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1 Research article / Научная статья  

Construction of Developable Surfaces with Two Director Curves 
Sergey N. Krivoshapko
RUDN University, Moscow, Russian Federation 
 sn_krivoshapko@mail.ru 

Received: March 25, 2025 
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Abstract. An analysis of a number of published materials regarding four types of developable surfaces with two director 
(supporting) algebraic curves of the second order lying in parallel or in intersecting planes has been conducted. Three types of 
developable surfaces are shortly described with references to sources, and visualizations of each type of developable surface are 
presented. For the developable surfaces with two supporting curves with intersecting axes in intersecting planes, the construction 
technique and the method of obtaining parametric equations are given. This method is illustrated with three examples. It is 
established that to date, there are no studies on the strength of thin shells in the form of the presented developable surfaces defined 
in curvilinear conjugate non-orthogonal coordinates that coincide with the external contour of the shells. It is shown that there are 
suggestions of application of the studied surfaces in architecture, shipbuilding, and agricultural machine engineering.  

Keywords: parallel vectors, vector coplanarity, second-order algebraic curves, developable surface with two director curves, 
surface modelling, computer graphics 
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Аннотация. Проведен анализ ряда опубликованных материалов по четырем типам торсовых поверхностей с двумя 
направляющими (опорными) алгебраическими кривыми второго порядка, лежащими в параллельных или пересекающих-
ся плоскостях. Три типа торсов описаны кратко со ссылками на источники и приведены графические иллюстрации для 
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каждого типа торсов, а для торсовых поверхностей с двумя опорными кривыми с пересекающимися осями в пересекаю-
щихся плоскостях представлен порядок построения этой поверхности и методика получения параметрических уравнений. 
Методика проиллюстрирована на трех примерах. Установлено, что до настоящего времени нет ни одного исследования 
напряженно-деформированного состояния предложенных тонких торсовых оболочек, заданных в криволинейных неорто-
гональных сопряженных координатах, которые совпадают с внешним контуром торсовых оболочек. Показано, что есть 
предложения по применению предложенных поверхностей в архитектуре, судостроении и сельскохозяйственном машино-
строении. 

Ключевые слова: параллельность векторов, компланарность векторов, алгебраические кривые второго порядка, торс с дву-
мя направляющими кривыми, моделирование поверхностей, компьютерная графика 

Заявление о конфликте интересов: Автор заявляет об отсутствии конфликта интересов. 

Для цитирования: Кривошапко С.Н. Построение торсовых поверхностей на двух направляющих кривых // Строитель-
ная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 377–388. http://doi.org/10.22363/1815-5235-
2025-21-5-377-388 EDN: DQGYSO 

1. Introduction 

Over the last five years, the author has published articles on the construction of developable surfaces 
containing two prespecified plane algebraic curves on opposite sides of rectangular [1], trapezoidal [2], 
and arbitrary quadrilateral [3] bases. Moreover, the generator lines of the resulting developable surfaces 
coincide with the opposite sides of the rectangular and trapezoidal bases. In the case of an arbitrary 
quadrilateral base, the generator lines do not coincide with the sides, but are only projected onto them. 

The construction of the considered developable surfaces is based on the works of G. Monge, 
G.E. Pavlenko [4], J.N. Gorbatovich [5], B. Bhattacharya [6], V.G. Rekach and N.N. Ryzhov [7], V.N. Ivanov 
[8], M.E. Ershov, E.M. Tupikova [9], Fr. Perez-Arribas and L. Fernandez-Jambrina [10]. 

Despite the fact that many geometers and engineers have been creating and improving methods for 
constructing developable surfaces with two prespecified plane curves, there are very few illustrations of 
specific developable surfaces, literally only a handful. 

The purpose of the study is to draw the attention of experts to the possibility of obtaining parametric 
equations of developable surfaces constructed with two prespecified supporting plane curves lying in parallel 
or intersecting planes. Until now, graphical methods have been mainly used to construct these surfaces 
[11; 12]. Implicit or parametric equations have been obtained only for 5–6 developable surfaces [13]. 
Engineers and designers in the mechanical and textile industries are interested in expanding the list of 
developable surfaces defined by analytical formulas, which is also the goal of the proposed study [14; 15]. 

2. Algebraic Curves as Director Curves 
for Construction of Developable Surfaces 

In all publications [1; 2; 3], second- and fourth-order algebraic curves were used as director curves. 
These curves can be defined as follows: 

 parabola:  

( )2 ( ) 1 –( ), ,x x u au y y u h u= = = =   (1) 

 ellipse fragment: 

( ) ( ) ( )2 2 2 2 2
1 1 1,  1 / 1 / ,x x u au y y u h u a a a a= = = = − − −   (2) 

where a1 and h1 are the lengths of the semiaxes of a complete ellipse, a1 ≥ a. By assuming the value of a1, 
the length of the other semiaxis of the complete ellipse h1 can be determined, 
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Figure 1. Constant geometrical parameters of curves 
S o u r c e: compiled by S.N. Krivoshapko. 

Figure 2. Сylindrical surface with parabolas at the ends 
S o u r c e: compiled by V.N. Ivanov et al. [16]. 

 circle fragment: 

( ) ( ) 2 2 2 2 2
1 1,  ,x x u au y y u R a u R a= = = = − − −  (3) 

 hyperbola:  

( ) ( )2 2,  2 ,x x u au y c h c hu c h= = = + − + +   (4) 

constant parameter с is chosen arbitrarily, but c ≠ 0,  

 biquadratic parabola: 

( )4,( ) 1 –( ) ,x x u au y y u h u= = = =   (5) 

 superellipse: 

( ) ( ),  1  .
trx x u au y y u h u= = = = −   (6) 

The tangent to the curve at angle φ is 
determined by the formula: 

tgφ ,
dy
dx

=   (7) 

 –1 ≤ u ≤ 1. 

The remaining geometric parameters are 
shown in Figure 1. More detailed information on 
curves (1)–(6) can be found in any reference book 
on analytical geometry or in publications [1–3]. 

 
2.1. Examples of Developable Surfaces with Rectangular, Trapezoida 
and Quadrilateral Bases with Two Director Curves at Opposite Ends 

2.1.1.Cylindrical surfaces with rectangular base (Figure 2) 
 

All algebraic second-order cylindrical surfaces 
are considered in [16]. A cylindrical surface is an 
improper developable surface, in which the edge 
of regression is moved off to infinity. It is very easy 
to define a cylindrical surface with a rectangular 
base in parametric form. For example, if the iden-
tical director parabolas are specified as: y = ax2, 
where a = h/c2, then the parametric equations of 
the cylindrical surface will be: x = x, y = ax2, z = z. 

2.1.2. Developable surfaces with two prespecified plane curves in parallel planes 

For the construction of a developable surface, which contains plane curves in parallel xOy planes, 
i.e. at z = 0, and at z = l, and in which the opposite straight generator lines lie in the horizontal xOz plane 
parallel to the coordinate plane yOz, it is necessary to assume that angles φ0 of both director curves are 
equal (Figure 1). 
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Given a pair of any director curves defined by equations (1)–(6), their vector equations can be 
represented as: 

)(11 urr =  and  )(22 vrr =  (8) 

with respect to origin О, where u, v are the corresponding parameters, then the equation of the developable 
surface can be represented in the form [6]:  

1 2 1( ,λ) ( ) λ[ ( ) ( )],u u v u= + −r r r r   (9) 

where λ is a dimensionless parameter, 0 λ 1.≤ ≤  
By defining the developable surface in the form of (9), coordinate lines λ = 0 and λ = 1 coincide with 

the director curves. The following relation must hold true between parameters u and v [4]: 

( )
( )

( )
( )

' '
1 2
' '
1 2

.
y u y v
x u x v

=    (10) 

The geometric meaning of equation (10) is that the straight generator of the developable surface passes 
through two corresponding points of the plane curves, for which the angular coefficients of the tangents φ0 
are equal, i.e., the tangents drawn through the corresponding points of the two curves must be parallel.  

Vector equation (9) may be represented in parametric form: 

( ) ( )( ) ( )1 2,  1– ,x x u x u x v u= λ = + λ   λ  

( ) ( )( ) ( )1 2,  1– ,y y u y u y v u= λ = + λ   λ  

.( ) z z l= λ = λ  (11) 

The method described above for determining parametric equations (11) of the developable surfaces in 
[1] has been tested on five examples of pairs of plane curves as director curves: ellipse (2) + parabola (1), 
circle fragment (3) + parabola (1), hyperbola (4) + parabola (1) (Figure 3), parabola (1) + biquadratic 
parabola (5) (Figure 4), superellipse (6) with r = t = 2 + superellipse (6) with r = t = 3. 

 

Figure 3. Developable surface with a parabola 
and a hyperbola at the ends 

S o u r c e: compiled by S.N. Krivoshapko.

 Figure 4. Developable surface with a second-
and a fourth-order parabola at the ends 

S o u r c e: compiled by S.N. Krivoshapko. 

 
The developable surface with a circle and a parabola in parallel planes also attracted the attention of 

J.N. Gorbatovich [5]. The surface with an ellipse and a parabola in parallel planes was studied in article 
[17]. A developable surface with parabolas was used to illustrate the method of constructing its projection 
onto a plane [9]. There is an example of approximating a developable surface with parabolas of the 2nd and 
4th orders in parallel planes with a folded structure [18]. These developments can be applied to the 
considered surfaces with rectangular base, but in the articles [5; 9; 18], the contour generator lines do not lie 
in the horizontal plane. 
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Article [2] considers developable surfaces with two prespecified plane curves (1)–(6) in parallel 
planes, but with a trapezoidal base. In this case, for the first curve (Figure 1) 1 1,u− ≤ ≤  i.e. ,a x a− ≤ ≤  
and for the second curve	 1 1,v− ≤ ≤  i.e. .b v b− ≤ ≤  If the plane director curves (8) lie in parallel planes, 
relation (10) must hold between parameters u and v.  

When constructing a developable surface, which has plane director curves of same rise h along axis Oz 
and two straight generator lines, which coincide with the sides of the trapezoidal base in the xOz plane, the 
following additional condition must be satisfied (Figure 1): 

tgφо of one curve at x = ±a must be equal to tgφо of the other curve at x = ±b. 

After satisfying the above condition and condition (10), parametric equations (11) of the considered 
developable surface can be written. In article [2], the construction method is tested on examples of six pairs 
of plane curves as directors: ellipse (2) + parabola (1) (Figure 5), circle fragment (3) + parabola (1) (Figure 6), 
hyperbola (4) + parabola (1), parabola (1) + biquadratic parabola (5), superellipse (6) with r = t = 2 + 
+ superellipse (6) with r = t = 3, hyperbola (4) + biquadratic parabola (5). 

 

 

General view 

 

General view 

 

View in xOz plane 

 

View in yOz plane 

 

View in yOz plane 

Figure 5. Developable surface with an ellipse fragment 
and a parabola at parallel ends 

S o u r c e: compiled by S.N. Krivoshapko.

Figure 6. Developable surface with a circle fragment 
and a parabola at parallel ends 

S o u r c e: compiled by S.N. Krivoshapko.

 
Developable surfaces with trapezoidal base with two prespecified plane curves at the two parallel 

edges and with straight generators resting on the lateral sides were considered only in article [7] from an 
architectural point of view. 
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Figure 9. Two director curves with intersecting 
axes in intersecting planes 

S o u r c e: compiled by S.N. Krivoshapko. 

 
2.1.3. Developable Surfaces with Two Prespecified Plane Curves in Intersecting Planes 

Under these conditions, there are two possible cases that are acceptable for practical application: when 
the axes of the director curves are parallel (case 1) and when the axes of the director curves intersect 
(case 2). The first case is discussed in detail in article [3]. Curves (1)–(6) are taken in pairs as director 
curves, and six developable surfaces are constructed. Two of them are shown in Figures 7 and 8.   

 

 
 

 

 

а b  а b 

Figure 7. Developable surface with a second- 
and fourth-order parabola in intersecting planes: 

а — general view; b — view in xOz plane 
S o u r c e: compiled by S.N. Krivoshapko. 

 Figure 8. Developable surface with a parabola 
and a hyperbola in intersecting planes: 
а — general view; b — view in yOz plane 

S o u r c e: compiled by S.N. Krivoshapko.

 
The second case is considered in more detail below. Assuming that the two curves lie in intersecting 

planes and their axes intersect (Figure 9), then their parametric equations can be represented as:  

Curve 1:       1 1 1 1, , 0; ( )x x u y u z= = =  

Curve 2:     2 2 2 2 2,( ),  tg .x x v y v z x= = = ϕ   (12) 

The coplanarity condition of the three vectors is 
written as: 

( )/ /
2 1 1 2– , , 0,=r r r r  

or  

1

2

2 1   2

/

/
2

tgφ

1 0 0,

1 tgφ

x x v u x

x

x x

− −

=  

or in expanded form: 

( )/ / / /
2 1 1 2 2 1 0,x x v u x x x x− + − =  (13) 

by taking 

/ / / /
1 2 2 2 2( ) ( ) ( ,)1, 1, tg , cosaddy u y v z x x z v= = = ϕ = ϕ  

φ is the angle between the intersecting planes. 
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Vector equation (9) for the considered case of director curves (12) can be converted into parametric 
form of definition of the desired developable surface: 

( ) ( )( ) ( )1 2  ,   1– ;  x x u x u x v u= λ = λ +   λ  

( ) ( )( ) ( ) ( )1 2,  1– 1–  ;y y u y u y v u u v= λ = λ + λ  λ + λ =  

( ) ( )2, tg .z z u x v u λ = = λ ϕ   (14) 

Example  1. Two square parabolas, which lie in planes intersecting at angle φ, are specified (Figure 9):  

( ) ( )2 2
1 1 1 1 1  1–  / ,   ,  0;x x u h u a y y u u z = = == =  

( ) ( ) ( )2 2 2 2
2 2 2 2 2 2  1 –  / cos ,   ,    1 –  / sin .x x v H v b y y v v z z v H v b     = = ϕ = = = = ϕ  (15) 

 

 

 

 

а  b 

Figure 10. Developable surface defined by equations (17): 
а — general view; b — view in xOz plane 

S o u r c e: compiled by S.N. Krivoshapko.

 
The relation between parameters u and v is determined by formula (13): 

22 2
2

1,2
1 1

4 .               
2 2

a av u u b
u u

   
= + ± + −      

   
  (16) 

By taking a = b, one obtains v1 = u and v2 = a2/u. 
By further taking v = v1 = u and a = b, parametric equations (14) of the desired developable surface 

will be  

( ) ( )
2

2
,λ 1 1 λ λ cosφ ;

ux x u h H
a

 
= = −  − +     

 
 

( ) ;y y u u= =  

( )
2

2
, λ 1 sinφ.                 

uz z u H
a

 
= λ = −  

 
 (17) 

Figure 10 shows the surface defined by parametric equations (17), where   

h = 6 m, H = 5 m, a = 2 m, φ = 60o, െa ≤ u ≤ a, 0 ≤ λ ≤ 1. 
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Figure 11. Parabolic developable surface 
S o u r c e: compiled by S.N. Krivoshapko. 

Example 2.  By assuming that parabolas (15) lie in mutually perpendicular planes, then φ = 90o, and 
parametric equations (17) will take the following form:  

( ) ( )
2

2
,λ 1 1 λ ;

ux x u h
a

 
= = −  −     

 
 

( ) ;y y u u= =  

( )
2

2
, λ 1 .

uz z u H
a

 
= λ = −  

 
 (18) 

Parametric equations (18) can be transformed into implicit form: 

2

2
1 0.

z y x
H ha

+ + − =  

It is evident that this implicit equation describes a parabolic 
cylinder. 

Encyclopedia [13] describes two developable surfaces: one 
with parabolas, the axes of which intersect, but the parametric 
equations of which differ from equations (15), and another develop-
able surface containing two ellipses in mutually perpendicular 
planes. 

V.S. Obukhova and R.I. Vorobkevich [19] proposed using two 
parabolas in mutually perpendicular coordinate planes as director 
curves, with their vertices touching one of the coordinate axes and 
the axes of the parabolas perpendicular to this axis (Figure 11).   

 
Example 3. A semiellipse (curve 1) and a parabola (curve 2) are taken as director curves: 

( )
2

1 1 1 12
1 ,       ,  0;

ux x u h y u z
a

= = − = =  

( ) ( )
2 2

2 2 2 22 2
1 cosφ, ,       1 sinφ.

v vx x v H y v z v H
b b

   
= = − = = −      

   
 

The relation between parameters u and v is determined by formula (13): 

2

2 2

2
.

vau
b v

=
+

  (19) 

Parametric equations (14) of the desired developable surface will be written as 

( ) ( )
( )

2 2 2

2 22 2

4
, 1 1 1 cosφ;

v a vx x v h H
bb v

 
= λ = − λ − + λ −  

 +
 

( ) ( ) ( )
2

2 2

2
, 1 ;

vay y v v
b v

= λ = − λ + λ
+

 

( )
2

2
, 1 sinφ.

vz z v H
b

 
= λ = λ −  

 
  (20) 
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a                               b 

Figure 12. Developable surface defined by equations (20): 
а — general view; b — view in yOz plane 

S o u r c e: compiled by S.N. Krivoshapko. 

Figure 12 shows the surface defined by para- 
metric equations (20), where 

h = 4 m,   H = 5 m,   a = 1.2 m,   b = 1.8 m; 

φ = 60o,   –b ≤ v ≤ b,   0 ≤ λ ≤ 1. 

In further introduction of developable surfaces 
defined by parametric equations (14) for practical 
application, the resulting surface can be rotated around 
the y-axis, so that the extreme straight generator 
lines rest on the specified base. In this case, the 
intersecting planes with director curves will be inclined 
to the base at corresponding angles (Figure 10, a). 

3. Review of Studies on Strength Analysis of Four Types of Developable 
Shells with Proposed Middle Surfaces 

G. Monge laid the foundation for geometric research on proper developable surfaces in 1805. Since 
then, hundreds of scientific papers have been published on the geometry and application of these surfaces. 
Less than two dozen papers are devoted to the study of the stress-strain state of proper developable thin 
shells, with the exception of developable helicoids [20] and shells of equal slope [21]. All known 
developable shells have their middle surfaces defined in a non-orthogonal conjugate system of curvilinear 
coordinates, which significantly complicates the analytical calculation of these shells. 

The system of 20 equations for determining 19 two-dimensional parameters, presented by 
A.L. Goldenveiser, provided that the mid-surface is specified in the arbitrary system of curvilinear 
coordinates, contains internal “pseudo-forces” and “pseudo-moments” as opposed to internal forces and 
moments adopted in the system of 20 equations containing 19 unknowns obtained by the author [22]. These 
two systems of equations were used in a simplified version only for the momentless analysis of two 
types of developable shells. G.Ch. Bajoria [23] applied A.L. Goldenveiser’s equilibrium equations for the 
momentless analysis of a developable shell defined in the form:   

( ) ( ) ( ),   u v v u v= = +ρr r l ,   (21) 

where ρ(v) is the current position vector of the edge of regression; l(v) is the unit tangent vector to the edge 
of regression. B. Bhattacharya [24] also applied A.L. Goldenveiser’s equilibrium equations, but on the 
premise of defining the middle surface of the developable shell in the form of (9). 

A developable shell with an arbitrary quadrangular base with two plane parabolas lying in intersecting 
planes with parallel axes is calculated according to the momentless theory [25]. The results of calculating a 
developable shell with a circle and an ellipse in parallel planes, subjected to a linear load on the circular 
edge, are presented in [26]. The same shell, but loaded with self-weight, is considered in [27]. 

4. Results 

1. When constructing a developable surface with two n-order algebraic director curves in parallel 
planes (Figures 3, 4) passing through opposite sides of a rectangular base 2a × l, any algebraic curves can 
be taken as director curves, with the rise h (Figure 1) of one of the two curves being arbitrary, and the rise 
of the second curve being calculated based on the geometric parameters of the two specified curves from 
the condition of equality of angles φ0. Distance l between the planes with the curves does not affect the rise 
values of the curves. 

2. The rise of two superellipses (6) in parallel planes can be any value. 
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3. To construct developable surfaces with two n-order algebraic director curves in parallel planes 
(Figures 3, 4) passing through opposite sides of a rectangular base 2a ×  l, and developable surfaces with 
two specified plane curves (1)–(6) in parallel planes, but with trapezoidal base with the parallel sides equal 
to 2a and 2b, the same parametric equations (11) can be used. 

4. The rise values h and H of the two director curves lying in intersecting planes, and the 
magnitude of angle φ between these planes, do not affect the relationship between parameters u and v (see, 
for example, formulas (16) and (19)). 

5. It is shown that to date, 6 developable surfaces with director curves in parallel planes and with 
specified boundary conditions on the contours of rectangular bases [1], 8 developable surfaces with director 
curves in parallel planes and with specified boundary conditions on the contours of trapezoidal bases [2], 
5 developable surfaces with director curves with parallel axes in intersecting planes [3], and only 
3 developable surfaces with director curves with intersecting axes in intersecting planes have been studied. 
In this article, 3 more developable surfaces with director curves with intersecting axes in intersecting planes 
are introduced. 

6. The literature review has shown that there are currently no studies on the strength analysis of thin 
shells with the considered developable middle surfaces, specified in curvilinear non-orthogonal conjugate 
coordinates u, λ in the form (11) or (14) using the moment theory of shells. Researchers from the Academy 
of Engineering of RUDN University, Moscow have published a large number of studies on geometry, 
application, approximation of developable surfaces by folds, unfolding developable surfaces onto a plane 
and their parabolic bending, and determination of the strength parameters of some special cases of 
developable shells. In addition to their studies, some of which are listed in the “References” section, most of 
the scientific articles published over the last 25 years are devoted to the implementation of methods for 
unfolding developable surfaces with two specified director curves onto a plane with maximum use of 
computers [14; 28; 29] and the practical application of developable surfaces [30] in avant-garde architecture, 
agricultural machine engineering, shipbuilding [10], the fashion industry [15], as well as the solution of 
mathematical problems related to developable surfaces [31].  

7. It is established that the only study on finding the optimal cylindrical shell with two variable 
supporting curves at the ends is the article by V.N. Ivanov, O.O. Aleshina, E.A. Larionov [16]. Cylindrical 
surfaces are improper developable surfaces in which the edge of regression is moved off to infinity. 

5. Conclusion 

Scientific and technical literature proposes 10 methods for constructing developable surfaces. The most 
well-known of them are constructing developable surfaces based on two specified director curves, based on 
the specified edge of regression, and the kinematic method of winding a plane with a straight line onto a 
cylinder and cone. The first method listed above is recommended mainly for designing large-area roofs in 
construction, the second is widely used to create screw and helical products in mechanical engineering, and 
the third method is used when studying the trajectory of a straight line in space and when studying the 
carved ruled Monge surface. 

Despite the fact that there are sketches of architectural objects in the form of developable surfaces with 
specified supporting plane curves, they are most commonly used in the design of river and sea vessel hulls. 
Virtually all publications on the manufacture of ship hulls use graphic representations of the ideas for design 
of these developable surfaces. 

The article offers analytical solutions to the problems posed. For convenience of studying developable 
surfaces with two specified curves, they are divided into four types, for each of which the procedure for 
obtaining explicit or parametric equations is shown, according to which the corresponding developable 
surfaces with specified geometric parameters are constructed using computer graphics. 

The presented material may encourage architects and practicing engineers to make wider use of the 
proposed developable surfaces in the forms of real products, structures, and buildings. 
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1. Introduction 

Thin-walled shells deform in a significantly nonlinear manner, and special methods and algorithms 
must be developed to calculate them [1–5]. One important task in the study of thin-walled structures is the 
analysis of their deformation under dynamic loads. 

Dynamic impacts on shells cause vibrations, and one of the important factors in performing 
calculations is taking damping into account [6; 7]. It is especially important to consider damping when the 
load is applied for a short time, as in the case of explosive impacts, and further behavior of the structure can 
only be accurately described by taking into account the attenuation of vibrations. In relation to the 
calculation of shell structures, explosive loads were considered in [8–13]. For example, Godoy and 
Ameijeiras [12] investigate the deformation of vertical steel oil storage tanks with flat roofs during an 
explosion close to the structure. The energy values are analyzed at changing peak pressure and buckling 
shape. In [9], calculations of spherical shells made of FGM are performed, and the calculation algorithm 
and results are presented in the form of dynamic responses, phase portraits, and natural frequency values. 

Mechanics uses the variational principles of Lagrange and Hamilton, which solve time-dependent 
problems based on the law of conservation of energy and are therefore not applicable to dissipative systems 
[14]. A number of attempts to overcome this problem can be found in literature. One of the first papers 
devoted to accounting for dissipation in the Lagrangian formulation was published by Leech [14] in 1958. 
The Lagrangian function was extended by the Rayleigh dissipation function (1877). This formulation was 
called the modified Hamilton principle [15] (or extended [16]). Effectively, this approach allows the 
“classical” Lagrange equations to be extended to non-conservative (i.e., dissipative) systems [14; 17; 18]. 

The approach based on adding Rayleigh dissipation function to the Euler — Lagrange equations [14; 
19–23] was also used in [25–27]. 

Thus, [24] investigates forced nonlinear vibration of double-curved shells in accordance with Koiter's 
theory. Various types of bifurcations are analyzed. 

M. Amabili [26] investigates high-amplitude (geometrically nonlinear) vibration of circular cylindrical 
shells. The equations of motion are obtained using the energy approach that takes into account damping via 
the Rayleigh dissipative function. The results for four different nonlinear theories of thin shells are compared. 

The study of E.P. Detina [6] is also worth noting, in which the Rayleigh dissipative function is 
modified, called the Kelvin — Voigt dissipative function. The proposed function is proportional to the 
square of the material strain rate, in contrast to the Rayleigh dissipative function, which is proportional to 
the square of the displacement velocity. 

There is also an approach that takes into account energy dissipation by adding to the functional the 
ratio of damping energy, dissipated per vibration cycle, to the maximum deformation energy [27–31]. 
However, implementing this approach is computationally more complex. 

The aim of this study is to extend the mathematical model and the algorithm previously developed by 
the author [32; 33] to the problems of calculating shell structures under blast load taking into account 
damping. 

