANSYS Mechanical APDL Tutorials. URL: http://www.worldcolleges.info/sites/default/files/mel.pdf (accessed: 21.04.2025).

466 ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS



latioxypos I1.1., OaHuk H.5., Knumyx A.B. CTpouTenbHas MexaHuka MHXEHepHbIX KOHCTPYKLMA u coopyxeHnit. 2025. T. 21. Ne 5. C. 462-473

Bxox B mpemnponeccop:

KoppeKTHpOBKa MOAEIH ¢ YUETOM ITOTy4EHHBIX MIEpeMele-
‘ HHH:

1) ymazeHHe NpeabITyINEH CETKH:

2) ymanenue Beex 'Y

3) ymaizeHue npeablIyInel reOMETPHH (JTHHHH H TOYEK);
4) mocTpoeHHE CKOPPEKTHPOBAHHON I€OMETPHH MOCIIH;
5) mocTpoeHHE HOBOM KOHEUHO-3/IEMEHTHOMH CETKH.

Hauamo pacuera

Bxox B npenponeccop

TlocTpoeHHE HCXOTHOM KOHEYHO-3IIe-
MEHTHOH MOJETH

Bexox u3 npenpoueccopa

l —»| Bomxon us npenponeccopa

k=1

=+ Her
O k—:l k=g —> (D)

Ha
Bxox B pemartens
3agaHHe CTaTHYECKHX M KHHEMATH-
yeckux ['Y Bxox B moctmporneccop
Pemenne CJIAY DopMHpOBaHHE TA0IHIIBI IPOTOIBHBIX YCH-
Brxon us pemarens mmii B KO
BusyamHsanma pesyIbTaTos

Bemxon u3 npenporneccopa

OxoHuaHHE pacucTta

Puc. 3. bnok-cxema Makpoca 11 pacueTa CTeP>KHS C YIETOM KOPPEKTHPOBKU T€OMETPHUU:
T'Y — rpanuunsie ycnosust; CJIAY — cucrema THHEHHBIX alreOpanvecKux ypaBHEHUH

W c 1o uHuk: Bemonneno [LI1. aitxypoBbim.

Start of analysis Preprocessor entry:
Model adjustment taking into account obtained
* displacements:
1. Deletion of previous FE mesh;

Preprocessor entry;

Construction of initial finite element
model of the structure;

Preprocessor exit

Deletion of all BC:

Deletion of previous geometry (lines and points);
Construction of adjusted geometrical model;

5. Construction of new finite element mesh.

l | Preprocessor exit

=

v
T e

Yes
Solver entry;
Definition of static and kinematic
BG; Postprocessor entry;
Solving of SLAE: - ’ . .

© \_m‘g ° ’ Generation of table of axial forces in FE;
Solver exit o
Visualization of results.

Postprocessor exit

End of analysis <

Figure 3. Flow diagram of the macro for calculating bars, taking into account geometry adjustments:
BC — boundary conditions; SLAE — system of linear algebraic equations
S o urce: made by P.P. Gaidzhurov.
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['maBHBIM HEOCTATKOM MPEATIAraeMoro Moaxoja K KOHEYHO-3JIEMEHTHOMY MOJIETTMPOBAHHIO (hOPMOU3-
MEHEHUSI THOKOTO CTEPKHSI SIBIISIETCS TO, YTO TpHu TakoM aHanu3ze HJIC He yduThIBaIOTCSI OCEBbIE MOBOPOTHI
(BpamieHne) 6aJOuHBIX AIIEMEHTOB «KaK >KECTKOE Iejoe». Bmecte ¢ TeM pa3paboTaHHBINA MPSIMOW WHKpe-
MEHTAJIBHBII METON pacueTa TMOKUX CTEp)KHEH B CHIIy CBOETO JETEPMHHHU3Ma SBISIETCS, O€3yCIOBHO, CXO-
JSIMCSL.

3. Pe3yabTaThl M 00Cy:KI€eHUE

C nenpio Bamumanuy pa3pabOTaHHON MaTeMaTHYecKod MoAENTH (OPMOM3MEHEHHS] THOKOTO CTEPXKHS,
a TaK)Ke OLEHKH CXOJMMOCTH IPEAaraeMoro BBIYHCIUTEIHHOTO aJTOpUTMa, 0a3upyIOIIErocsi Ha WHKpe-
MEHTAJILHON cXeMe Mpollecca Harpy>KeHHsl U COOTBETCTBYIOIIEM MEPECTPOCHUN KOHEUHO-IJIEMEHTHON CeT-
KU, pCHICHBI TCCTOBBLIC IIPUMEPLI.

Ipumep 1. Pacuer KOHCONIBHOTO CTEPIKHS, 3arPYKEHHOTO Ha CBOOOHOM KOHIIE COCPEIOTOYEHHOH CH-
noit. Micxonmubie naHHbIe: [UTMHA KOHCOIH [ = 1 M; KBajipaTHOE MOTepedHoe ceueHre co cTopoHoi a = 0,01 m;
BeIMYHMHA cocpenoroyeHHoi cuibl F = 0,04167 H. Tlonaranock, 4to B nporecce aeopMUpOBaHUsT KOHCO-
JIM HaIlpaBJIeHHWEe CWIIbl HEe M3MeHseTcs. /|11 KOHEYHO-3JIEMEHTHOTO MOJEIMPOBAHUS UCIOIB30BANICS MPO-
CTpaHCTBeHHBIN OanmouHbii KO ¢ mecThio cTenensMu cBo0o-
1Bl B y3ie. PaccMarpuBanich 1Be KOHEYHO-3JIEMEHTHBIE MO-
Jenn KoHconu: 1 — pa30uBKa Ha «CTaHAAPTHBIE» MPSIMOIH-
Heiiapie KD onwHakoBOW JWHBI, 2 — pa30WBKa Ha Hee-
dopmupyembie mnpsiMonuHeiHbie KD OQMHAKOBON UIMHBL

Y J s obenx moneneil cMexHsle y3nbl KD coenunsnuce ¢ no-
LA > MOIIBI0 YNPYrux MapHUpoB (puc.4). Moayau ymnpyroctu
’1_/5‘5/2\ ’_lf_‘ LT X Mmarepuana Oamoynoro KD mis mepBoit um BTOpOM Momenei:

Z b b

EW=10"HM u E® = 10" H/M>. 3naueHus xecTrocTeil
YOpyTUX MapHAPOB (puc. 4):

Puc. 4. Cxema cTepxHs
¢ 6JI0KaMH yHpyTHX IIapHUPOB

W c 1o 4Huk: BeimonHeHo [LI1. 'aitxkypoBeIM. kx ;= 1.0 H/M,
Figure 4. Diagram of a bar ;
with blocks of elastic hinges ky = 10" H/wm;

S our c e: made by P.P. Gaidzhurov.

~

kx’y = 1.0 H-m/pagx;

s 4 K3 k= 0.03333 H-m/pan;

Xﬁr

Ir s 8 K3 k= 0.06667 H'm/pa.

Brrunciienne 3KBUBAJIEHTHOM MKECTKOCTH IOBOPOTHOU
NPY>KUHBI BBIIOTHAJIOCH IO opMyIie

ke, =(ED Jy/1;,

rne /; — nmmna KD.
X0

I BI/I3yaJ'II/I3aL[I/I$[ KOHCOJIM 40 U ITOCJIC I[C(I)OPMaLII/II/I npen-

cTaBjieHa Ha puc. 5. Ha 3TOM pucyHKe X U )] — pe3yiib-

Puc. 5. Buzyanuzauus nedopmanuu

THOKOTO KOHCOMEHOTO CTEPIKHS TUPYIOIIUE KOOPAUHATHI TOYKH IIPUIOKECHHUS COCPENOTOYEH-

W ¢ T o4 Hu k: BeinonaHeno [LI1. IaitaxypoBeiM. HOM CHJIBI F.

Figure S. Visualization of the deformation
of a flexible cantilever bar
S o urc e: made by P.P. Gaidzhurov.

U3 rpadukoB Ha puc. 6,6 u 7, 6 BUIHO, YTO yMEHbIIIE-
HUE IIara pa30MBKU MPUBOJUT K 3aMETHOMY YMEHBIIIEHUIO
KECTKOCTH KOHEYHO-3JIEMEHTHOW MOJEIH KOHCOJIH.

ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS
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Oror >ddexT He HAOMOZAeTCS TPH HUCIOIH30BAHUU
nepBoit Mozgenu (puc. 6, a u 7, a). I3 aHanm3a mpencraBicH-
HBIX TPAQUKOB X ~Ngien U V|~ Ngep TAKKE CICAYET, YTO

mponecc ABJIACTCA MOHOTOHHO  CXOAALIUMCH. ITocne

Ngep = 100 yTOUHEHUE BEIMUMH X; U ) A1 00eux Mofe-

Jei IPOUCXOIUT TOJBKO B TPETHEM 3HAKE.

Jlnst cpaBHeHus B Ta0i. 1 mpuBeAeHb! 3HAYEHUs X U Y/,
HOJTy4€EHHBIE Ul aHAJOTMYHBIX MOJENEN KOHCOIU C UCIONb-
30BaHUEM HEJIMHEWHOTrO permareiis komiuiekca ANSY'S.