2. Theory and Methods 

To obtain the principal relations of the mathematical model, the total energy functional is used 
(dissipation is not taken into account at this stage): 
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Geometric relations taking into account nonlinearity will take the following form: 
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The geometry of the shell structure is defined by the Lamé parameters and the values of the principal 
radii of curvature. 

Also, expressions for the forces and moments reduced to the mid-surface of the shell and per unit 
length of the cross-section are required for the use in functional (2): 
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where , , ,x y xy yxN N N N  are the normal forces along axes x, y and membrane shear forces in the x yΟ  

plane; , , ,x y xy yx M M M M  are the bending and twisting moments; ,x yQ Q  are the shear forces in the 

x zΟ  and y zΟ  planes; 1 2,E E  are the elasticity moduli; 12 13 23, ,G G G  are the shear moduli; 12 21,μ μ  are 

the Poisson’s ratios. 
The proposed mathematical model is based on the hypotheses of the Timoshenko model (Reissner–

Mindlin, FSDT) and allows for the consideration of rotational inertia and transverse shear. Then the kinetic 
energy [32; 33] 
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By evaluating the integral with respect to variable z in (6), one obtains 
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The approximating functions (in accordance with the L.V. Kantorovich’s method) are substituted into 
functional (1). After evaluating the integrals with respect to variables x and y in terms of known functions, 
functional I represents a one-dimensional functional in terms of functions ( ) ( )ij yijU t t− Ψ . Next, the well-

known Euler — Lagrange equation [32; 33] is used: 
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derivative with respect to time. 
Next, the Kantorovich method and the Rosenbrock method (for numerical solution of rigid ODE 

systems) are used to perform the calculations. The Kantorovich method is used to reduce a multidimensional 
functional to a one-dimensional one. For this, the unknown displacement functions and deflection angles are 
represented as follows [33]: 
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where kl yklU − Ψ  are the unknown functions of t; 1 5 1 5,..., , ,...,k k l lX X Y Y  are the known approximation 

functions. 
The Euler — Lagrange equations (8) are supplemented with a term that takes into account damping 

based on the Rayleigh dissipation function. In well-known studies, the Rayleigh dissipation function written 
for the model of structural deformation does not take into account transverse shear (Kirchhoff — Love, 
Koiter, CSDT models) and the membrane thickness 
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At the same time, how exactly coefficient c is defined, as well as its dimension and order, depends on 
accounting for the membrane thickness. 

In this study, similar to the expression for kinetic energy, the Rayleigh dissipation function for the 
Timoshenko — Reissner model is written: 
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After integrating (11) with respect to variable z, one obtains 
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Now, a term containing the Rayleigh dissipation function (taking into account the proposed 
refinements) is added to the Euler — Lagrange equation, as it is done, for example, in [19; 24; 26] 
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System of equations (13) is complemented with initial conditions at t = 0 
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or 
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The system of differential equations (13), (14) is further solved using one of the numerical methods; in 
this study, the Rosenbrock method is applied to the problem. 
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3. Analysis 

To demonstrate the applicability of the above approach, a thin-walled shallow shell of double curvature 
with thickness h = 0.09 m, linear dimensions a = b = 10.8 m and principal curvature radii R1 = R2 = 40.05 m 
is analyzed. The material parameters correspond to fiberglass T10/UPE22-27 (elasticity moduli 
E1 = 0.294×105 MPa, E2 = 0.178·105 MPa, shear moduli G12 = G13 = G23 = 0.0301×105 MPa, Poisson’s 
ratio μ = 0.123, density ρ = 1800 kg/m3), the edges of the structure are simply supported. The load is 

explosive, directed perpendicular to the surface, and depends on time as follows: 0
0

exp sv
tq q q
t

 
= − + 

 
, 

q0 = 1 MPa, t0 = 0.01 s. 
Self-weight is also taken into account. The analysis is performed with N = 4 in the Kantorovich 

method. Using a program developed by the author in Maple software, the dynamic response of the system at 
different coefficients c = 100 N⋅s/m3 = 0.0001 MPa⋅s/m, c = 0.001 MPa⋅s/m, c = 0.002 MPa⋅s/m is shown. 
For comparison, the results without considering damping, when c = 0 N⋅s/m3, are presented (Figure 1). 
Hereinafter in the figures it is shown that the curve with a larger amplitude corresponds to the central part 
of the structure (x = a / 2, y = b / 2), while the one with a smaller amplitude corresponds to the quarter 
(x = a / 4, y = b / 4). Figure 2 shows the same data for q0 = 10 MPa. 
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Figure 1. Dynamic response under blast loading (q0 = 1 MPa): 

a — c = 0 MPa⋅s / m; b — c = 0.0001 MPa⋅s / m; c — c = 0.001 MPa⋅s / m; d — c = 0.002 MPa⋅s / m 
S o u r c e: made by A.A. Semenov. 
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Figure 2. Dynamic response under blast loading (q0 = 10 MPa): 
a — c = 0 MPa⋅s / m; b — c = 0.0001 MPa⋅s / m; c — c = 0.001 MPa⋅s / m; d — c = 0.002 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 

 
It is evident that with a higher value of coefficient c, the damping of vibration occurs more rapidly. The 

search and analysis of its possible values close to the real data for the materials under consideration will be 
the subject of further research.  
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To assess how destructive the impact of an explosive load is, the graphs of normal stresses are also 
constructed for q0 = 1 MPa and c = 0.001 MPa⋅s/m (Figure 3), and further — for q0 = 10 MPa and 
c = 0.001 MPa⋅s/m (Figure 4). It can be seen from the graphs that at q0 = 10 MPa the values of stress exceed 
the ultimate stress values for this material by several times, and at q0 = 1 MPa they are close to the ultimate 
stress values, and at certain moments they surpass them. 
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Figure 3. Normal stress values under blast loading (q0 = 1 MPa), 
c = 0.001 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 
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Figure 4. Normal stress values under blast loading (q0 = 10 MPa), 
c = 0.001 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 
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4. Conclusion 

Computer modeling technologies allow to study thin-walled structures taking into account nonlinear 
effects. The proposed mathematical model using the Rayleigh dissipation function allows to extend the 
applicability of the models and calculation algorithms previously developed by the author to a wider class 
of problems. This includes simulating the dynamic response of a structure to an explosive load when the 
load application time is short and the vibration process involves damping. The data obtained on the stress 
values during vibrations are also of interest, as they may exceed the ultimate values. 

Thus, a new mathematical model of the deformation of an orthotropic shell under the action of an 
explosive load has been obtained. 
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Исследование геометрии и напряженно-деформированного 
состояния оболочек со срединными поверхностями, 
заданными двумя суперэллипсами и окружностью2 

В.В. Карневич , И.А. Мамиева  
Российский университет дружбы народов, Москва, Российская Федерация 
 valera.karnevich@gmail.com 
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Доработана: 2 октября 2025 г. 
Принята к публикации: 12 октября 2025 г. 
 
Аннотация. Рассмотрены тонкие оболочки в форме алгебраических поверхностей с геометрическим каркасом из трех 
суперэллипсов, лежащих в трех координатных плоскостях, в случае, когда горизонтальный суперэллипс представляет 
собой круглое основание. Показано, что в зависимости от формы остальных двух суперэллипсов можно получить кониче-
скую поверхность, поверхность отрицательной гауссовой кривизны, включая коноиды, или поверхность положитель-
ной гауссовой кривизны. Проиллюстрировано построение 12 примеров таких поверхностей на круглом основании. 
Из них 6 поверхностей впервые исследованы подробно методами дифференциальной геометрии, получены их коэффици-
енты квадратичных форм. Из 12 представленных форм оболочек для сравнительного статического расчета выбраны две 
линейчатые оболочки нулевой и отрицательной гауссовой кривизны (коническая поверхность и цилидроид) с одинаковым 
геометрическим каркасом. Расчет оболочек с равномерно распределенной нагрузкой производился с использованием метода 
конечных элементов (МКЭ) в перемещениях, реализованном в программном комплексе SCAD. Показано, что, несмотря на 
одинаковый геометрический каркас этих двух оболочек, по большинству параметров НДС лучшие показатели у кониче-
ской оболочки. 

Ключевые слова: круглое основание, алгебраическая поверхность, цилиндроид, коническая поверхность, статический 
расчет, МКЭ 
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1. Introduction 

In descriptive geometry, the frame of a surface is a set of lines, which define the surface. Surfaces 
constructed from a geometric frame of three curves lying respectively in three coordinate planes are widely 
used in shipbuilding for the design of hulls of above- and under-water vessels. In [1], the author discusses 
issues of modelling hull surfaces with discrete points and the computational advantages and geometric 
intuitivity of using parametric representation in the surface modeling. In [2], thirteen analytical surfaces for 
preliminary stages of hull shape selection and different methods of their construction are presented. There 
were suggestions of using superellipses as the plane curves of the geometric frame [3–6], which allow to 
significantly expand the number of shapes for ship hulls by varying the parameters of the superellipses. 
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Paper [7] presents parametric equations and a technique for generating complex submarine hull shapes, 
which are composed of fragments of surfaces defined by a frame of superellipses. In [8], thin shells with 
middle surfaces containing three plane superellipses as the geometric frame were originally suggested to be 
used in construction and architecture. 

In [5; 9], the curves defining the considered surfaces are expressed in the following form: 
 the first curve of the geometric frame in the xOy plane (z = 0): 

1 ,
t

r r
t

x
y W

L

 




= 



−   (1) 

 the second curve of the geometric frame in the yOz plane (x = 0): 
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 the third curve of the geometric frame in the xOz plane (y = 0): 
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where for convex curves r, t, n, m, s, k > 1; for concave curves r, t, n, m, s, k < 1. Curves (1)–(3) represent 
superellipses if the exponents within each equation are equal, or arbitrary plane curves otherwise. The 
exponents in equations (1)–(3) can take on any positive value. In this study, only superellipses are considered 
to constitute the geometric frame, so r = t, n = m, s = k. If r = t = 1, n = m = 1, s = k = 1, then curves (1)–(3) 
degenerate into straight lines, and superellipses degenerate into rhombs. 

Using the method described in [6; 9], it is possible to derive the explicit equations of three algebraic 
surfaces with the same geometric frame of curves (1)–(3): 

 generated by a family of sections in x = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
ns m rk m tkz T x L y W x L= −  

 
− −


 (4) 

 generated by a family of sections in у = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
sn k tm k rmz T y W x L y W = − − −  

 (5) 

 generated by a family of sections in z = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
rm t kn t sny WW z T x L z T = − − −  

 (6) 

where , , 0 .L x L W y W z T− ≤ ≤ − ≤ ≤ ≤ ≤  

The explicit equations of surfaces (4)–(6) can be transformed into parametric equations: 

( ) ( ) ( )
1/1/ 1/

, , 1 ;, , 1 1
nr r mt kx x u uL y y u v vW u z z u v T u v    = = ± = = − = = − −       (7) 

( ) ( ) ( )
1/1/ 1/

, 1– , , ;1– 1–
st n kr mx x u v vL u y y u uW z z u T u v    = = = = ± = =       (8) 
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( ) ( ) ( )
1/1/ 1/

, 1– , , 1 ,– 1– ,
rk m ts nx x u v vL u y y u v W u v z z u uT    = = = = ± = =       (9) 

where 0 1, 1 1; ,  u v u v≤ ≤ − ≤ ≤  are non-dimensional parameters. 

The considered surfaces can be referred to as “kinematic surfaces”, since they are formed by the 
motion of a generatrix of variable or constant curvature along a directrix. By taking each of the three super-
ellipses of the geometric frame as the generatrix one-at-a-time, three analytical surfaces are obtained, which 
are defined by explicit equations (4)–(6) or parametric equations (7)–(9). 

Equations (4)–(9) were used in paper [10] for constructing five groups of new ruled surfaces. Some 
of these ruled surfaces were taken as middle surfaces of thin shells, which were analyzed for dead load 
in [11]. 

In scientific literature and in practice, thin shells with a circular base are the most popular. Virtually all 
shells with a circular base known to date are shells of rotation, for which about three dozens of optimality 
criteria have been proposed [12]. Less known is the method of defining the geometry of shells where middle 
surfaces contain three plane curves as the frame, and one of these curves is a circle. 

The objective of this paper is to investigate shells with middle surfaces defined by a geometric frame 
of superellipses in the particular case when the horizontal curve (base outline) is a circle. Some specific 
groups of such surfaces are analysed in detail using the methods of differential geometry for the first time to 
demonstrate the geometrical equivalence or distinction of surfaces with the same frame, but different 
method of generation. In addition, static analysis is applied to shells with middle surfaces from a particular 
group to identify the differences in the structural behavior. 

2. Methods 

2.1. Construction of Surfaces Defined by Two Superellipses and a Circle 

Assuming that a surface with the frame of superellipses has a circular base in the xOy coordinate plane, 
then the following values of parameters in equations (1)–(9) can be adopted: 

2, , 0 0 – , – ,,r t L W R z R x R R y R= = = = ≤ ≤ ≤ ≤ ≤ ≤
 

and z-axis is directed upwards. In this case, expressions (7)–(9) can be rewritten as 

( ) ( ) ( )1/2 1/ 1/2, 1 , , 1 1 ;,
s nk mx x u vR y y u v vR u z z u v T u v     = == ± = = ± − = = − −       (10) 

( ) ( ) ( )1/2 1/ 1/2, 1 – , 1 – 1 – ;,
n sm kx x u v vR u y y u uR z z u T u v     = = ± = = ± = =       (11) 

( ) ( ) ( )1/ 1/ 1/22, 1 – , 1 – 1 – , ,,
k ms nx x u v vR u y y u v R u v z z u uT     = = ± = = ± = =       (12) 

where 1,0 1 0 , ;u v u v≤ ≤ ≤ ≤
 
are non-dimensional parameters. 

Parametric equations (10)–(12) allow to construct an unlimited number of groups of three surfaces. 
And in each group, the three surfaces will have the same geometric frame of two half-superellipses in 
vertical coordinate planes and the same circular base in the horizontal plane. 

Several specific groups of three surfaces with the same frame are constructed and illustrated below. 
Using parametric equations (10)–(12), the first group of three surfaces is constructed for the case of n = m = 
= s = k = 1 (Figure 1), the second group of three is constructed with n = m = 1, s = k = 2 (Figure 2), 
the third group of three has s = k = 1, n = m = ¾ (Figure 3), and the fourth group of three is constructed with 
n = m = 2, s = k = ¾ (Figure 4). The surfaces are visualized using Matplotlib v3.4.2 plotting library for 
Python programming language [13]. 
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а b c 

Figure 1. Analytical surfaces with a circular base (the 1st group of three where n = m = s = k = 1): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 2. Analytical surfaces with a circular base (the 2nd group of three where n = m = 1, s = k = 2): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 3. Analytical surfaces with a circular base (the 3rd group of three where s = k = 1, n = m = 3/4): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 4. Analytical surfaces with a circular base (the 4th group of three where n = m = 2, s = k = 3/4): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 
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By changing the values of exponents n, m, s, k in equations (10)–(12), it is possible to continue the 
construction of various surfaces with a circular base. The surfaces demonstrated in Figures 1–4 can be 
implemented as architectural structures in the form of rigid shells or in the forms of tent coverings. The 
potential for application of thin shells with middle surfaces shown in Figures 1–4 was originally considered 
in [14]. 

2.2. Geometric Analysis 

Geometric properties of the first two groups of the presented surfaces (Figures 1 and  2) are examined 
using the methods of differential geometry. 

A two-dimensional manifold (surface) naturally involves the use of two independent parameters. Any 
analytical surface defined by parametric equations can be expressed in vector form: 

( ) ( ) ( ) ( ), , , , ,u v x u v y u v z u v= = + +r r i j k  

where u and v are independent parameters. The terminal points of all vectors ( ),u v=r r  form a surface in 

space. 
Internal and external geometry of a surface is described numerically by the coefficients of the 

fundamental forms. Coefficients E, G, F of the first quadratic form characterize the internal geometry of a 
surface, coefficients L, M, N of the second quadratic form characterize the curvature of the surface in space 
and coefficient K defines the Gaussian curvature [15]: 

2 2 2 2, , ;u v u vE A G B F= = = = =r r r r  

2 2 2 2 2 2 2 2 2
, , ;

( ) ( ) ( )uu u v uv u v vv u vL M N
A B F A B F A B F

= = =
− − −

r r r r r r r r r
 

2

2 2 2
.

–

LN MK
A B F

−=  

2.3. Static Analysis 

Thin shells with the middle surfaces shown in Figure 1 is are selected for a comparative static analysis 
under uniformly distributed vertical load. The choice of the analysis method is discussed below. 

Four stages of creation and development of the theory of plates and shells, which gave rise to 
mechanism of analysis of spatial roof systems of large-span buildings and structures on a contemporary 
level, are presented in [16]. The author supposes that the fourth stage of development of the shell theory, 
design and construction of large-span structures has begun in the 21st century. 

Now, a large variety of analytical, semi-analytical, and numerical methods of analysis of shells and 
shell structures exist. In the previous section, it was shown that the considered middle surfaces of shells 
can be defined in Cartesian coordinates using algebraic equations (4)–(6) or using parametric equations 
(10)–(12). Curved coordinate lines u, v of these surfaces can be non-orthogonal (F ≠ 0) or orthogonal (F = 0), 
non-conjugate (M ≠ 0) or conjugate (M = 0). 

Taking this into account, one may use Goldenveiser’s system of 20 governing equations [17] of the 
thin shell theory for arbitrary curvilinear coordinates containing internal “pseudo-forces” and “pseudo-
moments”, or the system of governing equations suggested by S.N. Krivoshapko [18] containing internal 
forces and moments generally used in engineering calculations, or the governing equations of 
Ya.M. Grigorenko, A.M. Timonin [19] expressed in tensor form. The linear theory of thin elastic shells is 
an approximate two-dimensional case of three-dimensional linear theory of elasticity [20]. The linear theory 
of thin elastic shells belongs to classical special two-dimensional models within linear elasticity [21]. The 
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governing equations suggested by these researchers contain coefficients of the fundamental quadratic forms, 
which have not been previously presented for the specific surfaces examined in this paper. 

Relevant literature analysis has shown that these three groups of governing equations of the linear 
theory of thin shells have been used only in the case of the simplified momentless theory of shells or for the 
analysis of ruled shells with a number of simplifications in geometry or governing equations. Hence, 
accurate application of analytical methods for the shells in question cannot be realized at present time. 

Several numerical methods were considered for the analysis of the shells in this study. Such included: 
method of numerical integration of the system of governing differential equations, asymptotic semi-
analytical method with a small parameter, finite difference energy method, finite element method in terms 
of displacements, and others [22]. It was decided to use displacement-based FEM [23]. In the 21st century, 
such FEM software as LIRA, SCAD, STARK, MicroFE, STADIO, ABAQUS, ADINA, ANSYS, LS-DYNA, 
COSMOS, MSC/NASTRAN, SOFISTIC, and other were successfully used for similar tasks. It was decided 
to select SCAD [24], which allows to conveniently define shell geometry using parametric equations and set 
the mesh discretization step along the curved coordinate lines. By changing the overall dimensions of shells, 
selecting appropriate exponents of algebraic curves (1)–(3) of the main frame of the shells, and by assuming 
a particular parameter of optimization, one can select an optimal structure among a large number of shells 
in automatic mode. 

3. Results 

3.1. Geometric Analysis 

3.1.1. First Group of Three Surfaces 

The coefficients of the fundamental forms of the surface in Figure 1, a can be expressed in the following 
form: 

( ) ( )22 2 2 2 2 2 2 2/ 1 1uE A R R u v u T v= = = + − + −r ;  (13) 

( ) ( ) ( )22 2 2 2 2 21 1vG B T u R u B u= = = − + − =r ;   (14) 

( )( )2 2 – 1 1u vF R uv T u v= = + − −r r ;             (15) 

( )

( )

2

3
2 2 2 2 2

1
 –

 1

R Tv u
L

A B F u

−
=

− −
 ;        (16) 

( )

( )

2

1
2 2 2 2 2

1
 

 1

R T u
M

A B F u

−
=

− −
 ;    (17) 

 0;N =  (18) 

( )2 2 2 2 / – 0K M A B F=− < .  (19) 

In expressions (13)–(19), the coefficient of the first fundamental form F ≠ 0 shows that coordinate 
lines u, v are non-orthogonal. The coefficient of the second fundamental form N = 0 shows that coordinate 
lines v coincide with the straight generators of the surface. The coefficient of the second fundamental form 
M ≠ 0 shows that the coordinate grid u, v is non-conjugate. The ruled surface presented in Figure 1, a  is a 
surface of negative Gaussian curvature, since K < 0. 



Karnevich V.V., Mamieva I.A. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):399–413 
 

 

406 ANALYSIS OF THIN ELASTIC SHELLS 

The coefficients of the fundamental quadratic forms of the surface shown in Figure 1, b are also 
determined by expressions (13)–(19). Since the ruled surfaces presented in Figure 1, a and 1, b have the 
same coefficients of the fundamental forms, they are identical surfaces. They are both cylindroids [25]. 

The coefficients of the fundamental quadratic forms of the surface in Figure 1, c are expressed as 
follows: 

2 2 2 2;uE A T R= = = +r  (20) 

0;u vF = =r r  (21) 

( ) ( )22 2 2 21 / 1 ;vG B R u v= = = − −r  (22) 

0;L =  (23) 

0;M =  (24) 

( )

( ) ( )
12 2 2

2 2 22

1( )
;

1  

vv u v TR u
N

A B F T R v

− −
= =

− + −

r r r
 (25) 

2

2 2 2
 0.

LN MK
A B F

−= =
−

 (26) 

In expressions (20)–(26), the coefficient of the second fundamental form L = 0 shows that the curved 
coordinate lines u coincide with the straight generators of the surface. The coefficient of the first 
fundamental form F = 0 shows that coordinate lines u, v are orthogonal and the coefficient of the second 
fundamental form M = 0 shows that the coordinate grid u, v is conjugate. Therefore, the introduced 
curvilinear system of coordinates u, v is defined in lines of principal curvatures. The ruled surface shown in 
Figure 1, c is a surface of zero Gaussian curvature, since K = 0. 

This ruled surface is a right circular cone. Differentials of the corresponding arclengths of coordinate 
lines u and v can be determined using the expressions 

,    .u vds Adu ds Bdv= =  

3.1.2. Second Group of Three Surfaces 

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, a have the 
following form: 

( ) ( ) ( )22 2 2 2 2 2 2 2 2 2/ 1  1 / 1 ;uE A r u v R u u T v u R= = = − + − − +  (27) 

( )( ) ( )2 2 2 2 2 21 ;vG B T R u B u= = = + − =r  (28) 

( )2 2 1 ;u vF vR u T u v= = − + −r r  (29) 

( )
2

2 2 2 2
;

 1

R TL
A B F u

= −
− −

 (30) 

0;M =  (31) 

 0;N =  (32) 

K = 0. (33) 
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Expressions (27)–(33) indicate that the system of curvilinear coordinates u, v is non-orthogonal (F ≠ 0), 
but conjugate (M = 0). Coordinate lines v coincide with the straight generators (N = 0) of the cylindrical 
surface (K = 0) shown in Figure 2, a. 

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, b have the 
following form: 

( ) ( )2 2 2 2 2 2 2 2 2/ 1 1 ;uE A R R v u u T v= = = + − + −r  (34) 

( ) ( ) ( )22 2 2 2 2 2 21 1 – / 1 ;vG B R u T v u v= = = − + −r  (35) 

( )2 2 1 ;u vF R uv vT u= = − + −r r  (36) 

( )

( ) ( )

2 2

3 1
2 2 2 2 22 2

1
;

 1 1

R T u v
L

A B F u v

−
=

− − −
 (37) 

( )

( ) ( )

2

1 1
2 2 2 2 22 2

1
;

 1 1

R T u v
M

A B F u v

−
= −

− − −
 (38) 

( )( )
( )

1
2 2 2

3/22 2 2 2

1 1
;

 1

R T u u
N

A B F v

− −
=

− −
 (39) 

( )
( ) ( )( )

24 2 4

2 22 2 2 2 2

1
0.

1 1

R T u v
K

A B F u v

−
= >

− − −
 (40) 

The corresponding coefficients of the fundamental quadratic forms of the surface shown in Figure 2, c  
have the following form: 

( ) ( )2 2 2 2 2 2 2 2 2/ 1 1 ;uE A T R v u u R v= = = + − + −r  (41) 

( ) ( ) ( )22 2 2 2 2 2 21 1 – / 1 ;vG B R u R v u v= = = − + −r  (42) 

( )2 1 – 2 ;u vF vR u= =r r  (43) 

( )

( ) ( )

2 2

3 1
2 2 2 2 22 2

1
;

 1 1

R T u v
K

A B F u v

−
= −

− − −
 (44) 

( )

( ) ( )

2

1 1
2 2 2 2 22 2

1
;

 1 1

R T u v
M

A B F u v

−
=

− − −
 (45) 

( )( )
( )

1
2 2 2

3
2 2 2 2 2

 1 1
;

 1

R T u u
N

A B F v

− −
= −

− −
 (46) 
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( )
( ) ( )( )

24 2 4

2 22 2 2 2 2

1
0.

1 1

R T u v
K

A B F u v

−
= >

− − −
 (47) 

By comparing equations (34)–(40) and (41)–(47), it can be observed that the surfaces presented in 
Figures 2, b and 2, c have the same values of the coefficients of the second fundamental form (L, M, N), 
only with the opposite signs, and the same positive Gaussian curvature (K > 0). 

The geometry of the remaining two groups of three surfaces (Figures 3 and 4) can be investigated in 
a similar manner. 

3.2. Static Analysis 

The shells with the middle surfaces shown in Figure 1 are subjected to a uniformly distributed load 
q = 1 kN/m2. The load acts in the opposite direction to the fixed axis Оz. 

It is assumed that T = R = 5 m, constant shell thickness h = 7 cm, elastic modulus of the shell material 
Еb = 32500 MPa and Poisson’s ratio ν = 0.17. The shell is fixed at the base along the contour z = 0. 

It was previously established that the surfaces in Figure 1, a and 1b are identical, despite being 
constructed differently by the process of moving the straight generators within the geometric frame. Thus, 
the static analysis is performed for two cases of the middle surface: cylindroid (Figure 1, a) and cone 
(Figure 1, c). The finite element models are developed in SCAD v21 software for the two cases of shells 
and are depicted in Figure 5, including the directions of curvilinear coordinates u and v. The geometry of 
the models is defined by parametric equations (10) and (12) respectively. The meshes of FE-models consist 
of plane shell elements. 

Figure 6 shows the exaggerated deformed shapes of the analyzed shells under the applied vertical load. 

 

a b 

Figure 5. Finite element model: 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

 
a b 

Figure 6. Deformed shape: 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 
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The left-hand sides (a) of Figures 7–12 demonstrate the computed strength parameters of the shell with 
the middle surface shown in Figure 1, a. Correspondingly, the right-hand sides (b) of Figures 7–12 show the 
computed stress-strain state parameters of the shell with the middle surface shown in Figure 1, c. Vertical 
displacements (Figure 7) are positive in the upwards direction. Normal stresses Nu and Nv (Figures 8–9) 
are directed along coordinate lines u and v respectively; positive values of normal stress indicate tension. 
Mu and Mv (Figures 10–11) represent bending moments, which act in the sections orthogonal to coordinate 
lines u and v respectively and are calculated as moment per unit length of these lines. Equivalent 
compressive stress (Figure 12) is computed as von Mises stress. 

 

 
 

a b 
Figure 7. Distribution of displacements along z-axis (mm): 

а — shell with cylindroidal middle surface; b — shell with conical middle surface 
S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 8. Distribution of normal stresses Nu (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 9. Distribution of normal stresses Nv (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 
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a  b 
Figure 10. Distribution of bending moments Mu (kN·m/m): 

а — shell with cylindroidal middle surface; b — shell with conical middle surface 
S o u r c e: compiled by Valery Karnevich. 

 

 
a  b 

Figure 11. Distribution of bending moments Mv (kN·m/m): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 12. Distribution of equivalent von Mises compressive stress at the middle surface (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

4. Discussion 

This paper shows the construction of 4 groups of three surfaces, based on the previously obtained 
analytical and parametric equations of surfaces with the geometric frame of three superellipses. All 12 
surfaces contain a circle as one of the plane curves of the frame. The presented surfaces are visualized 
graphically (see Figures 1–4) for better perception by architects and engineers. Using the methods of 
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differential geometry, the detailed analysis of 6 algebraic middle surfaces of shells was performed for the 
first time. As a result of the geometric analysis, two surfaces in one group of three surfaces (see Figure 1) 
came out identical, and in the case of the other group (see Figure 2) all three surfaces are geometrically 
different. In the opinion of the authors, these surfaces can be taken as a basis for the shapes of civil and 
mechanical engineering structures. At least, these surfaces can be in the reserve of surfaces waiting for their 
implementation [26] within the framework of one of the modern architectural styles. The number of new 
forms of thin shells can be significantly expanded by taking fragments of different superellipses as the plane 
curves of the geometric frame [27]. 

The comparative static analysis of two thin shells (see Figure 5), the middle surfaces of which belong 
to one group of three surfaces with identical frames, was undertaken to provide insight into the structural 
differences. It is clear from the deformed shapes (Figure 6), displacement distributions (Figure 7), stress and 
moment distributions (Figures 8–12) that the behavior of the two shells with the same dimensions, material 
and applied static load differs drastically. All distributions of the strength factors in the circular cone are 
rotationally symmetric. In the cylindroid, these distributions are symmetric about the radial edges of the 
shell, which lie along the x and y axes. The maximum vertical displacement of the cylindroid is about 
8 times higher than that of the cone (see Figure 7). The maximum stresses and moments (see Figures 8–12) 
are about 3–4 times greater in the cylindroid. The greatest normal stresses along curvilinear coordinates u, v 
in the cylindroid concentrate at the bottom of the radial edges (see Figure 8). The normal stresses in the 
circular cone are more linearly distributed and are larger near the circular base (see Figure 9). Moreover, the 
cylindroid shell has areas of tensile stress, whereas the cone exhibits pure compression. The maximum 
bending moments in the cylindroid concentrate along the radial edges (Figure 10). The bending moments in 
the circular cone are slightly greater near the base (see Figure 11), but are very small overall. It should be 
noted that the values of the strength factors along curvilinear coordinates u, v cannot be compared directly 
for the two shells, since their curvilinear coordinate grids are different (Figure 5). Hence, the distributions 
of von Mises compressive stress were obtained for the two shells (see Figure 12). These equivalent stress 
distributions roughly locate the dangerous areas of the shells. 

5. Conclusion 

Developments in mechanical and civil engineering require new more efficient solutions. One possible 
method of improving the load-bearing capacity of shell structures is modification of their geometry. This 
paper examines thin shells, the middle surfaces of which are defined by three plane curves of the geometric 
frame: a circle in the horizontal plane and two superellipses in the two vertical planes. It is shown that by 
varying the values of the exponents of the superellipses, it is possible to obtain a variety of outstanding 
shapes. 

1. The method of defining the geometry of surfaces by using the curves of their frames allows to obtain 
a group of three surfaces — one for each curve of the frame. Further geometric analysis is required to 
determine the differences within the group. Some surfaces within a group may be identical, and in the other 
group some may share particular geometric characteristics, but be different overall, as confirmed by the 
findings in this paper. 

2. It is shown that shells with geometrically different middle surfaces, but defined by the same frame, 
exhibit completely dissimilar behavior under static load. The presented static analysis of the two shells 
formed by the same main frame shows advantage of the circular cone over the cylindroid. However, a more 
detailed analysis is required for selecting the optimal shell, by testing for different dimensions, material 
properties and constraints. In some cases, material consumption, the simplest method of shell fabrication, or 
enclosed volume may be taken as the optimality criterion, which can be potentially satisfied by particular 
shell shapes demonstrated in this paper. 

The analysis of available sources allowed to conclude that in the beginning of the 21st century the 
period of decline of interest for shell structures and thin-walled shells was over. This happened owing to the 
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appearance of new structural materials, expansion of the inventory of analytical, point, spline and frame 
surfaces suitable for use as middle surfaces of shells, the development of more accurate calculation methods 
and computer software on their basis, and most importantly there was an increased demand for the creation 
of curvilinear large-span shell structures. These conclusions are confirmed by appearance of new 
architectural styles, directions, and style flows in the recent decades. Most architects and designers believe 
that curvilinear structures can become an alternative to traditional forms of buildings, while others, on the 
contrary, believe that the curvilinearity of buildings will quickly bore the inhabitants. 
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Аннотация. Установлено квазилинейное представление нелинейного реологического уравнения состояния бетона, выве-
денного на основе концепции статистического распределения прочности отдельных фракций, в объединении образующих 
элемент конструкции. В нелинейной постановке для нестареющего бетона известный принцип Л. Больцмана суперпози-
ции деформаций ползучести реализуется по приращениям структурного напряжения способных к силовому сопротивле-
нию фракций при неубывающем нагружении. Для стареющего бетона в отличие от предшествующих подходов реализова-
но наложение частичных приращений деформаций, порожденных приращениями уровня напряжений. Это приводит к 
корректному учету старения бетона, уточняющему вид известных реологических уравнений. Приведены удобные в при-
ложениях квазилинейные формы реологических уравнений. Концепция прочностной структуры бетона и идентичность 
функций старения прочности, модуля упругости и ползучести позволяют сведение уравнения ползучести к линейному 
дифференциальному уравнению с постоянными коэффициентами. Это упрощает, в частности, решение задач релаксации 
напряжений, значимых в расчетах конструкций на долгосрочную безопасность. 
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Abstract. A quasilinear representation of a nonlinear rheological equation of concrete state has been established, derived on the 
basis of the concept of statistical strength distribution of individual fractions combined to form a structural element. In the 
nonlinear formulation for ageless concrete, L. Boltzmann’s well-known principle of superposition of creep deformations is realized 
by increments of structural stress of fractions capable of force resistance under non-decreasing loading. For aging concrete, in 
contrast to previous approaches, the superposition of partial increments of deformations generated by increments in stress levels is 
implemented. This leads to the correct consideration of concrete aging, clarifying the type of known rheological equations. 
Quasilinear forms of rheological equations that are convenient in applications are given. The concept of the strength structure of 
concrete and the identity of the aging functions of strength, modulus of elasticity and creep make it possible to reduce the creep 
equation to a linear differential equation with constant coefficients. This simplifies, in particular, the solution of stress relaxation 
problems, which are important in the calculations of structures for long-term safety. 

Keywords: superposition, strength, aging, concrete creep, stress relaxation, deformation 

Conflicts of interest. The authors declare no conflict of interest. 

Authors’ contribution: Larionov E.A. — general concept of research, validation; Agapov V.P. — conclusions and recommendations; 
Markovich A.S., Aidemirov K.R. — analysis of scientific literature, writing. All authors read and approved the final version of 
the article. 
For citation: Larionov E.A., Agapov V.P., Markovich A.S., Aidemirov K.R. Rheological equations of state of concrete. Structural 
Mechanics of Engineering Constructions and Buildings. 2025;21(5):414–431. (In Russ.) http://doi.org/10.22363/1815-5235-2025-
21-5-414-431 EDN: ECUDSM 

1. Введение 

Уравнения механического состояния значимы в теории бетона, и им посвящено большое коли-
чество работ, отраженных частично в [1; 2]. Эти уравнения представляют теоретические обоснова-
ния экспериментально выявленных при эталонных нагружениях феноменологических зависимостей. 
В неравновесном процессе силового деформирования существенную роль играет явление прироста 
деформации при постоянном напряжении, называемое ползучестью. Учет ползучести бетона, есте-
ственно, приводит к реологическим уравнениям состояния. Традиционный вывод этих уравнений 
использует принцип наложения деформаций и заключается в суммировании в некоторый момент t  
частичных приращений ( )ε ,τcr itΔ  деформаций ползучести, порожденных частичными приращениями 

( )σ τiΔ  напряжения ( )σ τ  в последовательные предыдущие моменты времени τi . В линейной теории 

ползучести идеального (нестареющего) бетона принцип наложения известен как принцип супер-
позиции Л. Больцмана [3] — деформация ( )ε ,τcr itΔ  определяется напряжением ( )σ τiΔ  и его про-

должительностью ( )τit −  и не зависит от ( )σ τ jΔ  и ( )τ jt −  при i j≠ . Взаимонезависимость деформа-
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ций ( )ε ,τcr itΔ  позволяет нахождение отвечающего приращению напряжения ( ) ( )
1

0
0

σ , σ τ
n

i
i

t t
−

=
Δ = Δ  

полного приращения ( )0ε ,cr t tΔ  деформации ползучести суперпозицией (наложением) ( )ε ,τcr itΔ : 

( ) ( ) ( ) ( )
1 1

0 0
0 0

ε , ε ,τ ,τ σ τ
n n

cr cr i i i
i i

t t t C t
− −

= =
Δ = Δ = Δ  , (1) 

где ( )0 ,τiC t  — мера ползучести идеального бетона в момент t  при нагружении в момент τi . 

При постоянном модуле упругости E  приращению ( )0σ ,t tΔ  отвечает приращение мгновенной 

деформации: 

( ) ( )1

0
0

σ τ
σ ,

n i
el

i
t t

E

−

=

Δ
Δ =  . (2) 

Согласно (1) и (2) получим равенство 

( ) ( ) ( )
1

0 0
0

1
ε , ,τ σ τ

n
i i

i
t t C t

E

−

=

 Δ = + Δ  
 , (3) 

выражающее принцип наложения деформаций в наследственной теории ползучести Больцмана 
– Вольтерра.  

Предельный переход в (3) позволяет получить выражение 

( ) ( ) ( ) ( )
0

0
0 0

σ ,
ε , ,τ σ τ

t

t

t t
t t C t d

E
Δ

Δ = +  . (4) 

Добавление к ( )0ε ,t tΔ  деформации ( ) ( )0 0
1

,τ σiC t t
E
 +  

 приводит к уравнению 

( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0
σ

ε , ,τ σ τ , σ
t

t

t
t t C t d C t t t

E
= + + ,  

преобразующемуся к виду 

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t

t

t C t
t t d

E
∂

= −
∂ . (5) 

Для стареющего бетона принимается мера ползучести 

( ) ( ) ( )*
0, τ , τC t t C t= Θ ,    ( ) ( ) ( )0 0,τ ,28 ,τC t C f t= ∞ , (6) 

где ( )tΘ  — функция старения; ( )0 ,28C ∞  — предельная мера ползучести ( )0 ,τC t  при 0 28t =  суток; 

( ),τf t  — функция накопления деформаций ползучести, причем  

( ) ( )0γ,τ 1 t tf t ke− −= − ,  

где 0 1k< ≤ , γ  — эмпирический коэффициент. 

Зависимость функции ( ),τf t  от аргумента ( )τt −  определяется природой запаздывающих 

деформаций ползучести. 
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Решением дифференциального уравнения  

( ) ( ) ( )
*

*,τ
γ ,τ ,τ

dC t
C C t

dt
 = ∞ −  , (7) 

отражающего пропорциональность скорости затухания деформаций ползучести ее дефициту, являет-
ся функция  

( ) ( )0γ, τ 1 t tf t e− −= − . (8) 

З а м еч а н и е .  Полагая 1k <  в функции ( ),τf t , при τ t=  получим 

( ) ( ) ( )( )*
0, ,28 1 0.C t t t C k= Θ ∞ − ≠  

Это соответствует наличию так называемой кратковременной ползучести, что противоречит инерци-

онной природе запаздывающих деформаций ползучести. Вместе с тем соотношение ( )* , 0C t t ≠  кор-

релирует с экспериментально наблюдаемым начальным всплеском кривой ползучести, рассматрива-
емым как следствие быстро натекающей ползучести. 

В [4; 5] для стареющего бетона по аналогии с уравнением Больцмана – Вольтерра предлагается 
линейное реологическое уравнение  

( ) ( )
( ) ( ) ( )

0

*

0
σ ,τ

ε , σ τ τ
τ

t

t

t C t
t t d

E t
∂

= −
∂ . (9) 

А.А. Гвоздев, принимая линейную зависимость для мгновенной деформации ( ) ( )
( )

σ
εel

t
t

E t
= , 

полагал, что ползучесть состоит из линейной части ( ) ( ) ( )
0

*
0ε , ,τ σ τ

t
l
cr

t
t t C t d=   и нелинейной части 

( ) ( ) ( )
0

0ε , ,τ,σ σ τ
t

nl
cr

t
t t L t d=  , порожденной структурными повреждениями [2]. 

В.М. Бондаренко, наряду с деформацией ползучести ( )0ε ,cr t t , полагал нелинейной зависимость 

и мгновенной деформации ( )εel t  от ( )σ t  и вывел нелинейное реологические уравнение [1] 

( ) ( )
( ) ( ) ( )

0

*

0
,τ

ε , τ τ
τ

t
el

cr
t

S t C t
t t S d

E t
∂

= −
∂ , (10) 

где ( )elS t  и ( )τcrS  — нелинейные функции напряжений, порождающие мгновенные и запаздываю-

щие деформации соответственно. 
В [6; 7] на основе концепции прочностной структуры бетона получена модификация принципа 

суперпозиции Л. Больцмана и выведено нелинейное реологическое уравнение с единой для мгно-
венных и запаздывающих деформаций функцией напряжений ( )S t .  

Согласно концепции прочностной структуры величина ( )τS  представляет напряжение ( )σ τstr , 

способных к силовому сопротивлению фракций бетонного элемента, названного в [6] структурным. 

При этом ( ) ( ) ( )0σ τ τ σ τstr S= , ( )0 τS  является нелинейной функцией уровня напряжений 
( )
( )

σ τ
η

τR
=  и 

выводится нелинейное реологическое уравнение [7–9] 
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( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
σ ,τ

ε , τ σ τ τ
τ

t

t

S t t C t
t t S d

E t
∂

= −
∂ . (11) 

При допущении равенств ( ) ( ) ( )0 σel elS t S t t=  и ( ) ( ) ( )0τ τ σ τcr crS S=  уравнение (10) приводится 

к виду 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
σ ,τ

ε , τ σ τ τ
τ

t
el

cr
t

S t t C t
t t S d

E t
∂

= −
∂ . (12) 

В приложениях удобна квазилинейная форма нелинейных уравнений, означающая представле-

ние деформации ( )0ε ,t t  как произведение порожденной напряжением ( )σ τ  деформации ( )0ε ,el t t  на 

множитель квазилинейности ( )0Ŝ t :  

( ) ( ) ( ) ( )
( )
( )

( )
0

*
0

0
σ τ ,τ1ˆε , σ τ
σ τ

t

t

C t
t t S t t d

E t t

 ∂ = −
∂  

 . (13) 

Из равенств (12) и (13) явствует, что ( )0Ŝ t  есть решение уравнения 

( ) ( ) ( )
( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

0 0

* 0 *
0 0σ τ ,τ σ ,τ1ˆ σ τ τ σ τ τ

σ τ τ

t t
el

cr
t t

C t S t t C t
S t t d S d

E t t E t

 ∂ ∂ − = −
∂ ∂  

  . (14) 

В [10; 11] полагают ( ) ( )1 η elmo
el elS t V t= +    , ( ) ( )1 η crmo

cr crS t V t= +    , ( ) ( ) ˆ0ˆ ˆ1 η
mS t V t= +    . Пара-

метры V̂  и m̂  определяют согласно (14) при ( )σ τ R=  и ( )σ τ γR= , 0,6 γ 0,8≤ ≤  и предъявляют ра-

венство  

( )
( ){ } ( )

( )

ˆ

0
0

ˆ1 η σ
ε ,

,

m

ep
l

V t t
t t

E t t

+   
=  (15) 

как квазилинейное представление нелинейного уравнения (12),  

где  ( ) ( )
( )
( )

( )
0

1
*

0
σ τ ,τ1

, τ
σ τ

t
ep
l

t

C t
E t t d

E t t

−
 ∂ = −

∂  
  — временный линейный модуль деформаций.  

Функция ( ) ( ) ˆˆη 1 η
mf t V t  = +       является грубой аппроксимацией решения ( )0Ŝ t  уравнения 

(14), и равенство (15) не выражает квазилинейное представление уравнения (12). 
Таким образом, возникает задача корректного квазилинейного представления уравнений (11) 

и (12).  
Уравнение (9) в [4; 5] выводится по приведенной выше схеме наложением деформаций 

( ) ( ) ( )*ε , τ ,τ σ τcr i i it C tΔ = Δ . При этом не учитывается прочность бетона ( )τiR  в момент приложения 

напряжения ( )σ τiΔ , что приводит к некорректному ядру ползучести в [12; 13]. 

Задача уточнения известных уравнений модификацией принципа суперпозиции Л. Больцмана 
реализуется в контексте. 
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З а м еч а н и е .  Нелинейные относительно ( )σ τ  уравнения состояния бетона являются линей-

ными относительно ( )σ τstr , и в релаксационных задачах нахождение ( )0σstr t  осуществляется извест-

ными методами, а напряжение ( )0σ t  определяется решением уравнения 
( )
( ) ( ) ( )0 0σ

σ σstr
t

S t t
R t
 

= 
  

 

[14; 15]. 
Идентичность функций старения меры ползучести и модуля упругости позволяет сведение ин-

тегрального уравнения состояния к линейному дифференциальному уравнению с постоянными ко-

эффициентами относительно деформации ( ) ( )
( )

σ
ε str

el
t

t
E t

= . Решение ( )0εel t  этого уравнения опреде-

ляет ( ) ( ) ( )0 0σ εstr elt E t t= . 

2. Линейные реологические уравнения состояния 

Физико-механические процессы влекут изменение показателей прочности ( )τR , упругости 

( )τE  и меры ползучести ( )* , τC t . 

На основе экспериментальных данных [16] выявлена общность функций старения этих показа-
телей и установлено равенство [17]  

( ) ( )
( )
28

τ
τ

R
R

Θ = . (16) 

При постоянном на интервале ( ),τt  напряжении ( )σ τ  

( ) ( ) ( ) ( )0ε ,τ τ ,τ σ τcr t C t= Θ ,  

или 

( ) ( ) ( )0 ˆε ,τ ,τ σ τcr t C t= ,    ( ) ( ) ( )σ̂ τ τ σ τ= Θ , (17) 

и согласно (11) 

( ) ( ) ( ) ( )0ε ,τ ,τ 28 η τcr t C t R= , (18) 

где ( ) ( )
( )

σ τ
η τ

τR
=  — уровень напряжений, ( )σ̂ τ  — приведенное к моменту τ  его приложения напря-

жение, ( ) ( ) ( )σ̂ τ 28 η τR= . 

Приращение уровня напряжений ( )τiηΔ  порождает приращение деформаций ползучести 

( ) ( ) ( ) ( ) ( ) ( )0 0ˆε ,τ ,τ σ τ ,τ 28 η τcr i i i i it C t C t RΔ = Δ = Δ . (19) 

Полагая в линейной постановке зависимость приращения лишь от величины ( )σ̂ τiΔ  и его дли-

тельности, получим аналогичное (19) равенство 

( ) ( ) ( )
1

0 0
1

ˆε , ,τ σ τ
n

cr i i
i

t t C t
−

=
Δ = Δ , (20) 

а переходя к пределу: 
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( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0 0ˆε , ,τ σ τ ,τ 28 η τ
t t

cr
t t

t t C t d C t R dΔ = =  . (21) 

Поскольку ( ) ( ) ( ) ( ) ( )σ̂ τ τ τ σ τ τ τd d dσ= Θ + Θ , то  

( ) ( ) ( ) ( ) ( ) ( )
0 0

*
0 0ε , ,τ σ τ ,τ σ τ τ τ

t t
cr

t t
t t C t d C t dΔ = + Θ   . (22) 

Интегрируя первый интеграл по частям, получим 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

*
*

0 0 0 0
,τ

ε , , σ σ τ τ ,τ σ τ τ τ
τ

t t
cr

t t

C t
t t C t t t d C t d

∂
Δ = − − + Θ

∂   . (23) 

Учитывая, что 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

*
0

0
,τ ,τ

σ τ τ τ σ τ τ ,τ σ τ τ τ
τ τ

t t t

t t t

C t C t
d d C t d

∂ ∂
= Θ + Θ

∂ ∂      

и уравнение (22), имеем 

( ) ( ) ( ) ( ) ( ) ( )
0

0*
0 0 0

,τ
ε , , σ τ σ τ τ

τ

t
cr

t

C t
t t C t t t d

∂
Δ = − − Θ

∂ ,  

а, добавляя начальную деформацию, получим 

( ) ( ) ( ) ( )
0

0
0

,τ
ε , τ σ τ τ

τ

t
cr

t

C t
t t d

∂
= − Θ

∂ . (24) 

Сумма ( ) ( ) ( )0 0ε , ε ε ,el crt t t t t= +  представляет собой линейное реологическое уравнение состоя-

ния бетона наследственной теории старения. Таким образом, 

( ) ( )
( ) ( ) ( ) ( )

0

0
0

σ ,τ
ε , τ σ τ τ

τ

t

t

t C t
t t d

E t
∂

= − Θ
∂ . (25) 

З а м еч а н и е .  Для меры ползучести ( ) ( ) ( )*
0, τ τ , τC t C t= Θ  уравнение (9) представлено в виде 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

0
0 0

σ ,τ
ε , τ σ τ τ ,τ σ τ τ τ

τ

t t

t t

t C t
t t d C t d

E t
∂

= − Θ − Θ
∂   . (26) 

Различие уравнений (9) и (25) возникает из-за учета при выводе уравнения (25) не только вели-

чины приращения напряжения ( )σ τiΔ , но и прочности ( )τiR  в момент его приложения. Этот учет 

реализуется при наложении частичных приращений деформации ползучести ( )ε ,τcr itΔ  согласно ра-

венству (19), выражающему модификацию принципа суперпозиции Л. Больцмана [3]. 

З а м еч а н и е .  Для старого бетона величина ( )τ 0Θ ≈  и допустимо пренебречь последним сла-

гаемым в уравнении (26). 
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Наряду с применением принципа наложения частичных приращений деформаций ползучести 
величину ( )0ε ,cr t tΔ  можно определить путем интегрирования полного дифференциала [14] 

( ) ( ) ( ) ( ) ( ) ( ) ( )* *
* * ,τ ,τ

,τ σ τ ,τ σ τ σ τ τ+
τ

C t C t
d C t C t d d dt

t

 ∂ ∂   = +  ∂ ∂  
 (27) 

функции ( ) ( ) ( )*ε , τ , τ σ τcr t C t= . 

Поскольку ( ) ( ) ( ) ( ) ( ) ( )
0 0

*
* *

0 0
,τ

,τ σ τ , σ σ τ τ
τ

t t

t t

C t
C t d C t t t d

∂
= − −

∂  , с учетом (8) в результате получим 

( ) ( ) ( ) ( ) ( ) ( )
0

0*
0 0 0

,τ
ε , , σ τ σ τ τ

τ

t
cr

t

C t
t t C t t t d

∂
Δ = − − Θ

∂   

и добавлением деформаций ( ) ( )*
0 0, σC t t t  и 

( )
( )

σ t
E t

, приходим к уравнению (25). 

З а м еч а н и е .  Предлагаемый способ представляет другой подход для вывода уравнения состо-

яния (25) и формально реализует принцип наложения частичных деформаций 
( )
( )

σ τi
E t

Δ
 и 

( ) ( ) ( )0 ,τ 28 τi iC t R ηΔ  с учетом эволюции модуля упругости ( )E t и прочности ( )R t . 