Tabauya 1/ Table 1

3navyenus X] u )] xoncoan / Cantilever beam values X; and )y

Tun monesu / X[,m/m Yi,m/m
Model Type | 4 k5 /FE | 8KD/FE | 4KD3/FE | 8KD/FE
1 0,6121 0,6123 -0,7199 -0,7153
5 0.7362 0.5515 Ipouecc ve cxomurcst /
The process does not converge

W c 1o 4Huk: BeimonHeno H.B. Jlanukom n A.B. Kiinmyx /
S ource: made by N.B. Danik and A.V. Klimukh.

CpaBuuBas rpaduku Ha puc. 7 U 8 ¢ JaHHBIMH TaOI. 1,
yCTaHABJIMBAEM, YTO PE3YJbTaThl, IMOJYYECHHBIC C MTOMOIIBIO

MOI[CJ'IGIZ lu 2, Ka4€CTBCHHO COITIACYIOTCA C BEJIMYMHAMHA )Cl

u ) xommiekca ANSYS.

DMIopel pachpeesieHus: NpoAoiabHbIX cHil N B 3JIE€MEH-
Tax KOHCOJIH, IMOJIYYEHHBIE C MOMOIIBIO HEJIMHENHOIrO peria-
tenss ANSYS u mo npearaeMoii METOMKE C MCIOIb30Ba-
HUEM TepBoil Mojenu (0e3 ynpyrux MIapHUPOB), PUBEICHBI
Ha puc. 8 u 9. Kak BugHO U3 puc. 8, MAKCUMaJIbHOE 3HaYCHHE
cunsl N =0,03907 H, BbIuyucieHHOEe NMpU BKIIOYEHHOU OI-
nuun “Large Displacement Static” (Gomnbiine nepeMenieHus),
M0 BEJIMYHMHE CONOCTABUMO C BEJITUYMHOW 3aJJaHHOTO YCHIIHS
F=0,04167 H. Bmecte ¢ TeM npu MOJAEIUPOBAHUN KOHCOJIH
C TMOMOIIBIO pa3paboTaHHON OaNOUHO-IIAPHUPHON MOJENU
MPOJOJIBHBIE CHIIBI B 3JIEMEHTAX KOHCOJIH C ISITOrO MO BOCh-
MOI Ha TpU MOPSAJKA MPEBBILAIOT BEJIMYUHBI NN, TpeACcTaB-
JeHHble Ha puc. 8. OTMETUM, YTO B COOTBETCTBHHM C Mpeasia-
raeMoyd METOJUKOW MPOJOJbHbIE YCWJIMS B 3JEMEHTax BbI-
YHUCISUTUCH 10 «XPECTOMATUIHOI hopmyrie

EA; (n
ﬁ@::———iAISSMJ, i=12,...,n,,
l i
rac A — IJIomaab MONCPEYHOr0 CCUCHUS CTCPIKHA, li —

(n step)

mmHa i-ro KO; A ; — W3MEHCHHUE JJIMH DJIEMCHTOB Ha

NOCIIETHEM LIare HarpykeHus; n, — yuciao KO

AHAIUTUYECKVE W YMCHEHHBIE METOZbI PACYETA KOHCTPYKLIIA

XM X/, M
0,615
0,61
0,605
0,6
0,595
0,59
0,585
0,58
0,575
0,57

0,42

0,396
20 40 100 200 300 7step

a o

20 40 100 200 300 7step

Puc. 6. I'paduxn X; ~ Astep:
a — TiepBasi MOJIeJb; & — BTOpasi MOJICIb
W cTouHuk: Bemonreno H.B. lanukom n A.B. Kimnmyx.
Figure 6. Graphs of X; ~ Hstep:
a — the first model; 6 — the second model
S o urce: made by N.B. Danik, A.V. Klimukh.

-0,74

6
20 40 100 200 300 nsiep 20 40 100 200 300 7step

a [

Puc. 7. I'paduxn )i ~ Astep:
a — TepBast MOJIeJb; O — BTOpasi MOJIEINb
W cTouHuk: Bemonneno H.b. Jlanukom u A.B. Kinmyx.
Figure 7. Graphs of y; ~ step:
a — the first model; 6 — the second model
S o urce: made by N.B. Danik, A.V. Klimukh.

N,H/N

007411
.010929
.014446
017964
.021482
024999
028517
.032035
035552
.03907

BO0CEEONE

Puc. 8. Dmopa N (ANSY'S HenmMHeHHbIIH pelaTens )
W c 1o 4Huk: BeinonHero ILIT. aitukypoBbim.

Figure 8. Diagram of N (ANSYS nonlinear solver)
S ource: made by P.P. Gaidzhurov.

11
34
,03
,09
59,80

0,8742
6,946
16,73
28,
39
49

56

Puc. 9. Dmopa N (mrepBast MOeIb)
W c 1o uHuk: BeimonHeno H.b. lanukom u A.B. Kinmyx.

Figure 9. Diagram of N (the first model)
S ource: made by N.B. Danik and A.V. Klimukh.
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(pj,pazl (Pj,pall
1,4 1.4
1,2 1,2 n.=20
, = 1
1,0 =20 1,0
0.8 n~10 08 n;=10
0,6 0,6
0.4 0,4
052 ni =2 0,2 n; =2
0 0
1 2 3 47 1234567 8j

a

o

Puc. 10. I'padux 3aBucumocty @; ~ j:
a—4K9;6—8KD

W cTouHuk: Bemonneno H.b. [lanukom u A.B. Kiumyx.
Figure 10. Graph of ¢, ~ j:
a—4FE;6—8FE
S ource: made by N.B. Danik and A.V. Klimukh.

1) S —
1 2345678/
a o

I 2 3 4

Puc. 11. I'padux 3aBucuMocT™ m; ~ j:
a—4KD;6—8KD
W cTouHuk: Bemonneno H.b. [lanukom u A.B. Kimumyx.
Figure 11. Graph of m; ~ j:

a—4FE;6—8FE
S ource: made by N.B. Danik and A.V. Klimukh.

k2, (Hay/pan i
0,025 1 0,06 ke, (H)ipan
0,020 0,05
0,015 "= 0.8
0,03
0,010
0,02
0,005} n;=10 1,220 | 0.01
0
0 3 4 2 34 5 6 7 8/
a o0

Puc. 12. I'payk 3aBUCHMOCTH &, ~ j:
a—4KD9;6—8KD
W cTouHuk: Bemonneno H.b. lanukom u A.B. Kimumyx.
Figure 12. Graph of &, ~ j:

a—4FE;6—8FE
S o ur ce: made by N.B. Danik and A.V. Klimukh.
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BrIsiBIEeHHOE HECOOTBETCTBUE B 3MMopax N OOBsACHS-
€TCsl TEeM, UTO MPHU UCIIOIH30BAHUH HEJTMHEHHOTO periaress
ANSYS aktuBu3zupyercsi peXUM yMEHbIIEHUS KECTKOCTU
CTEp)KHS B 3aBHCHMOCTU OT CTENEHHU ero (opMou3MeHe-
HUA. B mpemgmaraemMoil METOAMKE MPOIOIbHAS KECTKOCTH
CTEp’KHA B mpouecce AedOpMUPOBAHUS HE H3MEHSETCH,
YTO COOTBETCTBYET (PU3MUYECKOl KapTHHE paccMaTpuBae-
MOM U3THOHOM ehopmaIuy.

I'padpukn 3aBHCHMOCTH YITIOB IIOBOPOTOB (¢ ; ), MOMCH-

TOB (m ;) M KeCTKOCTeil (K, ;) OT IONOKEHHS YHPYIrHX

BCTaBOK (BTOpasi MOZIEIb) /ISl BAPHAHTOB Pa30MBKU KOHCO-
7M1 Ha 4YeTbIpe U BoceMb KO nokaszansl Ha puc. 10—12.

Ha »1Tux pucyHkax 3Ha4eHHE IapameTpa j COOTBETCTBY-
€T HOMEpY YIIPYyroro IapHupa (Hymepaius IapHUpOB OT 3a-

JIEJIKK); 71; — HOMEP CTYIIeHH Harpyxenus (1 ; =2, 3, ..., 20).
Bemuunbt l;z ; BBIYUCIUIMCK 110 (hopmyrie IEZ j=m;le ;.

W3 npusenennsix Ha puc. 10 u 11 rpadukoB BHIHO,
YTO ABYKPAaTHOE yMEHbBIICHHE IlIara CETKH MPAKTHYECKH
HEC BJIMSACT HA 3HAUYCHUSA ([)j u I’l’l] . Ha3snauenHnsle arnpuo-

PH BEIHMYHHBI )KECTKOCTEH MOBOPOTHBIX NPYKHH K, j

(0,03333 H'm/pan ansa 4 KD u 0,06667 H-m/pan nns 8 K3)
COTJIACYIOTCSl ¢ AHAJOTHYHBIM MaKCHMAaJIbHBIMU 3HadYe-

HUSIMH kzj Ha rpadukax puc. 12, a (0,025 H'm/pan) u 9, 6

(0,056 H-m/pan) nipu k = 2.

IIpumep 2. I'nOkuii KPUBOIMHEHHBINA CTEPKEHDb MPs-
MOYTOJIBHOTO IonepeyHoro cedenus X1 M paguycom
100 M 1 yraom pactBopa ayru 45° | jxecTko 3aKperieHHbIiH
Ha koHIle (x = 0, y = 0, z = 0) 1 Harpy>XeHHBIIA Ha CBOOOI-
HOM KOHII€ M3 IUIOCKOCTH COCPENOTOYECHHOM cuion F_ =

600 H (puc. 13). KoopmuHuatsl x, y, z CBOOOIHOTO KOHIIA
CTEpXHSA B UCXOMHOM TonoxeHuu: 29,29 m; 70,71 m; 0 M.
Monyns ynpyroctu Mmarepuana crepxkus E = 10 MIla.
Crepxenp pazouBaics Ha 16 mpoctpaHcTBeHHBIX KO Oa-
nouHoro tumna. [lo ananoruu ¢ mpeaApAyIIMM PUMEPOM Ha
CTBIKaxX 3JIEMEHTOB BBOIMJINCH OJIOKH M3 YNPYIHX IIApHU-
poB (puc. 14).

PacueTrsl BBINONHIUCH U1l TPEX BapUAHTOB KOHEYHO-
AJIEMEHTHBIX MOJIENIe KPUBOJIMHEWHOTO CTepXkHs: [ — HC-
MOJIB3YIOTCS TOJIbKO OanounbiMu KO; 2, 3 — ucnonb3yioTcs
6anounbsie KO B coueranuu ¢ 610KaMu U3 yNpyrux IapHU-
poB. ITapameTpsl OI0KOB IAPHUPOB:

® JUJIST MOJIEH 2:

ky=ky,=k,=k,=k,=k,=E

ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS
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® I MOJEIIHU 3:
k.=k y= k,= E = 10" (uenedopmupyemslii crep-

JKEHb); l€x=l€y=l€2 =0,295-10° H-m/pag.

PeSy.HI)TaTBI MOJCIIMPOBAHUA B BUJAC KOOpAWHAT TOYKH

IMPHUJIOKCHUS CHUJIBI B ,I[e(bopMI/IpOBaHHOM COCTOsAHNHN Xp,

Ypr Zp (puc. 13) ¥ COOTBETCTBYIOIIETO PaJNyC-BEKTOpa Puc. 13. PacueTHas cxema
KpHBOHHHeﬁHOFO CTCPIKHA
W ¢ 1o 4Huk: BeinonHeHo ILIT. aitkypoBsim.

2 2 2
=./X5 + + zZ cBeneHsl B Ta0I. 2. 31ech MOCTPOUYHO
p PV p 4 A P Figure 13. Model of a curved bar

NPUBEIEHBl JaHHBIE AJIS TPEX MOJENEH B 3aBUCHMOCTH OT S ource: made by P.P. Gaidzhurov.
YHCIIa CTYIIEHEN HArpyKEHUA M step - [ns cpaBHEHUd aHAIIO-

TMYHBIN pacdyeT KPUBOJIMHEHHOIO CTEep)KHA 0e3 IapHUPHBIX
0s0koB ObLT BhIMOIHEH B ANSYS ¢ ucnoibp30BaHUEM HEJIH-
HEWHOTO pemarens. B utore morydeHsl ClieayIonue 3Haue-
HUS KOOPJIMHAT:

+1,j+1

Xp= 15,5639 m; y p= 46,8962 m;

Z 5 =53,613m; P=7291 .

JlaHHBIN pe3yapTaT JOCTAaTOYHO XOPOIIO COTIACyeTCsl C
pacueToM 1O TpeIaraeMoi METOANKE ¢ MTPUMEHEHUEM Tpe-
TheW Moaenu nipu #; = 20 (B Ta0J. 2 MOAYEPKHYTO).

DTaJOHHBIM PENICHHEM pacCMaTpUBAEMOW 3a/ladd SB-

Puc. 14. Cxema ctepxHs u Oj10Ka
YHOpYTux MapHUPOB
M c 1o 4Huk: BemonHeno [LI1. NaitaxypoBbIM.

JISFOTCSL KOOpAMHATHI [7; 8]: Figure 14. Diagram of the bar and block
of elastic hinges
X P =15,56 m; y p =46,884m; z p = 53,66 m. S our ce: made by P.P. Gaidzhurov.
Tabnuya 2 / Table 2

3uavenust X | U )| A1si KpUBOJAMHeiiHOro cTepxkusi / Values of X ; and )’ for the curved bar

IlepBasi MoneJib, BTOpPasi MOJejb, TPeThst Moaeab / The first model, the second model, the third model

step X / / z / /

p,M m yp,M m p,M m P,mM/m
14,301 33,996 65,405 75,09
10 7,24618 31,714 67,803 75,22
16,022 46,690 55,900 74,58
14,841 35,122 61,973 72,76
20 8,2624 33,037 63,914 72,42
16,100 46,814 53,743 73,07
15,171 35,826 59,906 71,43
60 8,7549 33,855 61,601 70,83
16,166 46,922 52,385 72,16
15,281 36,064 59,221 71,0
100 8,920 34,130 60,84 70,33
16,192 46,964 51,925 71,86

W ¢ 1o uuuk: semonneno ILIL TaitkypoBeiM / S o u r ¢ e: made by P.P. Gaidzhurov.
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be3yciioBHO paccCMOTpPEHHBIM MOAXOA K MOAETMPOBAHUIO THOKHX CTEp)KHEW SBISIETCS TOCTATOYHO
NpUOIKEHHBIM, TaK KaK HE YYUTBHIBAET OCEBBIX MTOBOPOTOB OAJIOUHBIX AJIEMEHTOB «KaK KECTKOE IIeJI0e).
OpnHako BBEACHHE JOMOJHUTENBHBIM yNPYTUX MIAPHUPOB IMO3BOJISET KAY€CTBEHHO OICHUTh KapTHHY Jie-
dbopMupoBaHUs CTEp)KHEH JI000W KOH(UIypalMu Kak A KOHCEpBAaTUBHOW, TaK W IS «CIEASIIEH»
Harpy3ku. OTo JielaeT JaHHYI0 KOHIEMIHIO BECbMa MPUBIEKATENbHOM MPH KOHEYHO-3JIEMEHTHOM MOJIEIU-
POBaHHH CIIOXKHBIX TPAHC(HOPMHUPYEMBIX CTEPIKHEBBIX CUCTEM.

4. 3akiaoueHmne

1. IIpeumyiiecTBOM MOAEIMPOBAHUS YIPYTOoro rHOKOrO CTEpKHs JIBYXy3/10BbIMU 3D 0anouHbIMU KO-
HEYHBIMH JJIEMEHTAaMU, COCIUHEHHBIMU B CMEXKHBIX y371aX yNPYTUMH IIAPHUPHBIMU BCTaBKaMH, IO CPaB-
HEHUIO C OOIIENPUHATBHIM MOJXO0I0M, 0a3HPYIOIIUMCS Ha UCIOJIB30BAaHUN KacaTeIbHOW MaTpPHUIIbI KECTKO-
CTH, SIBJIIETCS MPOCTasl AITOPUTMU3ALUS IATOBOM MPOLEAYPBI, KOTOpPask MO3BOJSAET JOCTATOYHO TOYHO IS
WH)KEHEPHOU IPAKTUKHU ONPEACIUTh y3JI0BbIE IEPEMEIIEHHS U IPOJOIbHBIE YCHIIUS B HCCIEAYEMOM JUarna-
30HE Harpy3KH.

2. IlpennaraeMslii IpAMON MHKPEMEHTAIIBHBINA AJITOPUTM PELICHUSI TEOMETPUUECKH HEIMHEMHOM 3a/1a-
Y CTPOUTEIBHON MEXaHUKHU B OTJIMYME OT HEJIMHEHHoro pemtaresns kommiekca ANSY'S siBisercst abcomtor-
HO CXOASILIMMCS IIPU JIF0OOH cXeMe AUCKPETU3a TMOKOr0 CTEPHKHSL.