З а м еч а н и е .  Представлением деформаций ( ) ( ) ( ) ( )*1
ε ,τ ,τ σ τt C t

E t
 

= + 
  

 в виде 

( ) ( ) ( ) ( )1
ε ,τ ,τ σ τ

τ
t C t

E
 

= + 
  

 вводится мера ползучести ( ),τC t , не учитывающая эволюцию модуля 

упругости ( )τE . Это обстоятельство влечет следующее соотношение между мерами ползучести 

( )* ,τC t  и ( ),τC t : 

( ) ( ) ( ) ( )
* 1 1

,τ ,τ
τ

C t C t
E E t

= + − . (28) 

Согласно (28) уравнение (9) приобретает вид 

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

0
σ ,τ 1

ε , σ τ τ σ τ τ
τ τ τ

t t

t t

t C t
t t d d

E t E
 ∂ ∂= − −  ∂ ∂   

  . (29) 

Неизбежно возникающее при подстановке соотношения (28) в уравнение (9) слагаемое 

( ) ( )
0

0
1

σ τ τ
τ τ

t

t
J d

E
 ∂= −  ∂   

  в работе [12] ошибочно объявлено лишним, что послужило поводом для 

заявления «Принцип наложения как основополагающая ошибка в теории ползучести…» [13]. 

3. Нелинейные реологические уравнения состояния 

Согласно двухкомпонентной ползучести по А.А. Гвоздеву [2] при одноосном напряженном со-
стоянии 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

max

0 0

σ

0
0

σ ,τ1
ε , σ τ τ σ τ τ σ σ, σ

τ τ τ

t t

t t

t С t
t t d d f F T t d

E t E
  ∂∂= − − −     ∂ ∂  

   , (30) 

где ( )σf  — нелинейная функция напряжений, ( )σ,F T t    — функция от суммарной длительности 

( )σ,T t  напряжений к моменту t . 

В [4] для нелинейной теории предлагается уравнение  

( ) ( )
( ) ( ) ( ) ( ) ( )

0 0

0
σ ,τ1

ε , σ τ τ τ τ
τ τ τ

t t

t t

t С t
t t d f d

E t E
σ

  ∂∂= − −     ∂ ∂  
  . (31) 

Нелинейное реологическое уравнение состояния бетона впервые вывел В.М. Бондаренко [1]. 

Представленные в (10) функции ( )ηelS t    и ( )η τcrS     в виде ( ) ( ) ( )0η η σel elS S t=  и 

( ) ( ) ( )0η η σ τcr crS S=  преобразуют уравнение (10) в форму 

( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 *
0

0
η σ ,τ

ε , η σ τ τ
τ

t
el

cr
t

S t С t
t t S d

E t
∂

= −
∂ . (32) 

В отличие от традиционного подхода бетон рассматривается как объединение твердых фракций 
(зерен), соединенных упругими связями — цементными волокнами со статистически распределен-
ными прочностями. Концепция прочностной структуры позволяет обосновать принцип наложения 
деформаций в нелинейной постановке [6; 7]. 

Структурные повреждения при неубывающем нагружении ( )τN  порождают перераспределение 

напряжений с разрушенных связей на способные к силовому сопротивлению целые связи, увеличи-
вая их расчетное напряжение 

( ) ( )τ
σ τ

N
A

=  (33) 

до так называемого структурного напряжения  

( ) ( )
( )
τ

σ τ
τstr

N
A

= , (34) 

где ( )τA  — площадь нормального сечения целых (рабочих) в момент времени τ  связей и фракций. 

Согласно (33) и (34) 

( ) ( ) ( ) ( ) ( )0σ τ σ τ τ σ τ
τstr

A S
A

= = . (35) 

Функция ( ) ( )
0 τ

τ

AS
A

=  определяет меру увеличения расчетного напряжения ( )σ τ  до структур-

ного ( )σ τstr  в процессе постепенного разрушения части связей. Поскольку разрушение каждой свя-

зи в момент τ  зависит от ее прочности в этот момент, следовательно, мера ( )0 τS  является функцией 

от уровня напряжений ( ) ( )
( )

σ τ
η τ

τR
= . 
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Например, по П.И. Васильеву [18]: 

( ) ( )
( )

0 σ τ
τ 1

τ

m

S V
R
 

= +  
  

, (36) 

где V  и m  — эмпирические коэффициенты. 

Перераспределение напряжений влечет нелинейную зависимость деформаций ( )ε τ  от напряже-

ний ( )σ τ  и взаимозависимость частичных приращений деформации ползучести ( )ε ,τcr itΔ  [6], ибо 

эффект каждого догружения ( )σ τiΔ  определяется площадью рабочих фракций ( )τiA , зависящей от 

всех предшествующих догружений ( )σ τ jΔ , j i≤ . 

Реологическое уравнение описывает напряженно-деформированное состояние целых на про-

межутке ( )0,t t  связей и фракций, объединение которых образует рабочую часть tV  бетонного эле-

мента V . 

Приращение ( )σ τstr iΔ  не разрушает связи и фракции tV , и именно это влечет независимость 

приращений деформаций ползучести в момент τi : 

( ) ( ) ( )0ε ,τ ,τ σ τcr i i str it C tΔ = Δ  (37) 

от остальных приращений в момент τ j  ( )i j≠ , а потому 

( ) ( ) ( )
1

0 0
1

ε , ,τ σ τ
n

cr i str i
i

t t C t
−

=
Δ = Δ . (38) 

Соотношение (38) является аналогом принципа наложения Л. Больцмана в нелинейной поста-
новке и приводит к уравнениям состояния для нестареющего бетона 

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t
str

str
t

t С t
t t d

E
∂

= −
∂  (39) 

или  

( ) ( ) ( ) ( ) ( ) ( )
0

0
00

0
σ ,τ

ε , τ σ τ τ
τ

t

t

S t t С t
t t S d

E
∂

= −
∂ . (40) 

По аналогии с линейной постановкой получим нелинейное уравнение состояния для стареюще-
го бетона: 

( ) ( )
( ) ( ) ( ) ( )

0

0
0

σ ,τ
ε , τ σ τ τ

τ

t
str

str
t

t С t
t t d

E t
∂

= − Θ
∂ . (41) 

Расчетная модель структуры бетона в статистической теории прочности представляется набо-
ром зерен, соединенных неравновесными связями, прочность которых является случайной величи-
ной. Эта модель восходит к Вейбулу [19] и развита в [20; 21].  

Гипотеза, что в процессе нагружения ( )τN  связи деформируются линейно с одинаковым моду-

лем упругости, приводит к линейной диаграмме σ ε− . Экспериментальные диаграммы, для построе-

ния которых используются напряжения ( )σ τ , не зависящие от площади рабочих связей ( )τA , полу-
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чаются нелинейными. По концепции прочностной структуры бетона зависимость ( )σstr t  и ( )ε t  яв-

ляется линейной и отношение ( ) ( )
( )

σ
ε str t

t
E t

=  на диаграмме изображается прямой, названной в [22; 

23] фиктивной диаграммой. 
З а м еч а н и е .  С позиции прочностной структуры бетона эта прямая представляет графическую 

интерпретацию деформирования целых на отрезке [ ]0,t  связей при неубывающем нагружении. 

З а м еч а н и е .  При разгружении работают лишь целые связи и экспериментально построенный 
параллельный фиктивной (согласно [22; 23]) диаграмме отрезок подтверждает линейную зависи-

мость ( )σstr t  от ( )ε t . 

4. Квазилинейные представления уравнений состояния 

Согласно равенствам ( ) ( ) ( ) ( ) ( )*
0 ,τ ,τ

τ σ τ σ τ
τ

C t C t
t

∂ ∂
Θ = −

∂ ∂
 и ( ) ( ) ( )0σ τ τ σ τstr S=  уравнения (25) и 

(41) представлены в виде 

( ) ( ) ( )
( )
( )

( )
0

*

0
σ τ , τ1

ε , σ τ
σ

t

t

C t
t t t d

E t t t

 ∂ = +
∂  

 , (42) 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )
0

0 *
0

0 0

τ σ τ ,τ1
ε , σ τ

σ

t

t

S С t
t t S t t d

E t tS t t

 ∂ = +
∂  

 . (43) 

Введем величины ( )0δ ,l t t  и ( )0δ ,nl t t , представляющие собой линейные и нелинейные податли-

вости соответственно. Тогда на основании уравнений (42) и (43) получим временные упругопласти-
ческие модули в линейной и нелинейной поставках: 

( ) ( ) ( )
( )
( )

( )
0

1
*

0
0

σ τ ,τ1 1
, τ

σδ ,

t
ep
l

l t

C t
E t t d

E t t tt t

−
 ∂ = = +

∂  


 , (44) 

( ) ( ) ( )
( ) ( )
( ) ( )

( )
0

1
0 *

0 0
0

τ σ τ ,τ1 1
, τ

δ , σ

t
ep
nl

nl t

S С t
E t t d

E t tt t S t t

−
 ∂ = = +

∂  


 . (45) 

Уравнению (25), представленному в виде 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )
0

0
0 0

σ τ ,τ1
ε , σ τ τ σ δ , ,

σ

t
l

t

C t
t t t d t t t

E t t t

 ∂ = − Θ =
∂  

  (46) 

соответствует временный линейный модуль  

( ) ( ) ( ) ( ) ( )
( )

( )
0

1

0
0

0

σ τ ,τ1 1
, τ τ

δ , σ τ

t
ep
l

l t

C t
E t t d

t t E t t

−
 ∂ = = − Θ

∂  
 , (47) 

а в нелинейной постановке — временный модуль 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
0

1
0

0
0 0

0

τ σ τ ,τ1 1
, τ τ

δ , τσ

t
ep
nl

nl t

S С t
E t t d

t t E t S t t

−
 ∂ = = − Θ

∂  
 . (48) 

Согласно (43) и (45) при суперпозиции по приращениям уровня напряжений 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
nl

S t t
t t

E t t
=


, (49) 

а при суперпозиции по приращениям напряжений 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
nl

S t t
t t

E t t
= . (50) 

Представления деформации ( )0ε ,t t в нелинейной постановке 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
l

S t t
t t

E t t
=



, (51) 

( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
=  (52) 

с соответствующими функциями квазилинейности ( )0S t  и ( )0Ŝ t  называются квазилинейными. 

При постоянном на отрезке [ ]0,t t  напряжении ( )σ τ  

( ) ( )0 0S t S t= ,   ( ) ( )0 0Ŝ t S t= , (53) 

а при неубывающем ( )σ τ  эти функции определяются из равенств 

( ) ( ) ( ) ( )0 0
0 0δ , δ ,l nlS t t t S t t t=  ,    ( ) ( ) ( ) ( )0 0

0 0
ˆ δ , δ ,l nlS t t t S t t t= . (54) 

Согласно (54) и равенствам (42)–(45) 

( ) ( ) ( )
( )

00 0

0

,

,

ep
l
ep
nl

E t t
S t S t

E t t
=





,    ( ) ( ) ( )

( )
00 0

0

,ˆ
,

ep
l
ep
nl

E t t
S t S t

E t t
= . (55) 

При неубывающем напряжении ( )σ τ  имеем ( ) ( )0 0τS S t< , а потому ( ) ( )0 0δ , δ ,nl lt t t t<   и 

( ) ( )0 0, ,ep ep
nl lE t t E t t>  . Аналогично получим ( ) ( )0 0, ,ep ep

nl lE t t E t t>  и с учетом (55)  

( ) ( )0 0S t S t< ,    ( ) ( )0 0Ŝ t S t< . (56) 

Согласно ( ) ( )0 0Ŝ t S t<  представление ( )0ε ,t t  в виде 

( ) ( ) ( )
( )

0

0
0

σ
ε ,

,ep
l

S t t
t t

E t t
= , (57) 

предъявляемое как квазилинейное, получается из квазилинейного 
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( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
=  (58) 

заменой ( )0Ŝ t  на ( )0S t , что в силу (55) эквивалентно замене ( )0,ep
nlE t t  на ( )0,ep

lE t t . 

Равенством (57)  согласно (55) дается оценка величины ( )0ε ,t t  сверху. 

З а м еч а н и е .  При ( ) ( ) ( )
( )

0 0 σ τ
τ η τ 1

τ

m

S S V
R
 

=   = +   
  

 равенство (57) при напряжениях ( )σ τ , 

близких к ( )τR , является аппроксимацией квазилинейного представления.  

Идея квазилинейного представления деформации ( )0ε ,t t  для согласования уравнений с экспе-

риментальными данными принадлежит Ю.Н. Работнову [24], предложившему для нестареющего бе-
тона ( )( τE E= , ( ) )τ 1Θ =  уравнение  

( ) ( ) ( ) ( )
0

0
0

σ ,τ
ε , σ τ τ

τ

t

t

t C t
S t t d

E
∂

  = −  ∂ . (59) 

З а м еч а н и е .  В [24] принимается одинаковость функций нелинейности напряжений ( )τo
elS  и 

( )τo
crS . Это коррелирует с прочностной структурой бетона, согласно которой функции напряжений 

( )τelS  и ( )τcrS  представляют структурное напряжение ( ) ( ) ( )0σ τ τ σ τstr S= . Из ( ) ( )τ σ τel strS =  и 

( ) ( )τ σ τcr strS =  следует ( ) ( ) ( ) ( )0τ τ τ σ τel crS S S= = , а потому ( ) ( ) ( )0τ τ τel crS S S= = . 

В [1] функции ( )τelS  и ( )τcrS  принимаются в форме [18]: 

( ) ( )η τ 1 η τ emo
el eS V  = +      , (60) 

( ) ( )η τ 1 η τ cmo
cr cS V  = +      , (61) 

где eV , cV , em , cm  — эмпирические коэффициенты. 

Принятие в равенстве ( ) ( ) ( )0τ τ σ τcrS S=  функции ( )0 τS  в аналогичной форме (по П.И. Ва-

сильеву [18]) естественно, ибо ( ) ( )
0 τ

τ

AS
A

=  и соответствующая при напряжениях ( )σ τ  целым 

фракциям площадь ( )τA  определяется условием ( ) ( )τ σ τiR ≥ , что эквивалентно 
( )
( )

( )
( )

τ σ τ

τ τ
iR

R R
≥ . 

При постоянном на отрезке времени [ ]0,t t  напряжении ( )σ τ , согласно [1] 

( ) ( ) ( )
( ) ( ) ( ) ( )

0
* 0

0 0
η σ

ε , , η σel
cr

S t
t t С t t S t

E t
= + . (62) 

Полагая, что постоянное на ( )0,t t  напряжение ( ) ( ) ( )0σ τ η σ τstr S=  порождает такую же дефор-

мацию, получим 

( ) ( ) ( )
( ) ( ) ( ) ( )

0
* 0

0 0
η σ

ε , , η σ
S t

t t С t t S t
E t

= + . (63) 
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Согласно уравнениям (62) и (63) 

( ) ( ) ( ) ( )
( ) ( ) ( )

0
0 * * 0

0 0
η1

η , , ηel
cr

S
S С t t С t t S

E t E t
 

+ = + 
  

  

и  

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0 *
00

*
0

η η ,
η

1 ,

el crS S E t С t t
S

E t С t t

+
=

+
. (64) 

Из равенств (60), (61), (36) и (64) при η 1=  получим 

( ) ( ) ( ) ( )
( ) ( )

*
00

*
0

1 1 ,
1 1

1 ,

e cV V E t С t t
S V

E t С t t

+ + +
= + =

+
, (65) 

( )0 1 1V S= − . (66) 

При некотором 00< η 1<  имеем ( )0
0 0η η 1mV S= − , 

( )0
0

0
η 1

ηm S
V

−
= , 

( )
( )

0
0

0 0

η 1
lnη ln

1 1

S
m

S

−
=

−
 и 

( )
( )

0
0

0
0

η 11
ln

lnη 1 1

S
m

S

−
=

−
. (67) 

З а м еч а н и е .  Определенная по заданным функциям ( )ηo
elS  и ( )ηo

crS  функция ( )0 ηS  не обес-

печивает квазилинейное представление ( )0ε ,t t  при ( )σ τ const≠ . Кроме того, не исключено, что 

наблюдаемое различие eV  и cV , em  и cm  в уравнениях (60) и (61) принадлежит диапазону погреш-

ностей измерений. 
Согласно (59) имеет место равенство  

( ) ( )0 0ε , ε ,lS t t t t  =  . (68) 

При ( ) ( )
( )

0
0 0

ε ,
ε , l

el

t t
S t t

S t
  =  , где ( )0

elS t  (с учетом ( )E t E=  и ( )τ 1Θ = ) определяется вторым из ра-

венств (55), получим квазилинейное представление  

( ) ( ) ( )
( )

0

0
0

ˆ σ
ε ,

,ep
l

S t t
t t

E t t
= . (69) 

Для реологического уравнения состояния бетона [1]  

( ) ( ) ( ) ( ) ( )
( )
( )

( )0

0

*
ε , ε

0
σ τ ,τ1

ε , σ τ
σ τ

R
t

t t t

t

С t
e t t t d

E t t
−

 ∂ = −
∂  

 . (70) 

( ) ( ) ( ) ( )0ε , ε
0 0ε , ε ,Rt t t

lt t e t t=  и квазилинейное представление  
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( )
( ) ( ) ( )

( )
0ε , ε

0
0

σ
ε ,

,

Rt t t

ep
l

e t
t t

E t t
=  (71) 

при кратковременном нагружении, полагая ( )0ε , εt t = , ( )σ σt = , ( )R t R= , ( )0,ep
lE t t E= , согласно 

(71) получим функцию 

ε εσ ε RE e−= , (72) 

описывающую диаграмму σ ε−  (включая ниспадающую ветвь) в форме В.М. Бондаренко [1].  

При σ R=  имеем 1εRR E e−=  и εRE eR= , а потому 

ε εσ ε
ε

R

R

eR e−= ,    1 ε εσ ε

ε
R

R
e

R
−= . (73) 

Величины η  и ξ  являются уровнями напряжений и деформаций, а равенство 

1 ξη ξe −=  (74) 

представляет уравнение состояния бетона, описываемое в параметрах η  и ξ . 

При ( ) ( ) ( )1
0ε , ε0ˆ

m
Rm t t tS t e

−   =  диаграмма σ ε−  получается в виде ( )1 ε εε
σ

ε

m
Rm

R
E e

−
= [25], 

а параметрическое уравнение  

1 ξη ξ me
− −= . (75) 

Если диаграмма σ ε−  задается согласно ( )
1

σ ε ε
n i

i R
i

R a
=

=   [26], то соответствующее параметри-

ческое уравнение имеет вид 

1
η ξ

n i
i

i
a

=
=  . (76) 

Зависимость σ ε−  на плоскости в координатах ( )ε,σ  изображается графиком функции ( )σ εf= . 

Длительное нагружение описывается функцией ( )σ φ ,εt t=    , которой отвечает поверхность в коор-

динатах ( ),ε,σt . Ее пересечением с плоскостью τ t=  (параллельной плоскости ε σ− ) является кри-

вая tΓ , по которой, с учетом того, что ( ) ( )0ξ ε , εRt t t=  и ( ) ( )η σ t R t= , строится кривая tΓ  на плос-

кости ε σ− . Эта кривая описывает диаграмму σ ε− , а соответствующая функция ( )η ξF=  представ-

ляет собой параметрическое уравнение состояния. 
Таким образом, параметры η  и ξ  для неравновесного процесса деформирования являются ана-

логами параметров σ  и ε  для равновесных механических систем. 

З а м еч а н и е .  Структура параметрического уравнения, определяемая функцией ( )0Ŝ t , не зави-

сит от режима нагружения. Это позволяет по найденным при кратковременном нагружении значени-
ям η  и ξ  определить параметры ( ) ( )σ ηt R t=  и ( ) ( )0ε , ξεRt t t=  длительного нагружения. 

Параметрическое уравнение (74) при условии идентичности ( )0
elS t  и ( )0

crS t  вывел В.Г. Наза- 

ренко, рассматривая состояние бетона как состояние неравновесной термодинамической системы 
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[27]. Параметры η  и ξ , характеризующие прочностные и деформационные свойства бетона, связы-

ваются с помощью его удельной энергии целостности ( )W t  [28]. Величина ( )W t  является макси-

мальным энергетическим ресурсом сопротивления деформированию единицы объема бетона и пред-
ставляется площадью, ограниченной полной диаграммой σ ε−  фигуры. 

Адаптация теории ползучести к методу конечных элементов при формулировке уравнений пол-
зучести в приращениях выполнена в монографии [29]. 

5. Заключение 

В результате проведенного исследования авторами сделан ряд выводов. 
1. Наложением частичных приращений деформаций, порожденных последовательными прира-

щениями уровня напряжений, выведены уравнения механического состояния бетона. Учет прочно-
сти бетона в моменты приложения нагружения уточняет его известные уравнения состояния в ли-
нейной и нелинейной постановке. 

2. Общий для мгновенных и запаздывающих деформаций множитель нелинейности напряжений 
превышает множитель квазилинейности, умножением на который линейной части деформации по-
лучается ее квазилинейное представление. Делением нелинейной деформации на эти множители вы-
деляются соответственно обратимая и линейная ее части. 

3. Обратимые деформации реализуются целыми до момента начала разгружения связями за счет 
накопленного ими приращения потенциальной энергии при нагружении. Отсутствие в процессе раз-
гружения перераспределения напряжений между этими связями влечет линейную зависимость 
напряжений от деформаций. Это обосновывает наблюдаемый в экспериментах факт, известный как 
признак Ясинского — Энгессера. 

4. Отмеченная выше некорректность уравнений механического состояния бетона порождена 
не принципом наложения деформаций, а его реализацией по приращениям напряжений как для иде-
ального бетона. Наложение деформаций по приращениям уровня напряжений приводит к коррект-
ным уравнениям состояния, что означает необоснованность заявлений об ошибочности принципа 
наложения. 

5. Правомерность принципа наложения в теории ползучести бетона создает возможность приме-
нения этой теории в расчетах бетонных и железобетонных конструкций методом конечных элементов. 
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Аннотация. Моделируется распределение напряжений в трехслойной каркасной стеновой панели с жестким контактом 
между слоями. Для расчета использован  конечно-элементный пакет ANSYS Workbench. Значения критериев разрушения 
(главного и эквивалентного напряжений) вычислены вблизи концентраторов напряжений, т.е. ребер, разделяющих нагру-
женные и закрепленные грани панели. Получено, что разрушение начинается на границе нагруженного и ненагруженного 
слоев изделия. Показано, что теплоизоляционный слой из крупнопористого бетона, расположенный в центре панели, спо-
собен участвовать в восприятии части нагрузки, приходящейся на несущий слой. В связи с этим несущая способность 
конструкций, изготовленных по каркасной технологии, существенно повышается за счет частичного нагружения тепло-
изолирующего слоя. Поэтому каркасная панель может выдерживать большие нагрузки по сравнению с панелями, имею-
щими гибкие связи. Кроме того, показано, что термическое сопротивление трехслойной каркасной панели вдвое выше, 
чем у однослойной панели такой же толщины. Тем самым использование каркасных панелей является эффективным сред-
ством сохранения тепла в зданиях. 

Ключевые слова: компьютерное моделирование, многослойные ограждающие конструкции, прочность, крупнопористый 
бетон, теплоизоляционные свойства, конечно-элементный анализ 
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1. Introduction 

The walls of a building are one of the main structural elements that carry loads and provide spatial 
rigidity and stability for the entire structure [1]. In addition to their load-bearing function, exterior walls also 
serve as enclosures, creating a favorable microclimate for the people inside the building. Therefore, effective 
materials and technologies are increasingly being used in their manufacture to ensure the strength and 
resistance of the products to aggressive environments and external loads [2], as well as sufficient thermal 
and sound insulation properties [3]. 

The required values for the load-bearing capacity and thermal resistance of building structures are 
determined based on various criteria, including economic ones [4]. It is known that walls made of 
prefabricated single-layer and multi-layer reinforced concrete panels are the most economical in terms of 
material consumption and construction technology. 

Single-layer panels are sufficiently strong and technologically advanced, but their thermal insulation 
properties are insufficient for residential buildings in regions with cold climatic conditions. Therefore, such 
walls are currently used in regions with warm climate or in the construction of industrial and agricultural 
buildings. 

https://orcid.org/0000-0001-6520-0204
https://orcid.org/0000-0002-6242-4138
https://orcid.org/0000-0002-0241-3808
https://orcid.org/0000-0001-8407-8144
https://orcid.org/0000-0002-8443-1291


Syromyasov A.O. et al. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):432–440 
 

 

434 ANALYTICAL AND NUMERICAL METHODS OF STRUCTURAL ANALYSIS 

Compared to single-layer panels, multi-layer panels are significantly more effective in terms of thermal 
performance. Such a panel consists of an insert (insulation) made of a material with low thermal 
conductivity, density, and strength [5], for example, mineral wool or glass wool, confined between the outer 
and inner layers. The outer layer, made of structural concrete, protects the insulation from external 
influences. The inner load-bearing layer is designed to carry the load transferred from the floor slabs; the 
insulation layer and the outer textured layer are attached to it by means of flexible ties, reinforced concrete 
ribs, or dowels. 

However, along with their advantages, layered panels have significant disadvantages [6; 7]: 
 short service life of the insulation and ties, which require anti-corrosion protection; 
 lack of reliable connection of the insert to the concrete layers due to discrete arrangement of the ties; 
 formation of cold bridges between the outer and inner layers due to high thermal conductivity of 

metal ties; 
 uneven heat distribution in the wall and condensation in the interlayer space due to differences in 

thermal characteristics of the layers. 
The consequences of these shortcomings are the exclusion of joint action of concrete layers in 

resistance to external loads, a tendency to develop significant shear strains due to deformation of the middle 
layer, and the short service life of such panels. 

An alternative to such layered panels are three-layer wall panels based on two-stage concrete with a 
continuous connection between the layers, manufactured using a special technology [8]. Such products consist 
of two layers of dense expanded clay concrete, between which there is a middle layer of porous expanded 
clay concrete. The use of the latter type of concrete as insulation allows for the creation of materials with 
increased strength and stiffness and reduced thermal conductivity, as well as eliminating the structural 
disadvantages inherent in the three-layer panels with inserts. For example, the layer of porous concrete can 
effectively remove condensed moisture [9]. In operating conditions with biologically active environments, 
panels based on two-stage concrete are less susceptible to biodegradation [10; 11]. In turn, biostability 
contributes to the preservation of physical and mechanical properties of the construction products [12]. 