3. B mepcrnexktuBe pa3paboTaHHas METOIMKA Ha3HAYEHHs JKECTKOCTEH MOBOPOTHBIX HPYKUH MOXKET
OBITh MCIOJb30BaHA IPU MOAEIMPOBAHUM Ipoluecca (HOPMOU3MEHEHUS! PErYISPHBIX MPOCTPAHCTBEHHBIX
CTEP>KHEBBIX CHCTEM ITPH YIIPABISAEMOM KHHEMAaTH4e€CKOM BO3JEICTBUH.
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Abstract. This research covers and compares the thermomechanical behavior of steel and recycled aluminium plates under
concentrated loading and buckling conditions in several thermal conditions simulating the tropical savanna (Aw) climate. The
study aims to explore their structural behavior as a function of temperature and evaluate their applicability in heat-sensitive
applications. Finite element analysis (FEA) was used to model the buckling and deformation behavior of the two materials at
temperatures from 0°C to 44°C and uniaxial loading of up to 100 MPa. The analytical and numerical solutions were compared;
their results would differ no more than 5%, thus validating the FEA model. The steel plates generally buckled less (greater critical
buckling load) in hotter thermal conditions than the aluminium. The buckling load of steel reduced by approximately 40% in
Mode 1 when it went from 33°C to 44°C, while the buckling load of aluminium reduced by just 4.71%. The same trend was
observed in Mode 2. These findings validate that recycled aluminium possesses superior thermomechanical stability to tropical
thermal fluctuation and can be a good alternative as a material for structures in applications of high thermal fluctuation, which will
be beneficial towards maximum utilization of resources in building engineering.
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AHHOTanus. PaccMOTpeHBI U CpaBHEHBI TEPMOMEXaHHUECKUE XapaKTEePUCTUKU TUIACTHH U3 CTAJM U NepepabOTaHHOTO aTFOMUHUS
B YCJIOBUSX JIEHCTBHS COCPEIOTOYEHHOW HArPy3KH U IMOTEPH YCTOWYMBOCTHU IPH HECKOJIIBKUX TEMIIEPATyPHBIX PEXHMaxX, UMHUTH-
PYIOIIUX KIMMaT TPOIMYECKOH caBaHHBL. Llenb mccrnenoBaHusi — HM3ydeHUE MX MPOYHOCTHBIX XaPAKTEPHCTHK B 3aBUCHMOCTH OT
TEMITepaTyphbl U OIlEHKAa UX NMPUMEHUMOCTH B TEPMOYYBCTBUTENBHBIX OOmactsx. [y MogennpoBaHus MOBEICHUS ABYX MarepHa-
JIOB TIPH MOTEPE yCTOWYMBOCTH U JAeGopMupoBanuu mpu temneparypax ot 0 °C mo 44 °C u omHoocHO# Harpyske mo 100 MIla
UCIIOJIB30BaH METOJ KOHEYHOTO 3JeMeHTa. [IpoBeieHO cpaBHEHHE aHATMTUYECKUX U YUCICHHBIX PELICHUH; UX Pe3yJbTaThl OTIH-
yanuchk He Oojee yeM Ha 5 %, YTO MOATBEPIUIO TOYHOCTh KOHEYHO-3IEMEHTHOH mojenu. CTalbHble TUIACTHHBI, KaK IPaBHIIO,
Obutn Oosee ycTOWYMBBI (BBI3BIBAIOIIAS MTOTEPI0 YCTOMYMBOCTH KPUTHUYECKAsl HAarpys3Ka BbIIIE) IPU MOBBIIIEHHOW TeMIeparype,
yeM amoMuHueBble. [Ipu noBbIeHnH Temreparypsl ¢ 33 1o 44 °C kpuTHueckas Harpy3ka CTalli B peKUMe | CHU3WIIaCh IpUMep-
HO Ha 40 %, B TO BpeMs KaK KpHTHYECKas HAarpy3Ka allOMUHUS CHU3Wiach jumb Ha 4,71 %. AHanorwmdHas TEeHACHIUS
HaOJroaIach U B pexuMe 2. ITH pe3yibTarhl MOATBEPIKAAIOT, YTO NMepepadOTaHHbIA ATFOMUHHIA 001a1aeT IPEBOCXOJHON TepMO-
MEXaHMYECKOH YCTOHYNBOCTBIO K TPOITMYECKUM TEMIIEPATyPHBIM KOJIEOaHUSM U MOKET OBITh XOpOLIeH aJbTepHATHBOM B Ka4eCTBE
MarepHana Uil KOHCTPYKIHH B yCIOBHUAX BBICOKHX TEMIEPATYPHBIX KoldeOaHuid, 4To OyJeT CIocOOCTBOBATh MAaKCUMAIbHOMY HC-
[0JIb30BAHHUIO PECYPCOB B CTPOUTEIILCTBE.

KiarwueBble cioBa: rnoreps YCTOI>‘I‘II/IBOCTI/I, KpUTHYCCKas Harpyska, ne(l)opMauI/m, nepepa60TaHHLIe AJIFOMUHHUECBBIC ITJIACTHUHBI,
CTaAJIbHBIC TTIACTUHBI

3asiBiieHne 0 KOHGINKTE HHTEPECOB. ABTOPBI 3asBJIIOT 00 OTCYTCTBUM KOH(IINKTA HHTEPECOB, (PMHAHCOBOIO MJIM HHOTO XapaKTepa.

Bxaanx aBropoB: Yuaouexuxaobu I1.4. — KOHIENUS, METOAOJIOTHS, pacyeT, IporpaMMHasl peain3anusi, pyKOBOJACTBO, yIpaBJe-
HUe npoekToM, Banuaauus; Onyoxa O.C. — KOHLENTyalu3alus, METOIO0JIOT U, IPOrpaMMHasl peanu3alusi, HallMCaHue TEeKCTa;
Dazbyiiu A.D. — peleH3NpoOBaHNe U PEJaKTUPOBAHME, HHTEPIpETalus JaHHBIX. Bce aBTOPHI MPOYUTANH W OHOOPHMIN OKOHYA-
TeJbHBIN BAPUAHT PYKONHUCH.

doas untupoBanusi: Chiadighikaobi Ph.Ch., Onuoha O.C., Fagbuyi A.E. Thermomechanical performance of steel and recycled
aluminium plates in tropical savanna climatic conditions // CTpouTenbHas MEXaHHKA HHXXCHEPHBIX KOHCTPYKIHMH U COOPYXKEHUI.
2025. T. 21. Ne 5. C. 474-494. http://doi.org/10.22363/1815-5235-2025-21-5-474-494 EDN: DGNKGJ

1. Introduction

The thermomechanical properties of materials are a dominant factor in defining their suitability in
structural systems under varying climate conditions of tropical savanna regions. Steel is the most favoured
material for load-carrying structures due to its increased strength, ductility, and proven reliability. But the
highly corrosive tendencies of steel have resulted in the continuous search for alternative materials. From
the integration of fibre-reinforced polymers to the use of recycled plastic bricks, several materials have been
explored, with their mechanical properties analysed to obtain the potential advantages and limitations.
Among these alternatives, aluminium has gained considerable attention. Aluminium is resistant to corrosion
and has been used as an adequate replacement for steel in some specific conditions globally.

Beyond its mechanical advantages, the consideration of aluminium also extends to issues of material
availability and life cycle utilization. Waste management has a significant environmental impact [1]. The
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disposal of aluminium cans, commonly used for soft drinks, has become one of the prevailing issues. These
cans are found littering the environment, adding to pollution and waste management challenges, as they
cannot be easily decomposed. This condition presents a dual challenge: addressing environmental pollution
and finding sustainable uses for these waste materials. Repurposing these aluminium cans into components
for aluminium plates in construction is a sustainable solution. This approach aids in reducing environmental
pollution and contributes to the development of eco-friendly construction materials.

The widespread use of aluminium cans can be traced back to advancements in food science. Today,
aluminium cans are considered a conventional means of packaging food and beverages for commercial
consumption. Previously, glass dominated the drink packaging market until the late 1950s.> The first all-
aluminium beverage cans were introduced in 1958 by the Hawaii Brewing Company for their “Primo
Beer”.* Aluminium has increasingly been used as a method of canning due to its low weight, low cost, and
recyclability. “The world's beer and soda consumption uses about 180 billion aluminium cans every year.
This is 6,700 cans per second, enough to go around the planet every 17 hours”.> Aluminium cans are made
from a combination of elements to form an aluminium alloy. The chemical makeup of this alloy varies.
Table 1 summarises the chemical makeup of aluminium alloys.

Table 1
Chemical makeup of aluminium alloy
Element Symbol Percentile make-up, %
Aluminium Al 93.75 - 96.46
Magnesium Mg 2.53-4.82
Manganese Mn 0.27-0.33
Iron Fe 0.26 - 0.32

Source: compiled by V.Y. Risonarta et al. [2].

The first step in recycling aluminium cans involves the collection and sorting of aluminium cans based
on alloy type, grade, and other factors. This sorting process can be done manually or using technologies like
eddy current separators, air classifiers, and density separators. After sorting, the aluminium cans are
shredded and cleaned to remove any impurities or coatings. The cleaned aluminium scrap is then melted in
a furnace at high temperatures, typically around 660 °C. The molten metal is poured into ingot casts to set.
Alloy formulas are chosen based on the planned uses for the reprocessed aluminium. Lastly, the resulting
ingots can be transported to aluminium processing or manufacturing plants to be made into new products,
including structural aluminium alloy [3—6]. Although aluminium is a highly recyclable material, there are
only a few recycling industries in Africa.

In Nigeria, for instance, an estimated 87% of aluminium cans are left unrecycled. Reports show that
only 13 percent of recyclable goods are salvaged and recycled in Nigeria, with almost no formal waste
diversion process in place.® The process of recycling aluminium cans into structural aluminium alloys must
be given great attention; poorly recycled alloys will produce underperforming materials.

The application of aluminium in civil engineering is dependent on the physical and mechanical
properties (see Table 2) of the alloy. These properties include density, elastic modulus, ultimate strength,
Poisson ratio, etc.

3 The History of Metal Packaging | A brief overview of metal packaging. 2019. Available from: https://www.shilohplastics.
com.au/history-of-metal-packaging/ (accessed: 14.04.2025)

4 Svendsen A. 60 years of the Aluminium Can — Light Metal Age Magazine. 2018. Available from: https://www.light
metalage.com/news/industry-news/applications-design/60-years-of-the-Aluminium-can/ (accessed: 14.04.2025)

3> The world counts. (n.d.). Available from: https://www.theworldcounts.com/challenges/consumption/foods-and-beverages/
aluminium-cans-facts. (accessed: 14.04.2025)

¢ Aluminium recycling in Africa is an opportunity for big business, Op-Ed by Raymond Onovwigun | Romco Metals. 2022.
Available from: https://romcometals.com/aluminium-recycling-in-africa-is-an-opportunity-for-big-business/(accessed: 03.04.2025).
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Table 2
Aluminium properties
Properties Symbol 5005-H12 Aluminium 6005-T1 Aluminium
Density, kg/m® Q 2,660 2,770
Elastic Modulus, MPa E 70,300 71,000
Poisson’s Ratio v 0.30 0.33
Ultimate Strength, MPa Ru 275 310

Source: compiled by Z. Zuo et al. [7].

The integration of aluminium alloys in civil engineering has been in existence for more than 80 years.
First used in the design and construction of static transport structures like bridges, from the reconstruction
of Pittsburgh’s bridge roadway project in 1933 to the construction of New York’s railway bridge in 1946.
This work fostered the construction of other global aluminium-aided structures as well as the development
of various international standard codes guiding their design [8]. The United States primarily uses the
Aluminium Design Manual (ADM) as guidance in the design of aluminium structures [9]. While BS 8118-
1:1991 is the “Code of Practice for the Structural Use of Aluminium” and was one of the first codes to be
written in limit state format for aluminium design’, and BS EN 1999-1-1:2007 provides the guidelines and
specifications for the design of aluminium structures within the European Union®. Aluminium has been
utilised in some major projects globally to solve various structural and environmental issues; aluminium
alloy was used in the reconstruction of the Real Ferdinando bridge decking in Italy to reduce the self-weight
of the bridge. Likewise, pure aluminium can be used in passive seismic protection systems due to its low
yield strength and high degree of ductility. Furthermore, the integration of aluminium alloys is necessary for
structures exposed to extreme temperature variations. Aluminium lacks negative implications related to
brittleness at low temperatures compared to steel [8]. Aluminium is also utilized in the design of plates and
shell-like structural elements. For example, the design and construction of bridges, roofs, walls, box
culverts, pipe arches, silos, tanks, cooling towers, reactor vessels, culverts, storm sewers, service tunnels,
recovery tunnels, stream enclosures, and underpasses’ [10].

Despite the various advancements in international codes and multiple uses of aluminium globally, there
remains a limited understanding of the effect of temperature on the deformation and buckling behaviour of
aluminium plates under load. Bridging this knowledge gap is key to exploiting the full potential of the
material in varying climatic conditions. As the world grapples with the challenges of urbanisation and a
growing population, the demand for durable and environmentally responsible construction materials has
never been more pressing. This paper reviewed several relevant articles and textbooks acquired with the aid
of multiple research databases, i.e. Google Scholar, Scopus, etc. to validate the accuracy of the theories and
finite element analysis (FEA) carried out in this study. FEA tool (ANSYS) was used to run a comparative
analysis on aluminium and steel plates under simulated real-world scenarios.

1.1. Aluminium Plates

The recycled aluminium from aluminium cans can be forged into a variety of structural elements, like
plates. A plate is a structural element that is characterised by a three-dimensional solid whose thickness is
small in comparison to its other dimensions [11]. Plates serve various functions, such as providing stable
surfaces for floors, roofs, and walls, as well as distributing loads efficiently throughout a structure!® . Plates

"BS 8118-1. (1991). Structural use of aluminium — Code of practice for design.

8 EN 1999-1-1 (2007) (English): Eurocode 9: Design of aluminium structures — Part 1-1: General structural rules.

® Aluminium structural Plate by Contech Engineered Solutions. (n.d.). — Contech Engineered Solutions. https://www.con
teches.com/bridges-structures/plate/ Aluminium-structural-plate/

10 Plates. (n.d.). The structural engineer. Available from: https://www.thestructuralengineer.info/education/structural-systems/
plates (accessed: 03.04.2025).
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can also be defined as planar, two-dimensional components that primarily transfer forces in the direction of
their plane. Plates are greatly utilised in structures in the form of floors and walls. The wall plate elements
in buildings are used to transfer all vertical loads as axial forces into the foundation; they ensure the
horizontal stiffening of the entire structure [12; 13].

The deformation and structural behavior of a plate under loading are dependent on the plate’s material
properties. Furthermore, the effects of loads on plates generate stresses predominantly normal to the
element’s thickness, and their mechanics are the main subject of plate theory [11]. Plate theory aims to
calculate deformation and stress in a plate subjected to loads. There are two widely accepted plate theories
used: the Kirchhoff-Love theory of plates (classical plate theory) and the Reissner-Mindlin theory of plates
(first-order shear plate theory) [14; 15].

The Reissner-Mindlin theory is applied for thick plates, where the shear deformation and rotary inertia
effects are included [14], while the Kirchhoff-Love theory is an extension of the Euler-Bernoulli beam
theory to thin plates. There are three assumptions made in the Kirchhoff-Love theory. Firstly, the mid-plane
is a “neutral plane,” like in beam theory. Secondly, line elements remain normal to the mid-plane. Finally,
vertical strain is ignored, meaning that the thickness of the plate does not change during deformation (see
Figure 1) [14; 15].

line element remains
perpendicular to mid-surface

Figure 1. Deformed line elements remain perpendicular to the mid-plane
Source: compiled by Kelly. (n.d.). Plate theory'!.

Under loading, stresses are generated on and within the plate, causing bending. The bending of the
plate helps to resist the applied load on the plate. In addition, the bending of the plate is greatly influenced
by the Poisson ratio of the material. The smaller the Poisson ratio of the plate material, the more the loading
would produce a more singly curved, deformed surface, as seen in Figure 2, a. However, if the plate
material has a non-zero Poisson’s ratio, the deflected shape will be as shown in Figure 2, . Therefore, most
aluminium alloy plates would have greater deformation than steel plates [17].

W\,

a b

Figure 2. Deformed surface of a plate with:
a — low Poisson’s ratio; b — high Poisson’s ratio
Source: compiled by D. Johnson [17].

I Kelly. (n.d.). Plate theory. In Solid Mechanics Part II (pp. 120-126). Available from: https://pkel015.connect.amazon.
auckland.ac.nz/SolidMechanicsBooks/Part_11/06_PlateTheory/06_ PlateTheory Complete.pdf
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Other factors that influence the magnitude of deformation of a plate under loading are shapes, support
conditions, and the type of loading the plate is subjected to (see Table 3) and Equations (1)—(8).

Table 3
Maximum deformation of plate formulae
Shape of plate Support conditions & Type of load Max deformation (at centre)
Edges are simply supported & uniformly loaded
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Ending of the Table 3

Shape of plate Support conditions & Type of load Max deformation (at centre)
Edges simply supported & concentrated load Pb2 7
- a - Yn =l Ef

T T f}, @b | k| @b | k
Rectangular : — 1.0 | 0127 [ 16 0.17
1.1 0.138 1.8 0.177
P 1.2 0.148 2.0 0.180
"w N3 14 [ 0162 | <3.0 [ 0.185

I
A

_h

=

Edges clamped & concentrated load

-8 - —k Pb*
O T ——— p----- _;_ ym - M Et3 (8)
X ] 4
X O . 2e 1| b
1 |
Rectangular Y S — (a/b) ki (@/b) | K
. 1.0 0.061 1.8 0.0786
\ 1.2 0.071 2.0 0.0788
[ 'u i]‘. X 1.4 0.076 <3.0 0.0791
AN ¥ 1.6 0.078

S ource: compiled by Loaded Flat Plates. (n.d.). Roymech

Loaded Flat Plates. (n.d.). Roymech. Available from: https://www.roymech.co.uk/
Useful_Tables/Mechanics/Plates.html (accessed: 03.04.2025).

where 7 is the radius of the circular plate (m); a is the major length of the rectangular plate (m); b is the
minor length of the rectangular plate (m); ¢ is plate thickness (m); p is uniform surface pressure on the plate
(compressive) (N/m?); P is single concentrated force (compressive) (N); ym is the maximum deformation
(m); E = Young’s modulus of elasticity (N/m?); e is the radius of the loaded area; v is the Poisson’s ratio.

Equations (1) to (8), denoted and illustrated in Table 3, are explained as follows below.

Equation (1) highlights the y,, of a simply supported circular plate of diameter 2r under pressure p.
The D and v have a great influence on the deformation of the plate. Therefore, the higher the D of a plate,
the less its deformation.

Equation (2) highlights the y,, of a circular plate clamped at all edges with a diameter of 2r under
pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D
of a plate, the less its deformation.

Equation (3) highlights the y,, of a simply supported circular plate of diameter 2r under force P over an
area of radius e. The D and the v have a great influence on the plate. Therefore, the higher the D of a plate,
the less its deformation.

Equation (4) highlights the y,, of a circular plate clamped at all edges with a diameter of 2r under force
P over an area of radius e. The D and the v have a great influence on the plate. Therefore, the higher the D
of a plate, the less its deformation.