Porous concrete has reliable adhesion to the external concrete layers and is capable of resisting shear. 
Rigid contact between the layers allows the panel to be considered as one-piece, while panels with inserts 
are composite structures. The joint action of different types of concrete forming a single continuous section 
has been studied, for example, in [13; 14]. 

There are known calculation methods and additional hypotheses that take into account the aspects of 
deformation of three-layer structures [15]; in Russia, they are also regulated by state standards. Nevertheless, 
the behavior of these structures under different deformation modes is still insufficiently studied, which 
hinders their introduction into construction. 

Computer modeling using CAE systems offers broad opportunities for studying this type of structure. 
In this article, such modeling is applied to the behavior of a loaded three-layer wall panel made on the basis 
of a two-stage composite using the technology described in [8] and implemented at OAO “ZhBK-1” in 
Saransk, Russian Federation. 

The aim of the study is to test the hypothesis that the middle porous concrete layer not only acts as an 
effective insulator, but is also capable of carrying part of the load acting on the load-bearing layer. 

2. Methods 

2.1. Panel Geometry and its Physical and Mechanical Characteristics 

The panel is modelled as a rectangular prism of length l = 6 m, height h = 1.2 m and total thickness of 
all layers b = 0.4 m. 

The layers perform the following tasks: 
 inner layer 1 is the load-bearing layer designed to carry load from the supported floor slabs; the 

thickness of this layer is δ1 = 80 mm; 
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Figure 1. Sectional view 
of the three-layer wall panel 

S ou r c e : made by Yu.A. Makarov.

 middle layer 2 is heat-insulating, designed to provide effective thermal 
protection for the building; its thickness is calculated based on the thermal 
properties of the materials used and the thermal insulation requirements for 
buildings of various types; in this study it is assumed to be δ2 = 240 mm; 

 outer layer 3 is protective and decorative; it protects the insulation 
from external climatic effects and creates architectural expressiveness of the 
structure; the thickness of this layer δ3 is also equal to 80 mm. 

The physical and mechanical characteristics of the layers are different 
and are shown in Table 1. The cross-sectional diagram of the panel is shown 
in Figure 1. 

Poisson’s ratio for all structural layers is the same and is ν = 0.18. 
Thermal conductivity is specified for type A service conditions of enclosing 
structures in accordance with the regulatory documents in force in Russia — 
design code1. 

The use of technologies such as fiber reinforcement and the like allows to obtain concrete, shear 
strength RS of which is close to prismatic strength Rb. Therefore, it is assumed that RS = Rb for the layers 
of the studied panel. 

Table 1 
Physical and mechanical characteristics of the wall panel layers 

ID and name of the structural layer Layer 
material 

Density ρ, 
kg/m3 

Prismatic 
strength Rb, 

MPa 

Initial modulus 
of elasticity Е, 

MPa 

Thermal 
conductivity λ, 

W/(m·°С) 

1 — inner (load-bearing) layer Dense concrete 1800 40 10000 0.483 

2 — middle (thermal insulation) layer Porous concrete 700 10 3500 0.206 

3 — outer (decorative) layer Dense concrete 1800 40 10000 0.483 

S o u r c e: data on mechanical properties by V.T. Erofeev. 

2.2. Verification of Panel Insulation Performance  

First, the hypothesis that the studied three-layer panel is an effective heat insulator was tested. To do 
this, its thermal resistance was compared with the equivalent characteristic of a homogeneous panel of 
standard single-layer structure and of the same thickness. 

The heat transfer resistance of a multilayer enclosing structure is determined by the following formula: 

R0 = 1/αB + (δi/λi) + 1/αH, (1) 

where αB = 8.7 W/(m2×°С) and αH = 23 W/(m2×°С) are the heat transfer coefficients of the internal and 
external surfaces of the enclosing structure, respectively; δi and λi are the thickness and thermal conductivity 
of the i-th layer of the wall. 

In this analysis, the parameters of the panel layers were taken from Table 1; the thickness and thermal 
conductivity of a single-layer panel were assumed to be δ = 400 mm and λ = 0.58 W/(m×°С), respectively. 

2.3. Modelling Panel Loading 

Several options for loading the two-stage concrete panel were considered in the study, and the one that 
provides the maximum linear load that the panel can withstand without failure was selected. 

 
1 SP 50.13330.2024. Thermal performance of buildings. Intr. 2024–06–16. Moscow: Russian Standardization Institute, 

2024. 70 p. 
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Figure 2. Panel loading diagram 
S o u r c e: made by A.O. Syromyasov. 

In the model it was assumed that the bottom and both side faces of the panel were fixed, and the width 
of the restrained strip 0 1;δb ≥ in other words, the load-bearing layer and (partially) insulation layer are 
fixed. A downwards normal force (pressure) P is applied to the section of the panel selected in this way; 
moreover, self-weight G is also applied to the structure (Figure 2). 

The described methods of restraint and loading 
simulate the interaction of the panel with its neighbors 
below and to the side (through a layer of cement 
mortar), as well as supporting the floor slab. 

The method of computer modeling of three-layer 
two-stage concrete panels under such loads is described 
in detail in [16]; since in this study not only the load-
bearing layer but also the thermal insulation layer is 
loaded, minor adjustments had to be made to it. The 
method takes into account the fact that, due to only a 
part of the panel cross-sectional area being loaded, its 
material is in a combined stress state, and the critical 
strength parameters cannot be described by a uniaxial 
stress state model. Therefore, when evaluating the load-
bearing capacity of the panel, several strength criteria 
are used, the values of which are examined at several 
different points. 

The ANSYS Workbench finite element software, installed under license on the Mordovia State 
University computing cluster, was used for the calculations. Figure 3 shows one of the calculation results — 
an overall distribution pattern of equivalent stress (von Mises) on the external surface of the panel loaded by 
P = 4.55 MPa and with loaded layer thickness b0 = 200 mm. 

 

 
Figure 3. Distribution of equivalent stress on the panel surface 

S o u r c e: made by A.O. Syromyasov in ANSYS Workbench software. 
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The panel is most likely to fracture in the area of stress concentration, i.e., near two symmetrical 
edges e and e’, where the fixed side faces are adjacent to the loaded upper face. Therefore, internal stresses 
in the panel should be calculated along the control line segment L, which is located at a distance of 1 cm 
from the side and 1 cm from the upper face parallel to edge e. Particularly, the principal normal stress σ1 
and equivalent stress σeq according to the Huber — Henky — von Mises theory was calculated. 

3. Results and Discussion 

When calculating the thermal insulation properties of the panel in (1), it was found that the thermal 
resistance of the single-layer structure R0 = 0.848 m2⋅°С/W, and for the proposed three-layer structure 
R0 = 1.655 m2⋅°С/W. Thus, the use of multi-layer enclosing structures based on two-stage concrete instead 
of standard single-layer panels of the same thickness significantly reduces heat loss in buildings. 

The graphs of σ1 and σeq along segment L provide a general idea of the stress distribution inside the 
panel. Thus, Figure 4 presents the graph of σeq at b0 = 200 mm and P = 4.55 MPa. The value at x = 0 
corresponds to the interior boundary of the load-bearing layer, and the value at x = 400 mm – to the exterior 
face of the panel. At other values of b0 and P, the graphs of σ1 and σeq look similar.  

 

 

Figure 4. Distribution of equivalent stress (von Mises) along the control line 

S o u r c e: made by A.O. Syromyasov. 

 
Two peak values of the failure criterion are reached at x = δ1 and x = b0, i.e. at the boundary between 

the load-bearing and insulation layers, and at the boundary between the loaded and non-loaded layers. 
Based on the calculation results, the stress arising in the outer layer is many times smaller than that in 

the inner layer. This implies that the loads in the outer layer can be disregarded. Indeed, the mechanical 
characteristics of the two layers are identical, which means that failure will occur sooner in the more 
intensely loaded inner layer. 

Based on the above, the failure criterion for the studied panel is considered to be the fulfillment of at 
least one of the following conditions: 

 at the boundary between the load-bearing and insulation layers (on the load-bearing layer side), 
principal normal stress σ1 exceeds the prismatic strength Rb of the load-bearing layer or equivalent stress 
σeq exceeds the value of 1.15Rb; 

 at the boundary between the load-bearing and insulation layers (now on the insulation layer side) 
stress σ1 exceeds Rb of the insulation layer or equivalent stress σeq exceeds the value of 1.15Rb of the same 
layer; 

 at the boundary between the loaded and non-loaded regions (inside the insulation layer) σ1 > Rb 

or σeq > 1.15Rb, in which case the prismatic strength of the insulation layer is considered. 
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In doing so, the values of σ1 and σeq are examined at three points ଵܲ, ଵܲᇱ и ଵܲ∗, located at the intersection 
of line L and the boundaries of the aforementioned layers. 

To investigate the influence of the thermal insulation layer on the magnitude of fracture stress and the 
load-bearing capacity of the structure, the panel was loaded with an increase in the total width of the loaded 
strip b0 from 80 to 200 mm with a step of 40 mm. The results of the analysis are presented in Table 2. 

 

Table 2 
Relationship between of the fracture stress and the width of the loaded layer 

Type of criterion Critical value, MPa 

Value, MPa 
(b0 = 80  mm) 

Value, MPa 
(b0 = 120  mm) 

Value, MPa 
(b0 = 160  mm) 

Value, MPa 
(b0 = 200  mm) 

P = 9.04 МПа / MPa P = 5.78 МПа / MPa P = 5.15 МПа / MPa P = 4.55  MPa 

( )1 1σ P  30 30.77 22.99 22.47 21.22 

( )eq 1σ P  34.5 34.17 27.50 26.37 24.62 

( )'
1 1σ P  10 9.92 8.23 8.01 7.62 

( )'
eq 1σ P  11.5 12.10 10.16 9.53 8.80 

( )*
1 1σ P  10 – 9.55 9.85 10.01 

( )*
eq 1σ P  11.5 – 11.49 11.47 11.36 

( )1τxz P  – 7.03 8.86 8.69 8.14 

( )*
1τxz P  – – 2.65 2.72 2.57 

S o u r c e: obtained by A.O. Syromyasov using ANSYS Workbench software. 

 
P indicates the pressure at which the panel fails. For every b0, criteria values close to or exceeding the 

maximum allowable values are highlighted in bold. For reference, shear stress values τxz at the layer 
boundaries are also given; as can be seen, their values are quite far from the critical value Rb. 

The data in Table 2 shows that failure always occurs at the boundary between the loaded and non-
loaded layers – at point ଵܲ∗ (when b0 = 80 mm it coincides with P1). 

By increasing width b0 the value of failure pressure P drops. However, it is not the value of P itself that 
plays a key role, but rather the maximum allowable load per unit length f = Pb0 that can be resisted by the 
panel. The value of f depending on the width of the loaded layer is presented in Table 3. 

Table 3 

Relationship between the linear load and the width of the loaded layer 

b0, mm P, MPa f = Pb0, kN/m 
80 9.04 723.2 

120 5.78 693.6 
160 5.15 824.0 
200 4.55 910.0 

S o u r c e: obtained by A.O. Syromyasov using ANSYS Workbench software. 

 
Thus, supporting floor slabs by a 200 mm wide strip instead of standard 80 mm allows to increase the 

maximum allowable load by more than 25% — from 723.2 kN/m to 910.0 kN/m. 
Multilayer panels with inserts lack such properties, since their insulation layers are made of materials 

that cannot carry loads. All loads in such panels are resisted exclusively by a thin inner load-bearing layer. 
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Further improvement of the load-bearing capacity of products based on two-stage concrete can be 
achieved, for example, by modifying the cement binder with polymer compounds [17; 18], finely dispersed 
fillers [19; 20], and nanoparticles [21; 22]. 

4. Conclusion 

Thus, the article examined the behavior of a loaded three-layer panel manufactured using the two-stage 
technology. The interaction of the panel with adjacent panels was modeled by fixing three of its side faces, 
with pressure applied to the upper face reflecting the load carried by the panel. The study tested the 
assumption that the middle (thermal insulation) layer of the two-stage concrete panel is capable of partially 
resisting the external forces. It was necessary to determine at what loads the panel would begin to fracture 
and where exactly this fracture would begin. 

The ANSYS Workbench software, which implements the finite element method, was used for 
calculations. Special attention was paid to calculating the failure criteria near the edges, along which the 
loaded face “joins” with the fixed ones. The principal and equivalent (according to von Mises) stresses were 
selected as such criteria; it was assumed that fracture would begin if at least one of them exceeded the 
“dangerous” value. The magnitude of the applied pressure and the width of the loaded part varied in the 
calculations. 

The obtained results allow to draw the following conclusions: 
1. The panel fractures at the boundary between the loaded and non-loaded layers near the edge, which 

is the stress concentrator. 
2. When the width of the loaded part increases, the failure pressure may decrease due to the fact that 

the load is applied to the less strong insulation layer. However, the linear load at failure increases due to the 
increase in the area of the section that carries this load. 

3. It follows from the previous conclusion that by partially loading the thermal insulation layer, the 
load-bearing capacity of the panels manufactured using the two-stage technology can be significantly 
increased compared to panels containing mineral wool or other thermal insulation inserts, since such inserts 
cannot be loaded. 

In addition, the article shows that three-layer panels based on two-stage concrete have twice the 
thermal resistance of standard single-layer panels of the same thickness, making the use of two-stage 
products an effective method of heat conservation. 
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ляющие собой отдельные элементы с различными свойствами материала. Предлагаемая формулировка независимо учи-
тывает переменные поля смещений и компоненты напряжений вне плоскости, что позволяет точно устанавливать узловое 
напряжение с помощью определяющих соотношений. Для пространственной дискретизации используется треугольный 
элемент с тремя узлами, поддерживающий непрерывность порядка C1, а основные уравнения получены с использованием 
теории многослойных треугольных пластин. Сравнительные проверочные исследования подтвердили точность вычисле-
ний и эффективность метода, при этом погрешность результатов расчета прогиба составляет от 2,59 % (минимум) до 
11,2 % (максимум). Всесторонние численные эксперименты демонстрируют, что предложенный метод многослойных 
треугольных конечных элементов обеспечивает высокую точность решений при значительном снижении вычислитель-
ных затрат. 2 

Ключевые слова: кинематический слой, поле деформаций, поле напряжений, разбиение на многослойные КЭ, числен-
ные результаты 
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1. Introduction 

From the 2010–2025 construction period, reinforced concrete (RC) slabs are essential structural components, 
serving as flooring systems while carrying vertical loads. Accurate performance analysis is critical to ensure both 
safety and cost-effectiveness in RC building designs [1; 2]. However, predicting the nonlinear response of RC 
slabs remains a significant challenge due to the complex behavior of reinforced concrete structures, making it an 
active research area [3; 4]. This complexity arises from material nonlinearity in concrete and steel, cracking, 
imperfect bond-slip behavior, and time-dependent effects such as creep and shrinkage [5]. 

Several material models have been developed to capture the layered nonlinear behavior of RC slabs. For 
reinforcing steel, a uniaxial elastic-plastic stress-strain relationship is typically employed, exhibiting symmetrical 
response under both tension and compression. Similarly, concrete behavior can be effectively represented using 
a bilinear stress-strain approximation that incorporates tensile capacity [5; 6]. 

To address the limitations of conventional 3D finite element models, researchers have developed innovative 
layered methods [7; 8]. Unlike simplified effective stiffness approaches, these layered FE models enable precise 
prediction of ultimate bending and shear capacity in RC slabs [9; 10]. The methods employ triangular plate 
elements composed of perfectly bonded, superimposed equivalent layers representing both concrete and steel 
reinforcement. This layered triangular element facilitates detailed tracking of concrete failure mechanisms 
(including cracking and crushing) and progressive steel yielding throughout the slab depth [11; 12]. Although 
numerous layer-based FE models exist for RC slab analysis, current implementations remain predominantly 
limited by Kirchhoff-Thin Plate Theory (KTPT) assumptions [13; 14]. 

Current research indicates a strong preference for displacement-based formulations in finite element 
modeling of RC slabs and plate structures [15; 16]. While these layered triangular elements derive stress 
components indirectly through numerical differentiation of displacement fields, the resulting post-processed 
stresses particularly out-of-plane components, often demonstrate reduced accuracy compared to their 
displacement counterparts. In contrast, advanced layered FE formulations for composite structures treat stresses 
and displacements as independent variables, thereby achieving superior stress prediction accuracy [17; 18]. 

Although layered finite element formulations have been widely adopted for laminated composite analysis, 
their application to nonlinear RC slab modeling remains relatively limited. Recent advances by Liguori et al. [19; 
20] introduced a mixed finite element formulation for nonlinear material analysis of RC shell structures. These 
layered triangular elements utilize conventional Mindlin-Reissner plate theory to describe displacement fields in 
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RC structural analysis. In contrast to their methods the present study implements an innovative global-local 
kinematic framework for displacement field representation in plate analysis. Notably, while Liguori et al. [20] 
treated both membrane/flexural stresses and displacement fields as primary unknowns in their formulation, the 
current approach adopts a distinct strategy for variable selection. Wang et al. proposed an efficient quasi-three-
dimensional mixed finite element formulation based on a refined layered global-local plate theory for nonlinear 
analysis of RC slabs. In this approach, the cross-section is discretized into distinct concrete and steel layers, with 
each layer modeled as an independent plate element characterized by unique material properties [21]. 

This study introduces an innovative computational framework for nonlinear analysis of RC slabs, based on 
an advanced triangular-layered global-local plate theory formulation. The proposed triangular layered plate 
methods offer optimal computational advantages, combining superior geometric flexibility with adaptive finite 
element analysis capabilities for RC slab modeling. The framework employs a 3-node triangular composite 
plate element augmented with additional nodal degrees of freedom to explicitly represent out-of-plane stress 
components. While requiring additional field variables, this approach enables direct computation of through-
thickness stress distributions during nonlinear solution procedures. 

The formulation is derived through a parameterized mixed variational principle, providing rigorous 
mathematical foundations for the methods The RC slab is modeled as an assembly of perfectly bonded concrete 
and steel layers, with material nonlinearities addressed through: (1) a smeared crack formulation for concrete 
behavior, and (2) elasto-plastic theory for steel reinforcement response. 

2. Methods 

For reinforced concrete slab elements, the principles of membrane and plate bending theory exist, as will be 
demonstrated in the subsequent steps. 

2.1. Membrane Element Analysis 

For the membrane component, a standard 3-node triangular element is defined by its node numbering and 
their (x, y) coordinates. (Figures 1 and 2) [6; 13]. 

1 1 2 2 3 3

1 1 2 2 3 3

,u N u N u N u
v N v N v N v

= + +
= + +  (1)

 

where (uᵢ, vᵢ) represent the horizontal and vertical displacements at node i, and Nᵢ denotes the corresponding 
shape function for that node. 

The shape functions for the 3-noded triangular element are derived as follows: 

1 2 3

1 2 3

α α α ,

β β β .

u x y
v x y

= + +
= + +  (2)

 

The system was solved for coefficients, and substituting these solutions back into Equation (2) produces: 

( ) ( ) ( ) ( )( )
1 1 1 1 2 2 2 2 3 3 3 31 / 2 ,eu A a b x c y u a b x c y u a b x c y u= + + + + + + + +     

where ( )eA  is the element area and, 

,i j , ,i j k k j i j k i k ja x y x y b y y c x x= − = − = −             , , 1,2,3.i j k =     

The coefficients , ,i ia b  and ic are determined through cyclic permutation of the indices ( , , )i j k . 

A comparison of Equation (2) with Equation (1) yields the explicit expressions for the shape functions: 

( )( )( )1 / 2 e
i i i iN A a b x c y= + +             1,2,3.i =    (3) 
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Figure 1. Discretization of a structure
into 3-noded triangular elements 

S o u r c e: made by H. Werkle [6]. 

 Figure 2. Shape functions 
for the 3-noded triangular element 

S o u r c e: made by E. Oñate [13]. 

2.1.1. Membrane-Induced Strain 

The strain components ( ε , ε , γx y xy ) are computed via differentiation of the displacement fields u(x,y) and 

v(x,y) represented by their respective shape functions: 
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,             (4) 

ε β .m m eu= ,     (5) 

where 

0
1

0
2

i

mi ie

i i

b
B c

A
c b

 
 =  
  

 .      

2.1.2. Membrane-Induced Stress 

The stresses in the element are calculated from the strains by applying Hooke’s law, as shown in [11; 12]: 

2

σ 1 μ 0 ε

σ μ 1 0 ε
1 μ

τ 1 μ γ
0 0

2

x x

y y

xy xy

E

 
    
    =     −     −    
 

     or     σ εm m mD= , 

σm m m eD B u=  
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and with the strains defined in (eq. 5), as: 

sm m m eD B u= , (6) 

where 

11 12

21 22 2

33

0 1 μ 0

0 μ 1 0
1 μ

0 0 1 μ
0 0

2

m

d d
ED d d

d

 
  
  = =    −    −   
 

. 

These stresses are also referred to as membrane stresses [13]. 

2.1.3. Membrane Stiffness Formulation 

Based on the stresses obtained from Equation (6), which were derived from displacement shape functions, 
the equivalent nodal forces are calculated using the principle of virtual displacements. The element stiffness 

submatrix ( )e
ijK , representing the interaction between nodes i and j  within the element, is typically calculated as: 

m T
e m m mK tB D B dxdy=    (7) 

substituting Equation (5) and (6) into Equation (7), yields: 

( )

11 12

( ) 21 22( ) ( )

33

0 0
01 1

0 0
02 2

0 0
e

i
i im

ij e je e
i iA

j j

d d b
b c

K d d c t dA
c bA A

d c b

  
    =            

 .     

For a homogeneous material, the integrand in Equation (8) remains constant, leading to: 

( )
11 33 12 33( )

( )
21 33 33 224

e
i j i j i j j im

ij e
i j i j i j i j

bb d c c d b c d b c dtK
c b d b c d bb d c c dA

+ +  =    + +   
. (8) 

2.2. Component for Bending 

The Reissner — Mindlin plate theory is an advanced plate theory that incorporates shear deformation 
effects. This theory is commonly preferred for formulating finite plate elements. Plate deformations are 

described by the vertical displacement ( w ) and the rotational angles ( )φ ,  φx y at each point on the plate. 

Consequently, every node in the plate element possesses three degrees of freedom: one translational 

displacement ( iw ) and two rotational components ( )φ ,  φx y . The corresponding nodal forces consist of 

a transverse force ( ziF ) and two bending moments ( ,xi yiM M ). Figures 3, а, b show that, this 3-node element 

possesses nine degrees of freedom in total. The shape functions of a 3-node triangular element are constructed 
through bilinear interpolation of the nodal variables [6; 12]. 

( ) 2 2 3 2 2
1 2 3 4 5 6 7 8 9,  α α  α α α  α α α  α  w x y x y x xy y x x y x y= + + + + + + + + ,   (9) 

where 

 , and  φ .φx y
w w
y x

∂ ∂= =
∂ ∂
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a b 1 2 

S o u r c e: made by E. Oñate [13]. S o u r c e: made by R.Wang [21]. 

Figure 3. 3-node triangular element:  
a — Triangular plate elements; b — Graphical illustration of the displacement field: 

1 — in plane components, 2 — transverse component
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;   (10) 

eu N u= ⋅  N  are denoted as shape function. 

2.2.1. Bending Strain Components 

The strain state of a plate element is determined by its curvature components and transverse shear 
deformations [5; 6]: 
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and shear strain 
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; 

γ s eB u=   (11) 

2.2.2. Stiffness Matrix for Plate Bending 

The stiffness matrix establishes the proportional relationship between applied nodal forces/moments and 
resulting nodal displacements/rotations. The virtual displacement field utilizes identical interpolation functions 
as the real displacement field, satisfying: 

eu N u=    (12) 

The virtual curvatures ( k ) and virtual shear strains ( γ ) derived from the virtual displacement field are: 

b ek B u=     or    T T T
e bk u B= ; 

γ s eB u=     or    γT T T
su B= . 

The internal virtual work comprises two terms: the product of real bending moments and their 
corresponding virtual curvatures, plus the product of actual shear forces and associated virtual shear angles. 

γ ;

;

( ) .

T T
i

T T T T
i e e b b e e s s s e

T T T
i e b b b s s s e

W k m dxdy vdxdy

W u B D B u dxdy u B D B u dxdy

W u B D B dxdy B D B dxdy u

= +

= +

= +

 
 
     

 (13) 

The virtual work done by external loads consists of force-displacement and moment-rotation products at all 
nodes: 

. T
a e eW u F=      (14) 

The principle of virtual work is satisfied when the sum of internal virtual work equals external virtual work: 
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( )

;

;

 ;
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(Bending)                         (Shear) 
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The plate element’s stiffness matrix [ K ] comprises two distinct sub-matrices: a bending stiffness component 

and a shear stiffness component. As a conforming element, it maintains 0C  continuity across both displacement 
and rotation fields. 

2.3. Mathematical Principle 

Among existing analytical approaches, the layered finite element method (LFEM) with triangular 
formulation demonstrates high efficacy in evaluating the flexural behavior of RC slabs. The methods employs a 
stratified representation of plate elements, discretizing the cross-section into distinct concrete and steel layers, as 
illustrated conceptually in Figure 4 [5; 22; 23]. This layered approach facilitates accurate modeling of stress 
distributions across the RC slab using an assembly of plane stress elements. 

 

      

Figure 4. Typical triangular plate element for reinforced concrete plate structures 
S o u r c e: made by D.A. Mawlood. 

 
In this modeling approach, the RC slab is idealized as a composite system of perfectly bonded, uncracked 

concrete layers and equivalent steel layers. The reinforcement is represented using a smeared-layer 
approximation, with horizontal steel layers positioned at the centroidal levels of the actual reinforcement bars. 
The computational model employs the same number of smeared layers as physical reinforcement layers in the 
cross-section. Each equivalent steel layer is assigned uniaxial material properties corresponding to the 

orientation of the actual rebars. The equivalent thickness ( st ) of each steel layer is determined from the rebar 

cross-sectional area ( sA ) and spacing ( s) according to the relationship: /s st A s= [21]. 