Equation (5) highlights the y,, of a simply supported rectangular plate of dimensions a and b under
pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D
of a plate, the less its deformation.
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Equation (6) highlights the y, of a rectangular plate of dimensions a and b clamped at all edges under

pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D
of a plate, the less its deformation.
Equation (7) highlights the y, of a simply supported rectangular plate of dimensions a and b under

force P over an area of radius e. The constant (k1) is dependent on the aspect ratio (a/b) of the plate.
Therefore, the greater the aspect ratio, the greater the deformation. Also, the D has a great influence on the
deformation of the plate.

Equation (8) highlights the y, of a rectangular plate of dimensions a and b clamped at all edges under

force P over an area of radius e. The constant (k1) is dependent on the aspect ratio (a/b) of the plate.
Therefore, the greater the aspect ratio, the greater the deformation. Also, the D has a great influence on the
deformation of the plate.

D is the flexural rigidity, which is determined by solving Equation:

_EP
D_lz(l—vz)' ®)

Plates are susceptible to various types of failures under different loading conditions. Some of the
common types of failures susceptible to plates include fatigue failure. Fatigue failure can occur in plate
structures due to repeated cyclic loading, leading to the initiation and propagation of cracks in the material.
This type of failure is a concern for structures subjected to varying magnitudes of loads, such as wind
turbine towers or bridges. The study [17] examined the various factors affecting the fatigue strength of thin
plates in large structures. Moreover, when the elastic limit of the plate material has been exceeded, this
exceedance of the elastic limit can lead to ductile failure of the plate, also commonly known as yielding
failure. Yielding failure results in the permanent deformation of the plate and occurs as a condition in which
the compressive stress surpasses the material’s yield strength.'? The study [18] covered the prediction of
yield failure points in notched aluminium plates. To study the ductile failure of the notched aluminium
specimens, a brittle material with a virtual ultimate strength was used to compare with the real ductile
material. Lastly, plate buckling is a phenomenon that occurs as a condition in which a thin plate moves out
of the plane under a compressive load, causing it to bend in two directions [19].

1.2. Plate Buckling

Structural members in compression are susceptible to failure by buckling if the applied compressive
load exceeds the critical load (buckling load). Buckling failure is not dependent on stress or strength but
rather on structural stiffness. Plates are buckled in orthogonal directions (see Figure 3) [19-21].

The major parameters influencing the buckling effect of plates include the aspect ratio (a/b), plate
slenderness (b/f), boundary conditions, the initial imperfections of the plane, and, lastly, the type of plane
loads.

The ratio of its longer side to its shorter side has a significant impact on its buckling behavior
(Figure 4). For large aspect ratios, the plate starts behaving like a column of finite width. As the aspect ratio
decreases, there is a limit below which failure does not take place by elastic buckling. The ratio affects the
buckling load, with the buckling load decreasing continuously as the aspect ratio increases. However, the
rate decreases with an increasing ratio. Additionally, for aspect ratios less than 0.5, the plates fail by
crushing and not by buckling. Beyond a certain aspect ratio, the plate behavior shifts from plate to column
[21-24].

12 Investigations Into Steel Structure Failures Part I: Failure Mechanisms — Built Environment, Engineering Hawkins
Forensic Investigation. (2022). Hawkins Forensic Investigation. Available from: https://www.hawkins.biz/insight/investigations-
into-steel-structure-failures-part-i-failure-mechanisms/ (accessed: 03.04.2025).
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Figure 3. Two-degree-of-freedom model of the buckled plate Figure 4. A plate with a high aspect ratio
Source: compiled by T.Yu [22]. Source: compiled by K.J. Rawson and E.C. Tupper [25].

In the design of plate structures, determining the thickness of the plate to be used to guard against
buckling is crucial. For plate buckling, the Euler buckling limit is not final. Therefore, the Euler buckling
stress is greater than the yielding stress. That is why, in plate design, an increase in the strength or grade of
material must result in a decrease in the length of the plate. Higher-tensile-strength materials have an
increasing risk of buckling [21; 22; 25; 27]. Equation (10) shows the critical buckling load of a supported
rectangular plate:

_ kD

Nxcr - b2 ? (1 0)

where N, __is the critical buckling load, k. is the buckling coefficient (see Figure 4 and Table 4), b is the
loaded length, and D is flexural rigidity (see Equation (9)). The type of boundary support is an important
factor that influences a plate’s deformation and buckling loads, along with other factors such as modulus
ratio, etc. The buckling load attains its minimum value under simply supported boundary conditions and its
maximum value under clamped boundary conditions. This is because the rigidity of the clamped edges
provides greater restraint against lateral deformation compared to the simply supported edges, thereby
increasing the buckling load capacity.

Table 4
Buckling coefficients of plates
Case Description of support at the unloaded edges k
1 Both edges are simply supported a Yt i 4.000
A
2 One edge is simply supported, the other fixed L \rt M 542
! A
3 Both edges are fixed : It : 6.97
- !
4 One edge is simply supported, the other free o X 0.425
5 One edge is fixed, the other free : I 1.277

Source: compiled by U. Obinna [19].
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The plate’s boundary conditions and aspect ratio determine the plate's bending mode and the distance
between inflection points. The closer the inflection points are, the greater the resulting axial load capacity
(buckling load) of the plate. Therefore, it is essential to properly define the boundary conditions not only in
the out-of-plane direction but also in the in-plane direction to accurately predict the buckling behavior of
plates [19; 27]. Figure 5 shows how the aspect ratio affects the number of half-waves on the unloaded and
longer axis (m). Furthermore, the aspect ratio determines how many half-waves or modes the plate will
have during failure (see Figures 6-8). Figure 7 shows a plate with an aspect ratio of 3, producing 3 half-

waves along the longer axis. Figure 8, on the other hand, shows a plate with 2 and a half waves along the
longer axis.
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Figure 7. Simply supported plate buckling mode (3, 1)
Source: compiled by O.M.E. Suleiman et al. [31].

S ource: compiled by O.M.E. Suleiman et al. [31].

w(x,y)

Figure 8. Buckling modes of a simply-supported thin plate — Mode (2, 1)
Source: compiled by T.Yu. [21].
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1.3. Effect of Load Types and Combinations

The type and combination of loads, as well as the boundary conditions, greatly affect the deformation
of plates. Restricting in-plane deformation reduces the buckling load by a factor of 3/4, but it does not
change the buckling mode. The buckling coefficient is a function of the loading distribution, plate geometry,
and boundary conditions. The buckling interaction curve shows the effect of applied loads and boundary
conditions for different modes of buckling on plates'® [19; 28-30]. Figures 9-12 display 4 types of load
combinations applied to plates'®.

If multiple action components are present, multiple modes can occur, which may interact with one
another. Therefore, in Figure 10, the existence of minimal transverse compression does not alter the mode of
buckling. Nonetheless, as illustrated in Figure 12, significant transverse compression will lead to the panel
warping into a single half-wave. (In certain situations, this push into a higher mode could enhance strength;
for instance, in case of Figure 12, preformation/ transverse compression might boost strength in longitudinal
compression.) Shear buckling, illustrated in Figure 11, fundamentally involves an interplay between the
destabilising compression on one diagonal and the stabilising tension on the opposite diagonal.

Figure 10. Biaxial compression,
Figure 9. Uniaxial compression longitudinal compression predominating
Source: compiled by ESDEP WG 8 Plates and Shells. Source: compiled by ESDEP WG 8 Plates and Shells.

Figure 12. Biaxial compression,
Figure 11. Shear transverse compression predominating
Source: compiled by ESDEP WG 8 Plates and Shells. Source: compiled by ESDEP WG 8 Plates and Shells.

1.4. Environmental Conditions

Environmental conditions can affect thin plates in various ways, such as through changes in
temperature, humidity, and exposure to different types of loads. For example, in the previously stated
context of plate structures, the buckling strength is influenced by the loading distribution, plate geometry,
and boundary conditions. Additionally, the material properties of the plate, including any dependence on
environmental conditions, can impact its behavior under different loads and stresses. Therefore, it is

13 Wierzbicki T. Buckling of a simply supported plate. Structural Mechanics, Massachusetts Institute of Technology, 170-18]1.
file:///C:/Users/user/Downloads/Full.pdf

“ ESDEP WG 8 Plates and Shells. Lecture 8.1: Introduction to Plate, Behaviour and Design. Available from: https:/fgg-
web.fgg.uni-lj.si/~/pmoze/esdep/master/wg08/10100.htm (accessed: 03.04.2025).
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essential to consider the specific environmental conditions and loading scenarios when analysing the
behavior of thin plates to ensure their structural integrity and performance [31; 32].

The average annual temperature in most tropical savanna regions is 26.9°C, with regional variations
based on factors such as elevation and proximity to water bodies. The highest average monthly temperatures
are between 30 and 32 °C, typically occurring in April, while the lowest average monthly temperatures are
between 24 and 25 °C, typically occurring in December and January. Over the past 30 years, tropical
savanna regions have experienced a slight increase in temperature. For example, in 2021, southern Nigeria
recorded a mean average temperature of 30 to 32°C, while the northern recorded its highest temperature in
40 years. This increase in temperature is consistent with other tropical savanna regions, i.e. Ghana,
Southeast Asia, Northern Australia, Brazil, etc. and global climate change trends [33; 34].

The temperature resistance of structural aluminium alloys varies depending on the specific alloy and
composition. However, most aluminium alloys begin to lose strength at temperatures above 150 °C (300 °F)
[35; 36]. The primary strength reduction in some alloys, such as 5083-H116 and 6082, occurs between 200
and 400 °C, leading to significant decreases in yield strength [37; 38]. Although it was revealed that
aluminium alloys perform better in both strength and ductility at low temperatures. The duration of
exposure plays a crucial role for cold-worked or heat-treated alloys [37; 38]. Figure 13 highlights the
change in typical tensile strengths of some aluminium alloys at various temperatures.

To find out how resistant a certain structural aluminium alloy is to high temperatures, one needs to
look at the mechanical and physical properties of the aluminium alloy at those temperatures, which depend
on its chemical makeup and temperature [40—42]. The thermal expansivity of materials is also a key factor
that influences the behavior of plates.
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Figure 13. The strength of aluminium against temperature
Source: compiled by J.R. Kissell, R.L. Ferry [43].
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1.5. Thermal Expansivity

The thermal expansivity of materials is a key factor that influences the structural behaviour of plates
[44; 45]. Equation (13) shows the change in length caused by a change in temperature in materials.

AL = oL AT, (13)

where AL is the change in length; o is the linear thermal expansion coefficient; L, is the original length;

AT is the change in temperature
The thermal expansion coefficient of aluminium is relatively large compared to other metals. Linear
thermal expansion coefficients for aluminium and aluminium alloys are shown in Table 5. °

Table 5
Coefficient of thermal expansion 10°° (OC) of aluminium alloys
Metal or alloy Temp Coefficient of thermal expansion 107 (OC)
Aluminium (99.996%) 20-100°C 23.6
3003 20-100°C 23.2
5083 20-100°C 234

S ource: compiled by Engineering ToolBox.

Moreover, Table 5 highlights the variety of coefficient of thermal expansion (CTE) of aluminium and
its alloys. The secant CTE of aluminium and its alloys also varies. The secant CTE is a measure that
accounts for the change in length or volume of a material over a specific temperature range. Unlike the
linear CTE, which provides a constant value for the entire temperature range, the secant CTE calculates the
average thermal expansion over a specified temperature interval. A commonly used average value for the

linear CTE of aluminium is approximately 23x10~®per degree Celsius (°C).

1.6. Importance of Aluminium

The transformation of discarded aluminium cans into valuable construction components aligns with the
global shift towards resource efficiency and circular economy principles. The feasibility of this transformation
poses several questions:

1. Can aluminium cans be effectively turned into structurally sound aluminium plates?

ii. Will these plates meet the structural requirements in terms of strength, durability, and safety?

Several studies have examined the mechanical and thermal behavior of steel and aluminium alloys;
most were conducted under normal or temperate climatic conditions, with comparably few examinations of
the materials' thermomechanical performance under tropical savanna climatic conditions. Additionally,
previous research tended to examine deformation or buckling separately from one another, as opposed to
concurrent analyses of the two in a representative range of thermal fluctuations. This study differs from
existing literature by examining the coupled deformation—buckling behavior of recycled aluminium and
steel plates under simulated tropical temperature variations (0°C—44°C) using finite element analysis (FEA).
Thus, this paper aims to unravel the potential of aluminium plates by scrutinising their mechanical, thermal,
and structural properties, to understand how the change in temperature affects the deformation and buckling
of plates under loading. Hence, the objective of this is as follows:

15 Engineering ToolBox. (2011). Thermal Expansion of Metals. Engineeringtoolbox.com. https://www.engineeringtoolbox.com/
thermal-expansion-metals-d_859.html
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i. Ensure the analytical theories agree with the finite
element analysis (FEA) results
ii. To determine the deformation of the plate models
under various loads and temperature conditions.
iii. To define how the change in temperature affects the
critical buckling of the plates.

2. Materials and Models

Three analysis systems were used in this study, all done
on the Ansys workbench software, i.e. Steady-state Thermal,
Static Structural, and Eigenvalue Buckling. The geometrical
model was created by the design modeller (see Figure 14).
A circular surface was imprinted at the centre of the plate
using the Boolean tool, highlighting where the load would be
placed for analysis 1 (see Figure 15). A shell element model
type was used with a 30 mm thickness (see Figure 15-16).
Both faces were meshed using a meshing element size of
200 mm.

2.1. Material Properties

The physical and mechanical properties used for both
plates (aluminium alloy and steel alloy) are summarised in
Table 6.

A: Static Structural
Thermal Condition
Time: 1. s

10/17/2025 9:38 PM

[E] Nodal Displacement
Nodal Displacement 2
Nodal Displacement 3
@ Nodal Displacement 4
[B) Modal Rotation: 0.

. Nodal Rotation 2: 0.
. Line Pressure: 0. Nfmm
[A) Line Pressure 2: 0. Nfmm

1000.00 {mm)

S00.00

Figure 14. Analysis systems used

Source: compiled by P.C. Chiadighikaobi,
0.C. Onuoha, A.E. Fagbuyi.

Table 6
Physical and mechanical properties of aluminium and steel
Properties Symbol Aluminium alloy Steel alloy
Density, kg/m® Q 2,770 7,850
Elastic modulus, MPa E 71,000 200,000
Poisson’s ratio v 0.33 0.3
Yield strength, MPa Ru 280 250
Secant coefficient of thermal expansion 10 (°C)’! 23 12
S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.
Table 7
2.2. Supports and Loading The 5 levels of uniform loading
. S/N Loads, MPa
Both plates were simply supported. All the nodes at the " 0
edges were restrained along the z-axis, the nodes on the 5 >
longer sides were free to rotate about z- and y-axis, but fixed 3 0
along the x-axis, while the nodes on the shorter sides were 2 pe
free to rotate about z- and x-axis, but fixed along the y-axis. S 100

Lastly, the node at the centre was fixed along both the x- and
y-axis. In addition, the loads placed were dependent on the
analysis.

S ource: compiled by P.C. Chiadighikaobi,
0O.C. Onuoha, A.E. Fagbuyi.

Analysis 1: Temperature-Influenced Deformation of Plates Under Concentrated Load. In this
analysis, five (5) levels of uniform loading (Table 7) were applied to the circular area (diameter = 9 mm)

at the centre of the plate (see Figure 15).
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Figure 15. Analysis 1:
plate and loading area dimensions
Source: compiled by P.C. Chiadighikaobi,
0.C. Onuoha, A.E. Fagbuyi.
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Figure 16. Analysis 2:
plate and loading area dimensions
S ource: compiled by P.C. Chiadighikaobi,
0.C. Onuoha, A.E. Fagbuyi.

Table 8
The 7 different temperatures
S/N 1 2 3 4 5
Temperature, °C 0 11 |22 |33 | 44

S ource: compiled by P.C. Chiadighikaobi,
0.C. Onuoha, A.E. Fagbuyi.

Analysis 2: Total Buckling Deformation of the
Plate. In this case, the plate was subjected to a uniaxial
compressive force along the y-axis (see Figure 16). The
loads were applied as line pressure, and the load applied
was 10000 N/m. In addition, with the aspect ratio being
four, the first mode is expected to have four half-waves.

2.3. Temperature Conditions

The plates were subjected to 6 (six) different
temperatures during loading in both analyses.
The reference temperature used was 22°C (Table 8).

3. Results

The FEA results for Analyses 1 and 2 are stated in this
section below.

Analysis 1 result: Temperature Influenced Defor-
mation. The derived FEA deformation results validate the
formulae stated in the previous section, i.e. Equations (7)
and (13). Using Equation (13), the expected total maximum
deformation (TMD) for the unloaded 33 °C plate was
0.506 mm (2 % 0.253 mm) for aluminium and 0.264 mm
(2 x 0.132 mm) for Steel. Tables 9 and 10 show that the
TMD was 0.5216 mm and 0.27214 mm, respectively. In
addition, the Equation (7) derived TMD for 25 °C plates
under 100 MPa load were 0.60798 mm for aluminium and
0.21583 mm for steel. While Tables 8 and 9 show the TMD
was 0.57823 mm and 0.2095 mm. These results are quite
precise with less than a S5-percentile difference. Hence,
proving the accuracy of the FEA results.