Reddy’s Third-Order Shear Deformation Theory (TSDT) overcomes the fundamental limitations of 
classical plate theories by eliminating both the normal hypothesis constraint and the requirement for planar 
cross-sections to remain plane after deformation [11]. The theory is founded on the following kinematic 
relations: 

2 3( , , ) ψ ( , ) θ ( , ) ( , );λx x xu x y z z x y z x y z x y= + +  

2 3( , , ) ψ ( , ) ( , ) ( , );θ λy y yv x y z z x y z x y z x y= + +  (16) 

0( , ) ( , ).w x y w x y=   

The kinematic functions 
ψx , ψ y , θ x , θ y , λx , and λ y  represent undetermined parameters that 

characterize the cross-sectional warping deformation. Within the TSDT framework, these functions collectively 

introduce seven independent displacement variables. Specifically, the bending rotation components ψx and ψ y  

describe the slope of the warped cross-section at the neutral plane 0z = , while the remaining variables account 

for higher-order deformation effects [11]. ψ ,x
u
z

∂=
∂

ψ ,y
v
z

∂=
∂

 where 0z = . 
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Figure 5. Unreformed 
and deformed plate segment 

S o u r c e: made by C. Mittelstedt [11].

The displacement field is mathematically represented by Equations (1) in 
the following form: 

( ) ( ) ( )( )3 2
0( , , ) ψ ( , ) 4 / 3 ψ ( , ) ( , ) / ;x xu x y z z x y z h x y w x y x= − + ∂ ∂  

( ) ( ) ( ) ( ) ( )( )3 2
0, , ψ , 4 / 3 ψ ( , ) ( , ) / ;y yv x y z z x y z h x y w x y y= − + ∂ ∂   

0( , ) ( , ),w x y w x y=  (17) 

where 

0 0 ψ ,ψx y
w w
x y

∂ ∂= − = −
∂ ∂

. 

Consequently, Reddy’s Third-Order Shear Deformation Theory incorporates just three degrees of freedom, 
as depicted in Figure 5. 

2.4. Interconnections Between Layers 

2.4.1. Strain Distribution Field 

Based on the derived displacement-strain relationships, the strain components in the i-th layer of the RC 
slab can be determined [11], as illustrated in Figure 5. 
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These can be represented in vector form as: 
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The strain field can be expressed as follows: 

(1) 3 (3)

(0) 2 (2)

ε ε ε ;

γ γ γ .

z z
z

= +
= + (18) 

2.4.2. Stress Fields in the Out-of-Plane Direction 

The normal stress components are obtained from the strain field by applying Hooke’s law, as given below: 
[6; 13] 

2

σ 1 μ 0 ε

σ μ 1 0 ε
1 μ

τ 1 μ γ
0 0

2

x x
i

y y

xy xy

E

 
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    =     −     −    
 

; 

σ εi i iD= . 

Using the strain definitions from Equation (18), the strains can be expressed as: 

( )(1) (3) (3)σ ε εi iD z z= + .  (19) 

The transverse shear stress components ( )τ , τxi yi  for each layer in the reinforced concrete slab are 

determined using the following expressions: 

τ 1 0
;

τ 0 12(1 μ)
xz xzi

yz yz

E γ    
=     γ+     

 

( )(0) (2) (2)

τ ;

τ ,

i i i
s

i i
s

D

D z

= γ

= γ + γ
(20)

where iE  represents the elastic modulus of the i-th layer in the reinforced concrete slab system, and μ  denotes 

the Poisson’s ratio characteristic of the reinforced concrete layers. 
The layer-wise constitutive formulation accounts for material heterogeneity through distinct elastic modulus

iE , and Poisson’s ratios μ  for each layer i . The governing equations employ standard stress resultants obtained 

via thickness integration of stress components [24]: 

0

0 0 2

20
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σ ;
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xx xxh
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xy xy

M
M M zdz

M

+

−

   
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        
2

2

τ

τ
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Q
Q dz

Q

+

−

   
= =   
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 . (21) 

Here’s a rigorous academic formulation of the additional force/moment resultants in TSDT: 
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 .   (22) 

2.4.3. Layer Interaction Mechanics in Reinforced Concrete Slabs 

2.4.3.1. Layer of Steel Reinforcement 

The reinforcing steel layers exhibit elastoplastic behavior, characterized by an idealized bilinear response. 
For the i-th reinforcement layer in the pre-yield regime, the constitutive [11] relationship is expressed as: 

σ εi i i
steel steelD=    , 

where ( εi ) is represented by Equation 19. The sectional properties steelD  for steel; 

0 0

0 0 0

0 0 0

s
i
steel

E
D

 
 =  
  

. (23) 

In Equation (23), sE  represents the elastic modulus of the i-th reinforcing steel layer. Upon yielding, the 

constitutive relationship transitions to a plastic regime, with the post-yield behavior described by the following 
incremental formulation: 

0 0

0 0 0

0 0 0

sp
i
steel

E
D

 
 =  
  

. 

The term psE  refers to the plastic modulus of the steel layer after it has yielded [21]. 

2.4.3.2. Concrete Layer Properties 

In its uncracked state, the concrete material exhibits isotropic, homogeneous linear elastic behavior. The 
constitutive relationship governing the i-th concrete layer’s pre-cracking response is expressed as: 

σ εi i i
concrete concreteD= ,    (24) 

where (ε )i  is defined by Equation (18), and  
2

1 μ 0

μ 1 0
1 μ

1 μ
0 0

2

i i
concrete

ED

 
 
 

=  −  −
 
 

. 

The transverse shear stress components τxz and τ yz in each concrete layer can be evaluated through 

application of the appropriate constitutive relationship: 

1 0
τ γ , ,

0 12(1 μ)
i i i i i
concrete s s

ED D  
= =  +  

 (25) 
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where iE  denotes the elastic modulus of the i-th concrete layer, and (μ)  represents the Poisson’s ratio 

characterizing the concrete material’s transverse strain response. 

When the principal stress state exceeds the concrete’s tensile capacity ( tf ), the elastic constitutive relations 

(Eqs. 24–25) no longer apply. This investigation adopts a smeared crack formulation [24] to model post-cracking 
concrete behavior. The smeared crack approach necessitates a material symmetry transition from isotropic to 
orthotropic behavior in the local coordinate frame (ξ,η, ζ) . Here, the ξ -axis normal to the crack plane defines 

the material softening direction, while the η- and ζ -axes plane (aligned with principal stresses) maintains elastic 

stiffness. In the post-cracking phase, the constitutive relationship for the i-th concrete layer transforms to an 
orthotropic formulation in the local crack-aligned coordinate system (ξ,η, ζ) , expressed as: 

ξ ξ

η η2

ξη ξη

σ 1 μ 0 ε

s μ 1 0 . ε
1 μ

τ γ1 μ
0 0 ρ

2

iE

 
    
    =     −     −         

;  (26) 

ξζ ξζ

ηζ ηζ

τ γ1 0

τ γ0 ρ2(1 μ)
iE    

=    +     
.  (27) 

Note that ( (0.1]ρ∈ ) represents the shear retention factor, which is utilized to model the effects of 

aggregate interlock. 

2.5. Mixed Element Stiffness Formulation 

The element stiffness matrix components can be decomposed into membrane and bending contributions as 
follows: 

, ,
1

L
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ei e i e i
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K K K
=

= + ; (28) 

, , ,
m T
e i m m i m iK t B D B dxdy=  ; 

, , , , , , ,
b T T
e i b i b i b i s i s i s iK B D B dxdy B D B dxdy= +  . 

The stiffness contribution exhibits material-specific behavior: the steel reinforcement provides only 
membrane (in-plane) stiffness, while the concrete contributes to both membrane and bending (flexural) resistance. 

, 6,6[ ]m m m m
e i concrete steelK K K K= + = ; 

6,6
, , ,

9,9

0

0

m
m b

e i e i e i b

K
K K K

K
 

= + =  
 

. (29) 

where 6,6
mK  and 9,9

bK  represent the membrane and bending stiffness matrices for the element, respectively. 

2.6. Discretization of Finite Elements 

The reinforced concrete slab is modeled using a three-node, triangular layered plate element that accounts 
for thickness effects. The development of this composite finite element requires discrete approximations of three 
key field quantities: (1) geometric configuration, (2) displacement fields, and (3) stress distributions. The 
proposed layered plate formulation incorporates 15 degrees of freedom (DOFs) per element, with the complete 
nodal configuration detailed in Figure 6. 
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Figure 6. Meshing process of the RC slab using layered plate elements 

S o u r c e: made by D.A. Mawlood. 

2.7. Load Distribution Elements 

The element loads are converted into equivalent nodal loads that yield identical external virtual work under 
virtual displacements as the original loads. This relationship is defined by Equations (10) and (15): 

e e eK u F=    or   [ ] [ ] [ ]K d P= . 

The reinforced concrete slab, subjected to element loads combining membrane and bending effects, can be 
expressed as: 

6,6

9,9

0

0

m m m

b b b

K d P
K d P

     
=     

    
, 

where: dm, db…membrane (u1, u2, u3, v1, v2, v3) and bending 1 1 1 2 2 2 3 3 3( , φ , φ , , φ , φ , , φ , φ )x y x y x yw w w element 

displacement; Pm, Pb  ……membrane and bending element loads. 
The nonlinear algebraic system is solved using a mixed-step iterative method that combines incremental 

loading with Newton — Raphson equilibrium iterations. Figures 7 and 8 illustrate how this approach applies 
loads incrementally while performing iterative corrections at each step to satisfy equilibrium conditions. 
Although the Newton-Raphson method improves solution accuracy, it requires additional computational effort. 

The computational algorithm for the non-incremental Newton — Raphson method (Figure 8) executes the 
following sequence: 

1. In the initialization phase, the structure is loaded with 1P , followed by computation of the first 

displacement approximation according to: 

1
0 0 0 1[ ( )]d K E P−=  ,  (30) 

where the global stiffness matrix is computed using the initial elastic modulus E₀. 
2. From the computed displacements, element stresses σ (or strain ε ) and updated moduli Eᵢ⁽ᴺ⁾ are 

determined. Equilibrium verification with the updated stiffness matrix yields residual forces: 

0 1 1 0 1( )r K E d P= − . (31) 

3. The residual forces induce corresponding corrective displacements: 

1
1 1 1 0[ ( )]d K E r−= . (32) 

4. The iterative correction process computes successive deflections 1 0d d d= + , where each step 

generates residual forces 2r  and displacement increments 1d , until equilibrium is attained. The algorithm’s 

general form is given by: 
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1 1

1
1 1 1

( ) ;

[ ( )] ,

j j j j

j j j j

r K E d P

d K E r
+ +

−
+ + +

= −

=
   for   1, 2,3...j =    (33) 

The iterative process terminates when the residual forces diminish to a negligible magnitude. The total plate 
deflection is subsequently obtained through superposition of all incremental displacement components [5]. 

0 1
0

m

j
j

d d d +
=

= + .   (34) 

The described numerical procedure is successively applied to all load increments 1P  ( 1, 2,...,i n= ). 

 

Figure 7. Step iteration or mixed procedure 
S o u r c e: made by D.A. Mawlood. 

 

 

Figure 8. Iterative tangent stiffness procedure 
S o u r c e: made by D.A. Mawlood. 
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3. Results and Discussion 

This work presents a MATLAB implementation, based on the preceding theoretical framework, for nonlinear 
layer-wise finite element analysis specialized for triangular element formulations. To evaluate computational 
performance, the proposed method was applied to analyze three experimentally validated reinforced concrete 
slab specimens. All test cases had been previously characterized under controlled laboratory conditions, enabling 
direct comparison between numerical predictions and experimental results. 

3.1. Analysis of One-Way Reinforced Concrete Slabs (S1) 

A semi-precast one-way RC slab with dimensions 75 mm × 600 mm × 1650 mm was analyzed using the 
proposed layered finite element method with triangular elements. The slab incorporated mesh reinforcement 
consisting of 12 mm diameter steel bars spaced at 200 mm center-to-center, with a 25 mm concrete cover. 
Figure 9 illustrates the slab’s geometric configuration, loading conditions, and boundary constraints. 

The material properties were defined as follows: concrete with a modulus of elasticity of 26.420 GPa, 
Poisson’s ratio of 0.15, and compressive strength of 31.6 MPa; steel reinforcement with an elastic modulus of 
190 GPa, Poisson’s ratio of 0.3, and yield stress of 535 MPa. This configuration replicates the experimental 
setup by Mohamed et al. [25], employing a two-point loading system with 516.7 mm spacing at mid span. The 
loading was applied through a hydraulic jack on a spread steel beam to create a pure bending region, with 
continuous load monitoring via a calibrated load cell. Strain gauges and LVDTs provided comprehensive 
deformation measurements through a high-frequency data acquisition system. 

Taking advantage of symmetry, the finite element analysis modeled only half of the slab structure. Mesh 
convergence studies determined an optimal 3×4×2 grid of triangular laminated plate elements, with the thickness 
layered into six layers (five concrete layers and one equivalent steel layer). Figure 10 illustrates this configuration. 

 

 
Figure 9. Schematic of the one-way RC slab: geometrical parameters, loading, and boundary conditions 

S o u r c e: made by D.A. Mohamed et al. [25]. 

 

        
1                                                                                                    2 

Figure 10. FE mesh of semi precast of reinforced concrete slab with toping concrete 
1 — plan discretization; 2 — cross section discretization 

S o u r c e: made by D.A. Mawlood. 
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Figures 11 and 12 compare the predicted load-deflection response with experimental data from Mohamed et al. 
and 3D ABAQUS simulations [25]. The proposed model demonstrates excellent agreement, showing a maximum 
deflection prediction error of 11.2% while maintaining a 99% correlation coefficient for the load-deflection 
relationship. 

 

  
Figure 11. Load-deflection curve of the one-way RC slab at the mid-span

S o u r c e: made by D.A. Mawlood. 
Figure 12. Deflection chat area 
S o u r c e: made by D.A. Mawlood.

3.2. Two-Way Reinforced Concrete Slab with Single-Layer Reinforcement (S2) 

The specimen had dimensions of 2.2 meters by 2.2 meters and a depth of 160 millimeters. All slabs had a 
loaded span of 2 meters in each direction, with a 0.1-meter overhang extending from the center of the supports 
on both sides. This study examines the two-way square reinforced concrete slab tested by Sara Nurmi et al. [26]. 
A point load is applied to the center of the slab, which is supported at all four corners. The tensile region of the 
reinforced concrete slab contains bidirectional steel reinforcement ( x  and y  directions), with equal reinforcement 

ratios of 0.23%x yρ = ρ = . The mechanical properties of the slab are presented in Table 1, while Figure 13 

depicts the geometric configuration and reinforcement arrangement. A central load was gradually applied to the 
slab using a hydraulic jack during testing, as conducted by Sara Nurmi et al. Deflections were measured at 
multiple locations, including the slab center, using LVDT sensors in Sara Nurmi’s experimental setup [26]. 

Table 1 
Material parameters of two-way slab with one layer of reinforcement 

Material Elastic modulus, MPa Poisson’s ratio Yield stress, MPa Compressive strength, MPa 
Concrete 28,200 0.15  36 

Steel 190,000 0.3 450 – 

S o u r c e: made by D.A. Mawlood. 

 

 

 
Figure 13. Geometrical parameters and reinforcement details of two way reinforced concrete slab 

S o u r c e: made by Sara Nurmi’s [26]. 
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Figure 14 shows that the RC slab cross-section was discretized into five concrete layers, complemented by 
two equivalent steel layers representing reinforcement in orthogonal directions (x and y). 

Figures 15 and 16 show the slab deflections computed using the proposed layered approach with triangular 
element discretization, along with the corresponding numerical results. For validation purposes, Figure 15 
compares the model predictions with both experimental data from Nurmi et al. [26] and nonlinear finite element 
results obtained from Abaqus simulations. The comparative analysis demonstrates the effectiveness of the 
layered model in predicting deflection responses across the complete loading spectrum, from serviceability 
conditions to ultimate capacity. 

 

     

Figure 14. FE mesh of RC Slab: cross-section discretization 
S o u r c e: made by D.A. Mawlood. 

 
The benchmarking study reveals that the proposed layer method achieves superior accuracy in predicting 

two-way slab behavior compared to conventional Abaqus nonlinear solutions. The proposed model demonstrates 
excellent agreement, showing a maximum deflection prediction error of 2.59% while maintaining a 99.6% 
correlation coefficient for the load-deflection relationship. 

 

Figure 15. Load-deflection curve in the center of RC slab Figure 16. Deflections point 
S o u r c e: made by D.A. Mawlood. S o u r c e: made by D.A. Mawlood. 
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Clear cover (15 mm) and all reinforcement 

used diameter Փ10mm 

Figure 17. Reinforced concrete slab details 
S o u r c e: made by Yao Xiao et al. [27]. 

 

3.3. Two-Layer Reinforced Two-Way Concrete Slab (S3) 

The experimental investigation conducted by Yao Xiao et al. examined a two-way RC slab system featuring 
dual reinforcement layers and full peripheral restraint. The test specimen comprised a 1200×1200×100 mm slab 
subjected to center-point loading. Key experimental parameters including material characteristics, are summarized 
in Table 2. The slab’s reinforcement configuration consisted of orthogonal steel reinforcement distributed in both 
top and bottom layers, with detailed arrangement illustrated in Figure 17 [27]. 

Table 2 
Material parameters of two-way reinforced concrete slab 

Material Elastic Modulus, MPa Poisson’s ratio Longitude reinforcement
diameter, mm Yield stress, MPa Compressive

strength, MPa 
Concrete 30,784 0.15 – – 42.9 

Steel 190,000 0.3 10 576 – 
S o u r c e: made by D.A. Mawlood. 

 

The two-way slab was reinforced with 10 mm diameter 
deformed steel bars (Grade 500) in orthogonal arrangements 
for both top and bottom layers, maintaining a uniform 15 mm 
concrete cover throughout. Figure 17 details the cross-sectional 
reinforcement layout and corresponding finite element discre- 
tization scheme. Figure 18 shows the load-deflection response 
at the slab center, capturing the complete nonlinear behavior 
from initial loading to ultimate capacity. This study presents 
the experimental results obtained by Yao Xiao et al., along 
with numerical results from nonlinear ABAQUS simulations 
and predictions from the triangular-shaped layer method. The 
load-deflection relationship predicted by the proposed methods 
shows excellent agreement with experimental observations. 
Compared to the nonlinear ABAQUS simulations, the tri- 
angular layer method demonstrates comparable accuracy in 
predicting both the ultimate load capacity and maximum 
deflection of the RC slab. The proposed model demonstrates 
a 7.32% error in maximum deflection prediction while main- 
taining a strong correlation coefficient of 99.6% between the 
predicted and experimental curves (Figures 19–20). 

 

                
Figure 18. FE mesh of RC Slab: cross-section discretization 

S o u r c e: made by D.A. Mawlood. 
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Figure 19. Load-deflection curve in the center of RC slab 

S o u r c e: made by D.A. Mawlood. 
Figure 20. Deflection point 

S o u r c e: made by D.A. Mawlood. 

 
Figures 21–28 present the ABAQUS-simulated deflection patterns and stress distributions throughout the 

RC slab. 

 
 

Figure 21. Stress in reinforced steel layer (S1) 
S o u r c e: made by D.A. Mawlood. 

 Figure 22. Deflection of concrete slab (S1) 
S o u r c e: made by D.A. Mawlood. 

  
 

Figure 23. Effect of deflection on reinforced bars (S2) 
S o u r c e: made by D.A. Mawlood. 

 Figure 24. Effect of deflection on concrete slab (S2) 
S o u r c e: made by D.A. Mawlood. 

  
 

Figure 25. Effect of stress distribution on concrete slab (S2) 
S o u r c e: made by D.A. Mawlood. 

 Figure 26. Stress in top and bottom reinforcement bars (S3) 
S o u r c e: made by D.A. Mawlood. 
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Figure 27. Stress in concrete slab (S3) 
S o u r c e: made by D.A. Mawlood. 

 Figure 28. Deflection in concrete slab (S3) 
S o u r c e: made by D.A. Mawlood. 

4. Conclusion 

1. The proposed triangular-layered finite element model enables direct computation of out-of-plane stress 
components in RC slabs, eliminating both the need for through-depth integration of equilibrium equations and 
the requirement for shear correction coefficients. 

2. The proposed triangular-layered formulation maintains a constant number of unknown parameters for 
displacement and stress fields, independent of the number of layers, while preserving its layer-based framework. 

3. The static nonlinear behavior of RC slabs up to failure was analyzed using a partial mixed stress-
displacement variational principle combined with a three-noded triangular plate element. 

4. The effectiveness of the proposed triangular-layered finite element model in predicting nonlinear structural 
responses was validated through comprehensive analyses of RC slabs with diverse geometries, reinforcement 
configurations, and boundary conditions. 

5. Numerical results demonstrate that the proposed formulation accurately predicts both the ultimate load-
carrying capacity and failure deflection of RC slabs. 

6. Benchmark validation studies confirm the method’s accuracy and computational efficiency, with ultimate 
deflection predictions exhibiting errors ranging from 2.59% (minimum) to 11.2% (maximum). 

7. The proposed triangular-layered model accurately captures the complete load-deflection behavior of RC 
slabs while simultaneously predicting detailed structural responses, including deformation characteristics and 
stress component distributions. 

8. The triangular-layered finite element model achieves an optimal balance between computational efficiency 
and predictive accuracy. Future work will extend this stress-displacement formulation to coupled material and 
geometric nonlinear analysis of reinforced concrete plate structures. 
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Аннотация. Объект исследования — гибкие стержни, испытывающие в процессе нагружения большие перемещения и 
малые деформации. Цель исследования — численный анализ напряженно-деформированного состояния (НДС) гибких 
стержней с учетом геометрической нелинейности в трехмерной постановке. В качестве математического аппарата исполь-
зован метод конечных элементов в форме метода перемещений. Процесс формоизменения стержня моделировался путем 
инкрементального нагружения в сочетании с перестроением геометрии модели с учетом полученных перемещений. Стер-
жень моделировался набором прямолинейных балочных конечных элементов, соединенных в смежных узлах линейными 
и поворотными комбинированными элементами с переменной жесткостью. Для проведения вычислительных эксперимен-
тов написаны и верифицированы макросы на языке APDL, встроенного в программный комплекс ANSYS Mechanical. Вы-
полнены вычислительные эксперименты с применением конечно-элементных моделей с упругими шарнирными вставка-
ми и без шарнирных вставок. На основании полученных результатов установлено, что предлагаемый прямой инкремен-
тальный алгоритм решения геометрически нелинейных задач строительной механики является абсолютно сходящимся. 
Разработанная методика назначения жесткостей поворотных пружин может быть использована при моделировании про-
странственных кинематически изменяемых стержневых систем.  

Ключевые слова: гибкие стержни, метод конечных элементов, геометрическая нелинейность, прямой инкрементальный 
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Abstract. Flexible bars experiencing large displacements and small strains during loading are investigated. The purpose of the 
study: numerical analysis of the stress-strain state of flexible bars, taking into account geometric nonlinearity in a three-
dimensional formulation. The displacement-based finite element method is used as the mathematical framework. The process of 
shape changing of the bar was modeled by incremental loading in combination with the restructuring of the geometry of the model, 
taking into account the resulting displacements. The bar was modeled using rectilinear beam finite elements connected at adjacent 
nodes by linear and rotational combined elements with variable stiffness. To conduct computational experiments, macros in the 
APDL language, embedded in the ANSYS Mechanical software, were written and verified. Numerical experiments were 
performed using finite element models with elastic hinges and without hinges. Based on the results obtained, it is established that 
the proposed direct incremental algorithm for solving geometrically nonlinear problems of structural mechanics is absolutely 
convergent. The developed method of defining the stiffness of rotational springs can be used in modeling spatial unstable frames. 

Keywords: flexible bars, finite element method, geometric nonlinearity, direct incremental method 

Conflicts of interest. The authors declare no conflict of interest. 

Authors’ contribution: Gaidzhurov P.P. — scientific guidance; formalization of the mathematical model; writing the source text of the 
article; formulation of conclusions; Danik N.B. — performing computational experiments; literature review on the research topic; practical 
recommendations on calculations; Klimukh A.V. — literature review; preparation of initial data; processing of modeling results, design of 
drawings. All authors read and approved the final version of the article. 

Благодарности. Авторы выражают благодарность редакции за рекомендации, позволившие повысить качество статьи. 

For citation: Gaidzhurov P.P., Danik N.B., Klimukh A.V. Numerical modeling of change of shape of flexible bars. Structural Mechanics 
of Engineering Constructions and Buildings. 2025;21(5):462–473. (In Russ.) http://doi.org/10.22363/1815-5235-2025-21-5-462-473 
EDN: DFDCNF 

1. Введение 

Упругие гибкие стержни, обладающие изгибной жесткостью, находят широкое применение в 
расчетных схемах газопроводов, несущих канатов большепролетных висячих мостов, трансмисси-
онных валов различного назначения, приводов измерительных приборов, пространственных строи-
тельных конструкций [1–3]. Конечно-элементное моделирование пространственных стержневых си-
стем базируется на использовании матрицы жесткости балочного конечного элемента (КЭ) с шестью 
степенями свободы в узле1 [4]. Как правило, при линейном анализе перемещения углы поворота ба-
лочного КЭ считаются малыми. Вместе с тем при расчете гибких стержней имеют место большие 
линейные и угловые перемещения при малых деформациях [5; 6]. В этом случае численное решение 
геометрически нелинейной задачи строится на базе итерационной процедуры Ньютона — Рафсона и 
метода «корректирующих дуг», суть последнего состоит в адаптивной корректировке величины ша-
га нагружения при приближении и после прохождения точки «бифуркации» [7–10]. Следует отме-
тить, что при расчете стрежневой системы методом конечных элементов с учетом больших переме-

 
1 Мяченков В.И., Мальцев В.П., Майборода В.П. и др. Расчеты машиностроительных конструкций методом конеч-

ных элементов : справочник. Москва : Машиностроение, 1989. 520 с. 
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Рис. 1. Балочно-пружинная схема 
гибкого стержня 

И с т о ч н и к: автор В.И. Усюкин. 

Figure 1. Beam-spring diagram 
of a flexible bar 

S o u r c e: author V.I. Usyukin. 