Table 9
Aluminium plate: total maximum deformation
0°C 11°C 22°C 33°C 44°C
0 MPa 0.97516mm 0.50629mm Omm 0.5216mm 1.0432mm
25 MPa 0.97516mm 0.50629mm 0.14456mm 0.5216mm 1.0432mm
50 MPa 0.97516mm 0.50629mm 0.28900mm 0.5216mm 1.0432mm
75 MPa 0.97516mm 0.50629mm 0.43368mm 0.5216mm 1.0432mm
100 MPa 0.97516mm 0.57823mm 0.57823mm 0.57823mm 1.0432mm
S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.
Table 10
Steel plate: total maximum deformation
0°C 11°C 22°C 33°C 44°C
0 MPa 0.49892mm 0.26193mm Omm 0.27214mm 0.54428mm
25 MPa 0.49892mm 0.26193mm 0.05240mm 0.27214mm 0.54428mm
50 MPa 0.49892mm 0.26193mm 0.10475mm 0.27214mm 0.54428mm
75 MPa 0.49892mm 0.26193mm 0.15712mm 0.27214mm 0.54428mm
100 MPa 0.49892mm 0.26193mm 0.2095mm 0.27214mm 0.54428mm

Source: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

488

ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS



Yuaduexukaobu [1.4., OHyoxa O.C., ®aebyliu A.3. CTponTenbHasi MexaHuka NHXEHEPHbIX KOHCTPYKLMA 1 coopyxeHuid. 2025. T. 21. Ne 5. C. 474-494

12

E 1k ¥ * >
E
§ o8
SR e S B S e v
804
o
fo2" " L ——
Rt o L
R SO
0
0o 20 40 60 80 100 120
Load (MPa)
== Aluminum (0°C) —< Aluminum (11°C) & Aluminum (22°C)—=- Aluminum (33°C)4~ Aluminum (44°C)
* - Steel 0°C) 4 Steel (11°C) -0 Steel (22°C) ¢ Steel (33°C) -+ Steel (44°C)

Figure 17. Total maximum deformation of aluminium and steel plates
Source: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

Figure 17 shows that the TMD of plates at various temperature, except the ones at reference
temperature (22 °C), are greatly dependent on the temperature of the plate and not the load acting on it. The
aluminium and steel plate TMD remained constant at 0 °C, 11 °C, 33 °C, and 44 °C, particularly under the
condition where the applied load was less than 100 MPa. Moreover, as seen in Figure 18, the unloaded 0 °C
aluminium plate (a) and steel plate (c) TMD point is at the bottom corner of the plate, and after the 100 MPa
load was applied on aluminium plate (b) and steel plate (d), the TMD point was retained. In addition, the
mid node total deformation of 0 °C plates under 100 MPa loading was 0.42115 mm for aluminium and
0.20825 mm for steel, both lower than the mid node deformations at the reference temperature (22 °C),
which is 0.57823 mm and 0.2095 mm, respectively (see Figure 19). Thus, proving aluminium slight gain in
strength at lower temperatures. Validating the study Guo et al. [46], which stated that low temperatures
improved both strength and ductility of aluminium, while higher temperatures reduced the strength due to
softening. In addition, the plates (aluminium and steel) at lower temperatures (0 °C and 11 °C) deformed by
contracting, while the plates at higher temperatures (33 °C and 44 °C) deformed my expanding. Thus,
proving why the loaded plate mid-node total deformation was more at higher temperatures than at lower
temperatures. In Figure 20, 5 and d total mid node deformation was 0.57823 mm and 0.22573 mm,
respectively, which is higher than the other temperature cases.

E: Static Structural E: Static Structural E: Static Structural E: Static Structural
Total Deformation Total Deformation Total Deformation Total Deformation
Type: Total Deforma Type: Total Deforma Type: Total Deformat] Type: Total Deformaf
Unit: mm Unit: mm Unit: mm Unit: mm
Time: 13 Time: 13 Time: 13 Time: 135
7/23/2005 850 AM 72312005 9.00 AM 7/23/2005 851 AM 2312025 903 AM

0.97516 Max 0.97516 Max 0.49892 Max 0.49892 Max
E 0.86681 H 069308 E 044348 E 045586

0.75846 08101 ! 038905 041279
— 06501 ! onem = 033261 036973

0s4176 B 064695 0278 032667

04334 056478 022174 028361

032505 0427 016631 024054

02167 040063 011087 019748

0.10835 031855 0.055435 Q15442

0 Min 0.23648 Min 0 Min = 0.11136 Min

a b c d

Figure 18. Total maximum deformation for unloaded and loaded 0 °C plates:
a — Aluminium; b — Aluminium; ¢ — Steel; d —Steel
Source: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.
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Unit: mm Unit: mm Unit: mm Unit: mm
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. 051399 l X 0.18622
0 Min 044974 0Min 0.16294
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032124 0.11639
0.25699 0.093109
019274 0.060832
01285 0.046555
0.064248 0.023277
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Figure 19. Total maximum deformation for unloaded and loaded 22 °C plates:
a — Aluminium; » — Aluminium; ¢ — Steel; d — Steel
S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

E: Static Structural
Total Deformation
Type: Total Deformat]
Unit: mm

Time: 15
7/23/202511:29 AM

E: Static Structural
Total Deformation
Type: Total Deformat]
Unit: mm

Time: 15

7/23/2025 11:28 AM

E: Static Structural
Total Deformation

E: Static Structural
Total Deformation
Type: Total Deformat]
Unit: mm

Time: 1

7/23/2025 11:26 AM

7/23/2025 11:25 AM

1.0432 Max 1.0432 Max 0.54428 Max 0.54428 Max
092728 0.95498 04838 049708
081137 0.86677 042333 044989
0.69546 0.77856 0.36285 04027
057955 0.60035 0.30238 0.35551
046364 0.60214 0.2419 0.30832
034773 0.51393 018143 0.26112
0.23182 042572 0.12095 0.21393
011591 0.33751 0.060475 016674
0 Min 0.2493 Min 0 Min 0.11955 Min
. Max 2] n
a b c d

Figure 20. Total maximum deformation for unloaded and loaded 44 °C plates:
a — Aluminium; » — Aluminium; ¢ — Steel; d — Steel
S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

Analysis 2 Result: Temperature Influenced Buckling. The FEA buckling results accuracy was
validated by equation (10). Equation (10) derived buckling load for plates at reference temperature was
7,070,232 N/m for aluminium and 19,502,505 N/m for steel, while the FEA load was 7,330,000 N/m and
20,237,000 N/m (see Table 10). The results are quite precise with less than a four-percentile difference.
Thus, proving accuracy of the FEA method used.

Table 10
Critical buckling load results
Aluminium Steel
Mode 1 Mode 2 Mode 1 Mode 2
Uniaxial Compression Load, 10,000 N/m
0°C -761.76 733.5 -1576 2024.1
11°C 733.47 781.16 2024.1 2155.6
22°C 733.33 781.29 2023.7 2156.1
33 °C 732.89 781.43 2020.3 2156.7
44 °C 699.88 739.80 1435.6 1856.3

S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.
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Figure 21. Critical buckling of uniaxially compressed plates
Source: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

Figure 21 shows that both plates mode 1 critical buckling load is quite temperature sensitive, with the
higher buckling loads observed near the reference temperature. At mode 1, the steel critical bulking load
significantly dropped by 40.7% due to the temperature change from 33 °C to 44 °C (see Figure 24), while
aluminium dropped only by 4.71%. A similar phenomenon was observed in mode 2, where the critical
buckling load for the steel plate dropped by 16.18% when the temperature changed from 33 °C to 44 °C

(see Figure 24), while

aluminium dropped 5.63%. Validating that, despite the buckling mode, the steel

critical buckling load is much more sensitive to temperature than aluminium. In addition, it was observed
that despite the mode, the plates at 0 °C and 44 °C had no more than 4 half-wavelengths. While for mode
2 plates closer to the reference temperature (22°C), an additional wavelength was formed (see Figure 23).
Hence proving that the environmental temperature plays a crucial role in plate buckling modes (see

Figure 24).
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Figure 22. Buckling deformation of plates at 0 °C:

a — Aluminium (mode 1); 5 — Aluminium (mode 2); ¢ — Steel (mode 1); d — Steel (mode 2)
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Figure 23. Buckling deformation of plates at 22 °C:
a — Aluminium (mode 1); 5 — Aluminium (mode 2); ¢ — Steel (mode 1); d — Steel (mode 2)
Source: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.
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Figure 24. Buckling deformation of plates at 44 °C:
a — Aluminium (mode 1); 5 — Aluminium (mode 2); ¢ — Steel (mode 1); d — Steel (mode 2)
S ource: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

4. Conclusion

In conclusion, this study illuminates the potential for aluminium as a suitable construction material.
The finite element analysis (FEA) results agreed with their analytical formulations with less than 5 percentile
difference, thus proving the efficiency of FEA. The conclusive findings of this study are as follows.

1. The results showed that aluminium plates experienced slightly greater overall maximum deformation
than steel under every temperature and loading condition. However, aluminium was discovered to be more
thermally stable. At low temperatures (0° C and 11 °C), aluminium experienced lesser deformation, with
mid-node deformation going down to 0.42115 mm under 100 MPa, whereas 0.57823 mm at the reference
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temperature (22°C). Steel also performed well at low temperatures, but with minimal change in mid-node
deformation.

2. Under buckling analysis, aluminium experienced stable performance with a reduction of just 4.71%
in critical buckling load between 33 °C and 44 °C. Steel's critical buckling load in Mode 1, on the other
hand, dropped precipitously by 40.7% over the same temperature range, illustrating its vulnerability to
temperature change. Mode 2’s results also indicated a lower but noticeable drop in steel performance,
whereas aluminium again remained relatively stable.

These findings show that while steel offers higher stiffness and lower deformation at moderate
conditions, recycled aluminium offers a better performance under large temperature fluctuations, thus high-
lighting its potential as a viable material for enhancing thermal and structural efficiency in a hot climate.
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