M
P

N

α1

α2

α3
M3

M2M1

щений используется касательная матрица жесткости. Общепринятый подход к построению данной 
матрицы в лагранжевых координатах базируется на минимизации потенциала энергии деформации 
дискретной модели [11]: 
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где Π  — потенциальная энергия деформации; 1 2, , , Nu u u  — обобщенные перемещения. В резуль-

тате линеаризованная (касательная) матрица жесткости конструкции получает вид 
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При этом рекуррентная формула Ньютона — Рафсона принимает форму 

[ ]{ } { } 0K u f′ Δ + = , { } { } { } { } { }1( 1) ( ) ( ) ( ) ( )
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где { }f  — вектор обобщенных сил. 

В [7] для минимизации потенциала энергии деформации применено следующее уравнение 
(использованы ранее принятые обозначения): 
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Отмечается, что в структуре приведенного уравнения первое слагаемое является аналогом мат-
рицы жесткости КЭ, а второе слагаемое представляет собой корректирующую составляющую для век-
тора узловых сил. Вычисление касательной матрицы жесткости КЭ сводится к двукратному диффе-
ренцированию энергии деформаций по обобщенным перемещениям, а вычисление корректирующей 
составляющей вектора упругих сил КЭ — к соответствующему однократному дифференцированию. 

Следует отметить, что при численных расчетах гибких стерж-
ней в геометрически нелинейной постановке активизируется одно-
временно учет больших поворотов и уменьшение жесткости, обу-
словленное формоизменением [9; 10].  

Альтернативным упрощенным методом расчета гибких упругих 
стержней является представление стержня набором прямолинейных 
балочных КЭ одинаковой длины, соединенных пружинами. Пример 
балочно-пружинной схемы консольного стержня показан на рис. 12. 

Полагается, что между узловым моментом iM  и соответству-

ющим углом поворота iα  существует линейная зависимость 

i iM kα= , 1, 2,3i = , 

где k  — коэффициент пропорциональности, характеризующий в 
данном случае жесткость поворотной пружины. Для расчета гибких 
стержней в двумерной постановке3 использован следующий функ-
ционал: 

 
2 Усюкин В.И. Строительная механика конструкций космической техники : учебник для студентов вузов. Москва : 

Машиностроение, 1988. 392 с. ISBN 5-217-00147-Х 
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При этом считается, что жесткость поворотных пружин прямо пропорциональна изгибной 
жесткости стержня. 

В [12] на базе концепции локальности линейных перемещений и ортогональности виртуальных 
углов поворотов стержневого КЭ представлена методика конечно-элементного моделирования гиб-
ких составных балок, подвергающихся значительным статическим и динамическим деформациям. 
Отмечается, что разработанный конечный элемент позволяет с высокой точностью учесть геометри-
ческую нелинейность в сочетании с начальной погибью составной балочной конструкции. Алгоритм 
построения матрицы жесткости балочного конечного элемента трубчатого сечения, основанный на 
гипотезе Эйлера — Бернулли, в сочетании с аппроксимациями перемещений с помощью полиномов 
Эрмита предложен в [13]. Для учета геометрической нелинейности введен тензор напряжений 
Пиолы — Кирхгофа и тензор деформаций Грина — Лагранжа. 

Для решения задач механики оболочек с учетом конечных перемещений В.З. Власов4 разработал 
метод последовательных нагружений. Суть метода состоит в последовательном нагружении кон-
струкции внешними силами, подобранными таким образом, чтобы на каждом шаге перемещения и 
углы поворота оставались малыми. В дальнейшем этот метод В.А. Светлицкий [6] распространил на 
криволинейные линейно упругие гибкие стержни. В [14] приведен вариант метода последовательных 
нагружений для решения плоских задач механики гибких стержней. Здесь же отмечается, что дан-
ный подход может быть распространен и на пространственные стержни со сложной геометрией. 

Оригинальный метод конечно-элементного моделирования стержневых систем в условиях 
больших перемещений и углов поворота предложен в [15]. Данный метод, названный метод матери-
альной точки (Material Point Method), базируется на построении уравнения состояния механической 
системы, обладающей существенной геометрической нелинейностью, в гибридных лагранжево-
эйлеровых координатах. При этом геометрия модели задается в лагранжевых (материальных) коор-
динатах, а уравнение движения решается с использованием фиксированной эйлеровой (фоновой) 
координатной сетки. 

В [16] разработана 2D-модель ферменной конструкции, состоящей из упругих нерастяжимых 
стержней, связанных между собой на концах упруговязкими узловыми шарнирами, допускающими 
большие углы поворота. Отмечается, что формоизменение ферменной конструкции из начального 
положения в конечное рабочее осуществляется с помощью кинематического воздействия, имитиру-
ющего трос с изменяемой длиной. 

Постановка задачи контактного взаимодействия деформируемых строительных конструкций с 
учетом трения при сдвиге рассмотрена в [17]. Предлагаемый подход базируется на шаговом алго-
ритме Лемке в виде метода перемещений. 

Резюмируя, можно отметить, что рассмотренные способы численного анализа НДС гибких 
стержней не позволяют выполнить моделирование процесса формоизменения пространственной 
конструкции с регулярной решетчатой структурой при управляемом кинематическом воздействии. 
Для конечно-элементного моделирования таких конструкционных решений требуется разработка 
принципиально нового подхода, базирующегося на концепции универсальной дискретно стержневой 
схемы с упруго-шарнирными узловыми соединениями. 

В качестве объекта настоящего исследования в общем случае рассмотрен пространственный 
гибкий стержень в условиях больших перемещений, сопровождающихся малыми деформациями. Цель 
исследования — разработка линейно упругой механико-математической модели геометрически не-
линейного формоизменения исходной геометрии гибкого стержня на основе модифицированного ме-

 
3 Усюкин В.И. Строительная механика конструкций космической техники : учебник для студентов вузов. Москва : 

Машиностроение, 1988. 392 с. ISBN 5-217-00147-Х 
4 Власов В.З. Избранные труды. Общая теория оболочек. Т. 1. Москва : Изд-во Академии наук СССР, 1962. 528 с. 
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тода Лагранжа, суть которого состояла в пошаговом перестроении конечно-элементной сетки с уче-
том полученных инкрементальных перемещений. В задачи исследования входило построение балоч-
но-пружинной механической модели путем введения в смежных узлах дискретной стержневой моде-
ли трехмерных блоков из комбинированных конечных элементов в виде линейных и поворотных 
пружин; написание и отладка макроса на языке APDL программного комплекса ANSYS Mechanical5, 
позволяющего удалять и заново строить конечно-элементную сетку с сохранением исходной тополо-
гии модели; тарирование жесткостей комбинированных элементов; решение тестовых задач. 

2. Метод исследования 

Конечно-элементное моделирование линейно упругой деформации гибкого стержня с учетом 
больших перемещений при статическом нагружении выполнялось в среде программного комплекса 
ANSYS Mechanical. Стержень разбивался на пространственные (3D) двухузловые балочные конеч-
ные элементы. В дальнейшем были рассмотрены две конечно-элементные модели узловых соедине-
ний: обычная модель, связывающая узловые перемещения и углы поворота смежных КЭ, и модель, 
в которой балочные элементы соединялись в смежных узлах с помощью комбинированных (пружин-
ных) КЭ. Процесс трансформации формы стержня из исходного состояния в конечное представлялся 
в виде последовательности шагов. На каждом шаге выполнялась коррекция и перестроение геомет-
рии сетки с учетом полученных перемещений на предыдущем шаге. При перестроении исходная 
топологическая информация модели полностью сохранялась. В общем случае координаты в узлах i 
и j КЭ на k-м шаге нагружения вычислялись по формулам (рис. 2): 

( )( ) ( 1)
s

kk k
s s xx x u−= + Δ , ( )( ) ( 1)

s

kk k
s s yy y u−= + Δ , ( )( ) ( 1)

s

kk k
s s zz z u−= + Δ , ,s i j= . 

Для написания макросов использовался язык программирования APDL, встроенный в ANSYS. 
Блок-схема макроса, реализующего инкрементальное нагружение и коррекцию узловых перемеще-
ний КЭ, представлена на рис. 3.  

 

 

Рис. 2. Схема трансформации геометрии балочного КЭ (nstep — число шагов нагружения) 
И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 2. The diagram of transformation of the geometry of the beam finite element 
(nstep — the number of loading steps)  

S o u r c e: made by P.P. Gaidzhurov. 

 
5 ANSYS Mechanical APDL Tutorials. URL: http://www.worldcolleges.info/sites/default/files/me1.pdf (accessed: 21.04.2025). 
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Рис. 3. Блок-схема макроса для расчета стержня с учетом корректировки геометрии: 
ГУ — граничные условия; СЛАУ — система линейных алгебраических уравнений 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

 

 
Figure 3. Flow diagram of the macro for calculating bars, taking into account geometry adjustments: 

BC — boundary conditions; SLAE — system of linear algebraic equations 
S o u r c e: made by P.P. Gaidzhurov. 
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Рис. 4. Схема стержня 
с блоками упругих шарниров 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 4. Diagram of a bar 
with blocks of elastic hinges 

S o u r c e: made by P.P. Gaidzhurov. 

 
 
 

 

Рис. 5. Визуализация деформации 
гибкого консольного стержня 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 5. Visualization of the deformation 
of a flexible cantilever bar 

S o u r c e: made by P.P. Gaidzhurov. 
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Главным недостатком предлагаемого подхода к конечно-элементному моделированию формоиз-
менения гибкого стержня является то, что при таком анализе НДС не учитываются осевые повороты 
(вращение) балочных элементов «как жесткое целое». Вместе с тем разработанный прямой инкре-
ментальный метод расчета гибких стержней в силу своего детерминизма является, безусловно, схо-
дящимся.  

3. Результаты и обсуждение 

С целью валидации разработанной математической модели формоизменения гибкого стержня, 
а также оценки сходимости предлагаемого вычислительного алгоритма, базирующегося на инкре-
ментальной схеме процесса нагружения и соответствующем перестроении конечно-элементной сет-
ки, решены тестовые примеры.  

Пример  1.  Расчет консольного стержня, загруженного на свободном конце сосредоточенной си-
лой. Исходные данные: длина консоли l = 1 м; квадратное поперечное сечение со стороной a = 0,01 м; 
величина сосредоточенной силы F = 0,04167 Н. Полагалось, что в процессе деформирования консо-
ли направление силы не изменяется. Для конечно-элементного моделирования использовался про-

странственный балочный КЭ с шестью степенями свобо-
ды в узле. Рассматривались две конечно-элементные мо-
дели консоли: 1 — разбивка на «стандартные» прямоли-
нейные КЭ одинаковой длины; 2 — разбивка на неде-
формируемые прямолинейные КЭ одинаковой длины. 
Для обеих моделей смежные узлы КЭ соединялись с по-
мощью упругих шарниров (рис. 4). Модули упругости 
материала балочного КЭ для первой и второй моделей: 

(1)E = 107 Н/м2 и (2)E = 1015 Н/м2. Значения жесткостей 
упругих шарниров (рис. 4):  

,x zk  = 1.0 Н/м; 

yk  = 107 Н/м; 

,x yk  = 1.0 Н·м/рад; 

для 4 КЭ zk = 0.03333 Н·м/рад; 

для 8 КЭ zk = 0.06667 Н·м/рад. 

Вычисление эквивалентной жесткости поворотной 
пружины выполнялось по формуле 

(1)( ) /z ik E J l= , 

где il  — длина КЭ. 

Визуализация консоли до и после деформации пред-

ставлена на рис. 5. На этом рисунке lx  и ly  — резуль-

тирующие координаты точки приложения сосредоточен-
ной силы F.  

Из графиков на рис. 6, б и 7, б видно, что уменьше-
ние шага разбивки приводит к заметному уменьшению 
жесткости конечно-элементной модели консоли. 
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а                                          б 

Рис. 6. Графики xl ~ nstep: 
а — первая модель; б — вторая модель 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 6. Graphs of xl ~ nstep: 
а — the first model; б — the second model 

S o u r c e: made by N.B. Danik, A.V. Klimukh. 

 

  
а                                          б 

Рис. 7. Графики yl ~ nstep: 
а — первая модель; б — вторая модель 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 7. Graphs of yl ~ nstep: 
а — the first model; б — the second model 

S o u r c e: made by N.B. Danik, A.V. Klimukh. 

 
N, Н / N 

  
Рис. 8. Эпюра N (ANSYS нелинейный решатель)

И с т о ч н и к: выполнено П.П. Гайджуровым.  

Figure 8. Diagram of N (ANSYS nonlinear solver) 
S o u r c e: made by P.P. Gaidzhurov. 

 

 

Рис. 9. Эпюра N (первая модель) 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 9. Diagram of N (the first model) 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 
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Этот эффект не наблюдается при использовании 
первой модели (рис. 6, а и 7, а). Из анализа представлен-
ных графиков step~lx n  и step~ly n  также следует, что 

процесс является монотонно сходящимся. После 

stepn  = 100 уточнение величин lx  и ly  для обеих моде-

лей происходит только в третьем знаке. 
Для сравнения в табл. 1 приведены значения lx  и ly , 

полученные для аналогичных моделей консоли с исполь-
зованием нелинейного решателя комплекса ANSYS. 

Таблица 1 / Table 1   

Значения lx  и ly  консоли / Cantilever beam values lx  and ly  

Тип модели / 
Model Type 

lx , м / m ly , м / m 

4 КЭ / FE 8 КЭ / FE 4 КЭ / FE 8 КЭ / FE 

1 0,6121 0,6123 –0,7199 –0,7153 

2 0,7362 0,5515 Процесс не сходится / 
The process does not converge 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух / 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 
Сравнивая графики на рис. 7 и 8 с данными табл. 1, 

устанавливаем, что результаты, полученные с помощью 
моделей 1 и 2, качественно согласуются с величинами lx  

и ly  комплекса ANSYS.  

Эпюры распределения продольных сил N в элемен-
тах консоли, полученные с помощью нелинейного реша-
теля ANSYS и по предлагаемой методике с использова-
нием первой модели (без упругих шарниров), приведены 
на рис. 8 и 9. Как видно из рис. 8, максимальное значение 
силы N = 0,03907 Н, вычисленное при включенной оп-
ции “Large Displacement Static” (большие перемещения), 
по величине сопоставимо с величиной заданного усилия 
F = 0,04167 Н. Вместе с тем при моделировании консоли 
с помощью разработанной балочно-шарнирной модели 
продольные силы в элементах консоли с пятого по вось-
мой на три порядка превышают величины N, представ-
ленные на рис. 8. Отметим, что в соответствии с предла-
гаемой методикой продольные усилия в элементах вы-
числялись по «хрестоматийной» формуле 

( )stepni
i i

i

E A
N l

l
= Δ ,   1,2, , ei n=  , 

где А  — площадь поперечного сечения стержня; il  — 

длина i-го КЭ; step( )n
ilΔ  — изменение длин элементов на 

последнем шаге нагружения; en  — число КЭ 

nstep nstep

nstep nstep
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а                                          б 

Рис. 10. График зависимости φ ~i j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.  

Figure 10. Graph of φ ~i j : 

а — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 

    
а                                          б 

Рис. 11. График зависимости ~im j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух. 

Figure 11. Graph of ~im j : 

а — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 

   
а                                          б 

Рис. 12. График зависимости ~z ik j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.  

Figure 12. Graph of ~z ik j : 

a — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 
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Выявленное несоответствие в эпюрах N объясня-
ется тем, что при использовании нелинейного решателя 
ANSYS активизируется режим уменьшения жесткости 
стержня в зависимости от степени его формоизмене-
ния. В предлагаемой методике продольная жесткость 
стержня в процессе деформирования не изменяется, 
что соответствует физической картине рассматривае-
мой изгибной деформации. 

Графики зависимости углов поворотов (φ j ), момен-

тов ( jm ) и жесткостей ( z jk ) от положения упругих 

вставок (вторая модель) для вариантов разбивки консо-
ли на четыре и восемь КЭ показаны на рис. 10–12.  

На этих рисунках значение параметра j соответству-
ет номеру упругого шарнира (нумерация шарниров от за-

делки); in  — номер ступени нагружения ( in  = 2, 3, …, 20). 

Величины z ik  вычислялись по формуле / φz j j jk m= .  

Из приведенных на рис. 10 и 11 графиков видно, 
что двукратное уменьшение шага сетки практически 
не влияет на значения φ j  и jm . Назначенные априо-

ри величины жесткостей поворотных пружин z jk  

(0,03333 Н·м/рад для 4 КЭ и 0,06667 Н·м/рад для 8 КЭ) 
согласуются с аналогичным максимальными значе- 

ниями z jk  на графиках рис. 12, а (0,025 Н·м/рад) и 9, б 

(0,056 Н·м/рад) при k = 2.  
Пример 2. Гибкий криволинейный стержень пря-

моугольного поперечного сечения 1×1 м радиусом 
100 м и углом раствора дуги 450 , жестко закрепленный 
на конце (x = 0, y = 0, z = 0) и нагруженный на свобод-
ном конце из плоскости сосредоточенной силой zF = 

600 Н (рис. 13). Координаты x, y, z свободного конца 
стержня в исходном положении: 29,29 м; 70,71 м; 0 м. 
Модуль упругости материала стержня Е = 10 МПа. 
Стержень разбивался на 16 пространственных КЭ ба-
лочного типа. По аналогии с предыдущим примером на 
стыках элементов вводились блоки из упругих шарни-
ров (рис. 14).  

Расчеты выполнялись для трех вариантов конечно-
элементных моделей криволинейного стержня: 1 — ис-
пользуются только балочными КЭ; 2, 3 — используются 
балочные КЭ в сочетании с блоками из упругих шарни-
ров. Параметры блоков шарниров:  

• для модели 2: 

xk  = yk  = zk  = xk  = yk  = zk  = E; 
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Рис. 13. Расчетная схема 
криволинейного стержня 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 13. Model of a curved bar 
S o u r c e: made by P.P. Gaidzhurov. 

 

 

Рис. 14. Схема стержня и блока 
упругих шарниров 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 14. Diagram of the bar and block  
of elastic hinges 

S o u r c e: made by P.P. Gaidzhurov. 
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• для модели 3: 

xk = yk = zk = Е = 1010 (недеформируемый стер-

жень); xk = yk = zk  = 0,295·106 Н·м/рад.  

Результаты моделирования в виде координат точки 

приложения силы в деформированном состоянии ρx , 

ρy , ρz  (рис. 13) и соответствующего радиус-вектора 

2 2 2
ρ ρ ρρ x y z= + +  сведены в табл. 2. Здесь построчно 

приведены данные для трех моделей в зависимости от 
числа ступеней нагружения stepn . Для сравнения анало-

гичный расчет криволинейного стержня без шарнирных 
блоков был выполнен в ANSYS с использованием нели-
нейного решателя. В итоге получены следующие значе-
ния координат: 

ρx = 15,5639 м; ρy = 46,8962 м; 

ρz = 53,613 м; ρ= 72,91 м. 

Данный результат достаточно хорошо согласуется с 
расчетом по предлагаемой методике с применением тре-
тьей модели при ni = 20 (в табл. 2 подчеркнуто).  

Эталонным решением рассматриваемой задачи яв-
ляются координаты [7; 8]: 

ρx = 15,56 м;   ρy = 46,884 м;   ρz = 53,66 м. 

 
Таблица 2 / Table 2 

Значения lx  и ly  для криволинейного стержня / Values of lx  and ly  for the curved bar 

stepn  
Первая модель, вторая модель, третья модель / The first model, the second model, the third model 

ρx , м / m ρy , м / m ρz , м / m ρ , м / m 

10 
14,301 

7,24618 
16,022 

33,996 
31,714 
46,690

65,405 
67,803 
55,900

75,09 
75,22 
74,58

20 
14,841 
8,2624 
16,100 

35,122 
33,037 
46,814 

61,973 
63,914 
53,743

72,76 
72,42 
73,07

60 
15,171 
8,7549 
16,166 

35,826 
33,855 
46,922

59,906 
61,601 
52,385

71,43 
70,83 
72,16

100 
15,281 
8,920 

16,192 

36,064 
34,130 
46,964

59,221 
60,84 
51,925

71,0 
70,33 
71,86

И с т о ч н и к: выполнено П.П. Гайджуровым / S o u r c e: made by P.P. Gaidzhurov. 
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Безусловно рассмотренный подход к моделированию гибких стержней является достаточно 
приближенным, так как не учитывает осевых поворотов балочных элементов «как жесткое целое». 
Однако введение дополнительный упругих шарниров позволяет качественно оценить картину де-
формирования стержней любой конфигурации как для консервативной, так и для «следящей» 
нагрузки. Это делает данную концепцию весьма привлекательной при конечно-элементном модели-
ровании сложных трансформируемых стержневых систем.  

4. Заключение 

1. Преимуществом моделирования упругого гибкого стержня двухузловыми 3D балочными ко-
нечными элементами, соединенными в смежных узлах упругими шарнирными вставками, по срав-
нению с общепринятым подходом, базирующимся на использовании касательной матрицы жестко-
сти, является простая алгоритмизация шаговой процедуры, которая позволяет достаточно точно для 
инженерной практики определить узловые перемещения и продольные усилия в исследуемом диапа-
зоне нагрузки. 

2. Предлагаемый прямой инкрементальный алгоритм решения геометрически нелинейной зада-
чи строительной механики в отличие от нелинейного решателя комплекса ANSYS является абсолют-
но сходящимся при любой схеме дискретизации гибкого стержня. 

3. В перспективе разработанная методика назначения жесткостей поворотных пружин может 
быть использована при моделировании процесса формоизменения регулярных пространственных 
стержневых систем при управляемом кинематическом воздействии.  
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Abstract. This research covers and compares the thermomechanical behavior of steel and recycled aluminium plates under 
concentrated loading and buckling conditions in several thermal conditions simulating the tropical savanna (Aw) climate. The 
study aims to explore their structural behavior as a function of temperature and evaluate their applicability in heat-sensitive 
applications. Finite element analysis (FEA) was used to model the buckling and deformation behavior of the two materials at 
temperatures from 0°C to 44°C and uniaxial loading of up to 100 MPa. The analytical and numerical solutions were compared; 
their results would differ no more than 5%, thus validating the FEA model. The steel plates generally buckled less (greater critical 
buckling load) in hotter thermal conditions than the aluminium. The buckling load of steel reduced by approximately 40% in 
Mode 1 when it went from 33°C to 44°C, while the buckling load of aluminium reduced by just 4.71%. The same trend was 
observed in Mode 2. These findings validate that recycled aluminium possesses superior thermomechanical stability to tropical 
thermal fluctuation and can be a good alternative as a material for structures in applications of high thermal fluctuation, which will 
be beneficial towards maximum utilization of resources in building engineering. 
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Аннотация. Рассмотрены и сравнены термомеханические характеристики пластин из стали и переработанного алюминия 
в условиях действия сосредоточенной нагрузки и потери устойчивости при нескольких температурных режимах, имити-
рующих климат тропической саванны. Цель исследования — изучение их прочностных характеристик в зависимости от 
температуры и оценка их применимости в термочувствительных областях. Для моделирования поведения двух материа-
лов при потере устойчивости и деформировании при температурах от 0 °C до 44 °C и одноосной нагрузке до 100 МПа 
использован метод конечного элемента. Проведено сравнение аналитических и численных решений; их результаты отли-
чались не более чем на 5 %, что подтвердило точность конечно-элементной модели. Стальные пластины, как правило, 
были более устойчивы (вызывающая потерю устойчивости критическая нагрузка выше) при повышенной температуре, 
чем алюминиевые. При повышении температуры с 33 до 44 °C критическая нагрузка стали в режиме 1 снизилась пример-
но на 40 %, в то время как критическая нагрузка алюминия снизилась лишь на 4,71 %. Аналогичная тенденция 
наблюдалась и в режиме 2. Эти результаты подтверждают, что переработанный алюминий обладает превосходной термо-
механической устойчивостью к тропическим температурным колебаниям и может быть хорошей альтернативой в качестве 
материала для конструкций в условиях высоких температурных колебаний, что будет способствовать максимальному ис-
пользованию ресурсов в строительстве. 

Ключевые слова: потеря устойчивости, критическая нагрузка, деформация, переработанные алюминиевые пластины, 
стальные пластины 
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1. Introduction 

The thermomechanical properties of materials are a dominant factor in defining their suitability in 
structural systems under varying climate conditions of tropical savanna regions. Steel is the most favoured 
material for load-carrying structures due to its increased strength, ductility, and proven reliability. But the 
highly corrosive tendencies of steel have resulted in the continuous search for alternative materials. From 
the integration of fibre-reinforced polymers to the use of recycled plastic bricks, several materials have been 
explored, with their mechanical properties analysed to obtain the potential advantages and limitations. 
Among these alternatives, aluminium has gained considerable attention. Aluminium is resistant to corrosion 
and has been used as an adequate replacement for steel in some specific conditions globally. 

Beyond its mechanical advantages, the consideration of aluminium also extends to issues of material 
availability and life cycle utilization. Waste management has a significant environmental impact [1]. The 
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disposal of aluminium cans, commonly used for soft drinks, has become one of the prevailing issues. These 
cans are found littering the environment, adding to pollution and waste management challenges, as they 
cannot be easily decomposed. This condition presents a dual challenge: addressing environmental pollution 
and finding sustainable uses for these waste materials. Repurposing these aluminium cans into components 
for aluminium plates in construction is a sustainable solution. This approach aids in reducing environmental 
pollution and contributes to the development of eco-friendly construction materials. 

The widespread use of aluminium cans can be traced back to advancements in food science. Today, 
aluminium cans are considered a conventional means of packaging food and beverages for commercial 
consumption. Previously, glass dominated the drink packaging market until the late 1950s.3 The first all-
aluminium beverage cans were introduced in 1958 by the Hawaii Brewing Company for their “Primo 
Beer”.4 Aluminium has increasingly been used as a method of canning due to its low weight, low cost, and 
recyclability. “The world's beer and soda consumption uses about 180 billion aluminium cans every year. 
This is 6,700 cans per second, enough to go around the planet every 17 hours”.5 Aluminium cans are made 
from a combination of elements to form an aluminium alloy. The chemical makeup of this alloy varies. 
Table 1 summarises the chemical makeup of aluminium alloys. 

Table 1 
Chemical makeup of aluminium alloy 

Element Symbol Percentile make-up, % 

Aluminium Al 93.75 – 96.46 

Magnesium Mg 2.53 – 4.82 

Manganese Mn 0.27 – 0.33 

Iron Fe 0.26 – 0.32 

S o u r c e: compiled by V.Y. Risonarta et al. [2]. 

 
The first step in recycling aluminium cans involves the collection and sorting of aluminium cans based 

on alloy type, grade, and other factors. This sorting process can be done manually or using technologies like 
eddy current separators, air classifiers, and density separators. After sorting, the aluminium cans are 
shredded and cleaned to remove any impurities or coatings. The cleaned aluminium scrap is then melted in 
a furnace at high temperatures, typically around 660 °C. The molten metal is poured into ingot casts to set. 
Alloy formulas are chosen based on the planned uses for the reprocessed aluminium. Lastly, the resulting 
ingots can be transported to aluminium processing or manufacturing plants to be made into new products, 
including structural aluminium alloy [3–6]. Although aluminium is a highly recyclable material, there are 
only a few recycling industries in Africa. 

In Nigeria, for instance, an estimated 87% of aluminium cans are left unrecycled. Reports show that 
only 13 percent of recyclable goods are salvaged and recycled in Nigeria, with almost no formal waste 
diversion process in place.6 The process of recycling aluminium cans into structural aluminium alloys must 
be given great attention; poorly recycled alloys will produce underperforming materials. 

The application of aluminium in civil engineering is dependent on the physical and mechanical 
properties (see Table 2) of the alloy. These properties include density, elastic modulus, ultimate strength, 
Poisson ratio, etc. 

 
3 The History of Metal Packaging | A brief overview of metal packaging. 2019. Available from: https://www.shilohplastics. 

com.au/history-of-metal-packaging/ (accessed: 14.04.2025) 
4 Svendsen A. 60 years of the Aluminium Can — Light Metal Age Magazine. 2018. Available from: https://www.light 

metalage.com/news/industry-news/applications-design/60-years-of-the-Aluminium-can/ (accessed: 14.04.2025) 
5 The world counts. (n.d.). Available from: https://www.theworldcounts.com/challenges/consumption/foods-and-beverages/ 

aluminium-cans-facts. (accessed: 14.04.2025) 
6 Aluminium recycling in Africa is an opportunity for big business, Op-Ed by Raymond Onovwigun | Romco Metals. 2022. 

Available from: https://romcometals.com/aluminium-recycling-in-africa-is-an-opportunity-for-big-business/(accessed: 03.04.2025). 
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Table 2 
Aluminium properties 

Properties Symbol 5005-H12 Aluminium 6005-T1 Aluminium 

Density, kg/m3 ܳ 2,660 2,770

Elastic Modulus, MPa 70,300 ܧ 71,000

Poisson’s Ratio 0.30 ݒ 0.33

Ultimate Strength, MPa ܴ275 ݑ 310

S o u r c e: compiled by Z. Zuo et al. [7]. 

The integration of aluminium alloys in civil engineering has been in existence for more than 80 years. 
First used in the design and construction of static transport structures like bridges, from the reconstruction 
of Pittsburgh’s bridge roadway project in 1933 to the construction of New York’s railway bridge in 1946. 
This work fostered the construction of other global aluminium-aided structures as well as the development 
of various international standard codes guiding their design [8]. The United States primarily uses the 
Aluminium Design Manual (ADM) as guidance in the design of aluminium structures [9]. While BS 8118-
1:1991 is the “Code of Practice for the Structural Use of Aluminium” and was one of the first codes to be 
written in limit state format for aluminium design7, and BS EN 1999-1-1:2007 provides the guidelines and 
specifications for the design of aluminium structures within the European Union8. Aluminium has been 
utilised in some major projects globally to solve various structural and environmental issues; aluminium 
alloy was used in the reconstruction of the Real Ferdinando bridge decking in Italy to reduce the self-weight 
of the bridge. Likewise, pure aluminium can be used in passive seismic protection systems due to its low 
yield strength and high degree of ductility. Furthermore, the integration of aluminium alloys is necessary for 
structures exposed to extreme temperature variations. Aluminium lacks negative implications related to 
brittleness at low temperatures compared to steel [8]. Aluminium is also utilized in the design of plates and 
shell-like structural elements. For example, the design and construction of bridges, roofs, walls, box 
culverts, pipe arches, silos, tanks, cooling towers, reactor vessels, culverts, storm sewers, service tunnels, 
recovery tunnels, stream enclosures, and underpasses9 [10].  

Despite the various advancements in international codes and multiple uses of aluminium globally, there 
remains a limited understanding of the effect of temperature on the deformation and buckling behaviour of 
aluminium plates under load. Bridging this knowledge gap is key to exploiting the full potential of the 
material in varying climatic conditions. As the world grapples with the challenges of urbanisation and a 
growing population, the demand for durable and environmentally responsible construction materials has 
never been more pressing. This paper reviewed several relevant articles and textbooks acquired with the aid 
of multiple research databases, i.e. Google Scholar, Scopus, etc. to validate the accuracy of the theories and 
finite element analysis (FEA) carried out in this study. FEA tool (ANSYS) was used to run a comparative 
analysis on aluminium and steel plates under simulated real-world scenarios.  

1.1. Aluminium Plates 

The recycled aluminium from aluminium cans can be forged into a variety of structural elements, like 
plates. A plate is a structural element that is characterised by a three-dimensional solid whose thickness is 
small in comparison to its other dimensions [11]. Plates serve various functions, such as providing stable 
surfaces for floors, roofs, and walls, as well as distributing loads efficiently throughout a structure10 . Plates 

7 BS 8118-1. (1991). Structural use of aluminium — Code of practice for design.  
8 EN 1999-1-1 (2007) (English): Eurocode 9: Design of aluminium structures — Part 1-1: General structural rules. 
9 Aluminium structural Plate by Contech Engineered Solutions. (n.d.). — Contech Engineered Solutions. https://www.con 

teches.com/bridges-structures/plate/Aluminium-structural-plate/ 
10 Plates. (n.d.). The structural engineer. Available from: https://www.thestructuralengineer.info/education/structural-systems/ 

plates (accessed: 03.04.2025). 
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can also be defined as planar, two-dimensional components that primarily transfer forces in the direction of 
their plane. Plates are greatly utilised in structures in the form of floors and walls. The wall plate elements 
in buildings are used to transfer all vertical loads as axial forces into the foundation; they ensure the 
horizontal stiffening of the entire structure [12; 13]. 

The deformation and structural behavior of a plate under loading are dependent on the plate’s material 
properties. Furthermore, the effects of loads on plates generate stresses predominantly normal to the 
element’s thickness, and their mechanics are the main subject of plate theory [11]. Plate theory aims to 
calculate deformation and stress in a plate subjected to loads. There are two widely accepted plate theories 
used: the Kirchhoff-Love theory of plates (classical plate theory) and the Reissner-Mindlin theory of plates 
(first-order shear plate theory) [14; 15]. 

The Reissner-Mindlin theory is applied for thick plates, where the shear deformation and rotary inertia 
effects are included [14], while the Kirchhoff-Love theory is an extension of the Euler-Bernoulli beam 
theory to thin plates. There are three assumptions made in the Kirchhoff-Love theory. Firstly, the mid-plane 
is a “neutral plane,” like in beam theory. Secondly, line elements remain normal to the mid-plane. Finally, 
vertical strain is ignored, meaning that the thickness of the plate does not change during deformation (see 
Figure 1) [14; 15]. 

 

 
Figure 1. Deformed line elements remain perpendicular to the mid-plane  

S o u r c e: compiled by Kelly. (n.d.). Plate theory11. 

 
Under loading, stresses are generated on and within the plate, causing bending. The bending of the 

plate helps to resist the applied load on the plate. In addition, the bending of the plate is greatly influenced 
by the Poisson ratio of the material. The smaller the Poisson ratio of the plate material, the more the loading 
would produce a more singly curved, deformed surface, as seen in Figure 2, a. However, if the plate 
material has a non-zero Poisson’s ratio, the deflected shape will be as shown in Figure 2, b. Therefore, most 
aluminium alloy plates would have greater deformation than steel plates [17]. 

 

 

a                                                                   b 

Figure 2. Deformed surface of a plate with: 
a — low Poisson’s ratio; b — high Poisson’s ratio 

S o u r c e: compiled by D. Johnson [17]. 

 
11 Kelly. (n.d.). Plate theory. In Solid Mechanics Part II (pp. 120–126). Available from: https://pkel015.connect.amazon. 

auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf 
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Other factors that influence the magnitude of deformation of a plate under loading are shapes, support 
conditions, and the type of loading the plate is subjected to (see Table 3) and Equations (1)–(8). 

Table 3 
Maximum deformation of plate formulae 

Shape of plate Support conditions & Type of load Max deformation (at centre) 

Circular 

Edges are simply supported & uniformly loaded 

 

( )
( )

45

64 1m
v pr

y
v D

+
=

+
 (1) 

Circular 

Edges clamped & uniform load 

 

4

64m
pry
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=  (2) 

Circular 

Edges simply supported & concentrated load 
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Circular 

Edges clamped & concentrated load 
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Rectangular 

Edges simply supported & uniform load 
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Rectangular 

Edges clamped & uniform load 
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Ending of the Table 3 

Shape of plate Support conditions & Type of load Max deformation (at centre) 

Rectangular 

Edges simply supported & concentrated load 

 

2

1 3m
Pby k
Et

=  

 
 

(a / b) 1k  (a / b) 1k  

1.0 0.127 1.6 0.17 
1.1 0.138 1.8 0.177 
1.2 0.148 2.0 0.180 
1.4 0.162 <3.0 0.185 

(7) 

 

 

 

 

Rectangular 

Edges clamped & concentrated load 
2

1 3m
Pby k
Et

=                     

 

(a / b) 1k  (a / b) 1k  

1.0 0.061 1.8 0.0786 
1.2 0.071 2.0 0.0788 
1.4 0.076 <3.0 0.0791 
1.6 0.078   

 

(8) 

 

S o u r c e: compiled by Loaded Flat Plates. (n.d.). Roymech  

Loaded Flat Plates. (n.d.). Roymech. Available from: https://www.roymech.co.uk/ 
Useful_Tables/Mechanics/Plates.html (accessed: 03.04.2025). 

 
where r is the radius of the circular plate (m); a is the major length of the rectangular plate (m); b is the 
minor length of the rectangular plate (m); t is plate thickness (m); p is uniform surface pressure on the plate 
(compressive) (N/m2); P is single concentrated force (compressive) (N); ym is the maximum deformation 
(m); E = Young’s modulus of elasticity (N/m2); e is the radius of the loaded area; ν is the Poisson’s ratio. 

Equations (1) to (8), denoted and illustrated in Table 3, are explained as follows below. 
Equation (1) highlights the ݕ௠ of a simply supported circular plate of diameter 2r under pressure p. 

The D and v have a great influence on the deformation of the plate. Therefore, the higher the D of a plate, 
the less its deformation. 

Equation (2) highlights the ݕ௠ of a circular plate clamped at all edges with a diameter of 2r under 
pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D 
of a plate, the less its deformation. 

Equation (3) highlights the ݕ௠ of a simply supported circular plate of diameter 2r under force P over an 
area of radius e. The D and the v have a great influence on the plate. Therefore, the higher the D of a plate, 
the less its deformation. 

Equation (4) highlights the ݕ௠ of a circular plate clamped at all edges with a diameter of 2r under force 
P over an area of radius e. The D and the v have a great influence on the plate. Therefore, the higher the D 
of a plate, the less its deformation. 

Equation (5) highlights the ݕ௠ of a simply supported rectangular plate of dimensions a and b under 
pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D 
of a plate, the less its deformation. 
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Equation (6) highlights the my of a rectangular plate of dimensions a and b clamped at all edges under 

pressure p. The D and v have a great influence on the deformation of the plate. Therefore, the higher the D 
of a plate, the less its deformation. 

Equation (7) highlights the my of a simply supported rectangular plate of dimensions a and b under 

force P over an area of radius e. The constant (k1) is dependent on the aspect ratio (a/b) of the plate. 
Therefore, the greater the aspect ratio, the greater the deformation. Also, the D has a great influence on the 
deformation of the plate. 

Equation (8) highlights the my
 
of a rectangular plate of dimensions a and b clamped at all edges under 

force P over an area of radius e. The constant (k1) is dependent on the aspect ratio (a/b) of the plate. 
Therefore, the greater the aspect ratio, the greater the deformation. Also, the D has a great influence on the 
deformation of the plate. 

D is the flexural rigidity, which is determined by solving Equation: 

( )
3

2
.

12 1

EtD
v

=
−

  (9) 

Plates are susceptible to various types of failures under different loading conditions. Some of the 
common types of failures susceptible to plates include fatigue failure. Fatigue failure can occur in plate 
structures due to repeated cyclic loading, leading to the initiation and propagation of cracks in the material. 
This type of failure is a concern for structures subjected to varying magnitudes of loads, such as wind 
turbine towers or bridges. The study [17] examined the various factors affecting the fatigue strength of thin 
plates in large structures. Moreover, when the elastic limit of the plate material has been exceeded, this 
exceedance of the elastic limit can lead to ductile failure of the plate, also commonly known as yielding 
failure. Yielding failure results in the permanent deformation of the plate and occurs as a condition in which 
the compressive stress surpasses the material’s yield strength.12 The study [18] covered the prediction of 
yield failure points in notched aluminium plates. To study the ductile failure of the notched aluminium 
specimens, a brittle material with a virtual ultimate strength was used to compare with the real ductile 
material. Lastly, plate buckling is a phenomenon that occurs as a condition in which a thin plate moves out 
of the plane under a compressive load, causing it to bend in two directions [19]. 

1.2. Plate Buckling 

Structural members in compression are susceptible to failure by buckling if the applied compressive 
load exceeds the critical load (buckling load). Buckling failure is not dependent on stress or strength but 
rather on structural stiffness. Plates are buckled in orthogonal directions (see Figure 3) [19–21]. 

The major parameters influencing the buckling effect of plates include the aspect ratio (a/b), plate 
slenderness (b/t), boundary conditions, the initial imperfections of the plane, and, lastly, the type of plane 
loads. 

The ratio of its longer side to its shorter side has a significant impact on its buckling behavior 
(Figure 4). For large aspect ratios, the plate starts behaving like a column of finite width. As the aspect ratio 
decreases, there is a limit below which failure does not take place by elastic buckling. The ratio affects the 
buckling load, with the buckling load decreasing continuously as the aspect ratio increases. However, the 
rate decreases with an increasing ratio. Additionally, for aspect ratios less than 0.5, the plates fail by 
crushing and not by buckling. Beyond a certain aspect ratio, the plate behavior shifts from plate to column 
[21–24]. 

 
12 Investigations Into Steel Structure Failures Part I: Failure Mechanisms — Built Environment, Engineering Hawkins 

Forensic Investigation. (2022). Hawkins Forensic Investigation. Available from: https://www.hawkins.biz/insight/investigations-
into-steel-structure-failures-part-i-failure-mechanisms/ (accessed: 03.04.2025). 
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Figure 3. Two-degree-of-freedom model of the buckled plate 
S o u r c e: compiled by T.Yu [22].

 Figure 4. A plate with a high aspect ratio 
S o u r c e: compiled by K.J. Rawson and E.C. Tupper [25].

 
In the design of plate structures, determining the thickness of the plate to be used to guard against 

buckling is crucial. For plate buckling, the Euler buckling limit is not final. Therefore, the Euler buckling 
stress is greater than the yielding stress. That is why, in plate design, an increase in the strength or grade of 
material must result in a decrease in the length of the plate. Higher-tensile-strength materials have an 
increasing risk of buckling [21; 22; 25; 27]. Equation (10) shows the critical buckling load of a supported 
rectangular plate: 

2

2cr
c

x
k DN

b
=

π
 ,      (10) 

where ௫ܰ೎ೝ	is the critical buckling load, ݇௖ is the buckling coefficient (see Figure 4 and Table 4), b is the 
loaded length, and D is flexural rigidity (see Equation (9)). The type of boundary support is an important 
factor that influences a plate’s deformation and buckling loads, along with other factors such as modulus 
ratio, etc. The buckling load attains its minimum value under simply supported boundary conditions and its 
maximum value under clamped boundary conditions. This is because the rigidity of the clamped edges 
provides greater restraint against lateral deformation compared to the simply supported edges, thereby 
increasing the buckling load capacity. 

Table 4 
Buckling coefficients of plates 

Case Description of support at the unloaded edges k 

1 Both edges are simply supported 

 

4.000 

2 One edge is simply supported, the other fixed 

 

5.42 

3 Both edges are fixed 

 

6.97 

4 One edge is simply supported, the other free 

 

0.425 

5 One edge is fixed, the other free 

 

1.277 

S o u r c e: compiled by U. Obinna [19]. 
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The plate’s boundary conditions and aspect ratio determine the plate's bending mode and the distance 
between inflection points. The closer the inflection points are, the greater the resulting axial load capacity 
(buckling load) of the plate. Therefore, it is essential to properly define the boundary conditions not only in 
the out-of-plane direction but also in the in-plane direction to accurately predict the buckling behavior of 
plates [19; 27]. Figure 5 shows how the aspect ratio affects the number of half-waves on the unloaded and 
longer axis (m). Furthermore, the aspect ratio determines how many half-waves or modes the plate will 
have during failure (see Figures 6–8). Figure 7 shows a plate with an aspect ratio of 3, producing 3 half-
waves along the longer axis. Figure 8, on the other hand, shows a plate with 2 and a half waves along the 
longer axis.  

 

 

Figure 5. Buckling coefficient 
for different boundary conditions: 

SS — denotes simply supported; C — denotes clamped 
S o u r c e: compiled by O.M.E. Suleiman et al. [31].

 

Figure 6. Buckling load as a function 
of aspect ratio for a simply supported plate 

S o u r c e: compiled by T.Yu. [21] 

 

 

Figure 7. Simply supported plate buckling mode (3, 1) 
S o u r c e: compiled by O.M.E. Suleiman et al. [31]. 

 
 

 

Figure 8. Buckling modes of a simply-supported thin plate — Mode (2, 1) 
S o u r c e: compiled by T.Yu. [21]. 
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1.3. Effect of Load Types and Combinations 

The type and combination of loads, as well as the boundary conditions, greatly affect the deformation 
of plates. Restricting in-plane deformation reduces the buckling load by a factor of 3/4, but it does not 
change the buckling mode. The buckling coefficient is a function of the loading distribution, plate geometry, 
and boundary conditions. The buckling interaction curve shows the effect of applied loads and boundary 
conditions for different modes of buckling on plates13 [19; 28–30]. Figures 9–12 display 4 types of load 
combinations applied to plates14. 

If multiple action components are present, multiple modes can occur, which may interact with one 
another. Therefore, in Figure 10, the existence of minimal transverse compression does not alter the mode of 
buckling. Nonetheless, as illustrated in Figure 12, significant transverse compression will lead to the panel 
warping into a single half-wave. (In certain situations, this push into a higher mode could enhance strength; 
for instance, in case of Figure 12, preformation/ transverse compression might boost strength in longitudinal 
compression.) Shear buckling, illustrated in Figure 11, fundamentally involves an interplay between the 
destabilising compression on one diagonal and the stabilising tension on the opposite diagonal. 

 

Figure 9. Uniaxial compression  
S o u r c e: compiled by ESDEP WG 8 Plates and Shells.

Figure 10. Biaxial compression, 
longitudinal compression predominating  

S o u r c e: compiled by ESDEP WG 8 Plates and Shells.

 

Figure 11. Shear  
S o u r c e: compiled by ESDEP WG 8 Plates and Shells.

Figure 12. Biaxial compression, 
transverse compression predominating  

S o u r c e: compiled by  ESDEP WG 8 Plates and Shells.

1.4. Environmental Conditions 

Environmental conditions can affect thin plates in various ways, such as through changes in 
temperature, humidity, and exposure to different types of loads. For example, in the previously stated 
context of plate structures, the buckling strength is influenced by the loading distribution, plate geometry, 
and boundary conditions. Additionally, the material properties of the plate, including any dependence on 
environmental conditions, can impact its behavior under different loads and stresses. Therefore, it is 

 
13 Wierzbicki T. Buckling of a simply supported plate. Structural Mechanics, Massachusetts Institute of Technology, 170-181. 

file:///C:/Users/user/Downloads/Full.pdf 
14 ESDEP WG 8 Plates and Shells. Lecture 8.1: Introduction to Plate, Behaviour and Design. Available from: https://fgg-

web.fgg.uni-lj.si/~/pmoze/esdep/master/wg08/l0100.htm (accessed: 03.04.2025). 
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essential to consider the specific environmental conditions and loading scenarios when analysing the 
behavior of thin plates to ensure their structural integrity and performance [31; 32]. 

The average annual temperature in most tropical savanna regions is 26.9°C, with regional variations 
based on factors such as elevation and proximity to water bodies. The highest average monthly temperatures 
are between 30 and 32 °C, typically occurring in April, while the lowest average monthly temperatures are 
between 24 and 25 °C, typically occurring in December and January. Over the past 30 years, tropical 
savanna regions have experienced a slight increase in temperature. For example, in 2021, southern Nigeria 
recorded a mean average temperature of 30 to 32°C, while the northern recorded its highest temperature in 
40 years. This increase in temperature is consistent with other tropical savanna regions, i.e. Ghana, 
Southeast Asia, Northern Australia, Brazil, etc. and global climate change trends [33; 34]. 

The temperature resistance of structural aluminium alloys varies depending on the specific alloy and 
composition. However, most aluminium alloys begin to lose strength at temperatures above 150 °C (300 °F) 
[35; 36]. The primary strength reduction in some alloys, such as 5083-H116 and 6082, occurs between 200 
and 400 °C, leading to significant decreases in yield strength [37; 38]. Although it was revealed that 
aluminium alloys perform better in both strength and ductility at low temperatures. The duration of 
exposure plays a crucial role for cold-worked or heat-treated alloys [37; 38]. Figure 13 highlights the 
change in typical tensile strengths of some aluminium alloys at various temperatures. 

To find out how resistant a certain structural aluminium alloy is to high temperatures, one needs to 
look at the mechanical and physical properties of the aluminium alloy at those temperatures, which depend 
on its chemical makeup and temperature [40–42]. The thermal expansivity of materials is also a key factor 
that influences the behavior of plates. 

 

 

Figure 13. The strength of aluminium against temperature 
S o u r c e: compiled by J.R. Kissell, R.L. Ferry [43]. 
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1.5. Thermal Expansivity 

The thermal expansivity of materials is a key factor that influences the structural behaviour of plates 
[44; 45]. Equation (13) shows the change in length caused by a change in temperature in materials. 

0 ,L L Tα=Δ Δ      (13) 

where LΔ  is the change in length; α  is the linear thermal expansion coefficient; 0L  is the original length; 

TΔ  is the change in temperature 
The thermal expansion coefficient of aluminium is relatively large compared to other metals. Linear 

thermal expansion coefficients for aluminium and aluminium alloys are shown in Table 5. 15 

 
Table 5 

Coefficient of thermal expansion ( )610 C− °  of aluminium alloys 

Metal or alloy Temp Coefficient of thermal expansion ( )610 C− °  

Aluminium (99.996%) 20–100°C 23.6 

3003 20–100°C 23.2 

5083 20–100°C 23.4 

S o u r c e: compiled by Engineering ToolBox. 

 
Moreover, Table 5 highlights the variety of coefficient of thermal expansion (CTE) of aluminium and 

its alloys. The secant CTE of aluminium and its alloys also varies. The secant CTE is a measure that 
accounts for the change in length or volume of a material over a specific temperature range. Unlike the 
linear CTE, which provides a constant value for the entire temperature range, the secant CTE calculates the 
average thermal expansion over a specified temperature interval. A commonly used average value for the 

linear CTE of aluminium is approximately 623 10−× per degree Celsius (°C). 

1.6. Importance of Aluminium 

The transformation of discarded aluminium cans into valuable construction components aligns with the 
global shift towards resource efficiency and circular economy principles. The feasibility of this transformation 
poses several questions: 

i. Can aluminium cans be effectively turned into structurally sound aluminium plates? 
ii. Will these plates meet the structural requirements in terms of strength, durability, and safety? 
Several studies have examined the mechanical and thermal behavior of steel and aluminium alloys; 

most were conducted under normal or temperate climatic conditions, with comparably few examinations of 
the materials' thermomechanical performance under tropical savanna climatic conditions. Additionally, 
previous research tended to examine deformation or buckling separately from one another, as opposed to 
concurrent analyses of the two in a representative range of thermal fluctuations. This study differs from 
existing literature by examining the coupled deformation–buckling behavior of recycled aluminium and 
steel plates under simulated tropical temperature variations (0°C–44°C) using finite element analysis (FEA). 
Thus, this paper aims to unravel the potential of aluminium plates by scrutinising their mechanical, thermal, 
and structural properties, to understand how the change in temperature affects the deformation and buckling 
of plates under loading. Hence, the objective of this is as follows: 

 
15 Engineering ToolBox. (2011). Thermal Expansion of Metals. Engineeringtoolbox.com. https://www.engineeringtoolbox.com/ 

thermal-expansion-metals-d_859.html 
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Table 7 
The 5 levels of uniform loading 

S/N Loads, MPa
1 0

2 25

3 50

4 75

5 100

S o u r c e: compiled by P.C. Chiadighikaobi, 
O.C. Onuoha, A.E. Fagbuyi.

Figure 14. Analysis systems used 
S o u r c e: compiled by P.C. Chiadighikaobi, 

O.C. Onuoha, A.E. Fagbuyi. 

i. Ensure the analytical theories agree with the finite
element analysis (FEA) results

ii. To determine the deformation of the plate models
under various loads and temperature conditions.

iii. To define how the change in temperature affects the
critical buckling of the plates.

2. Materials and Models

Three analysis systems were used in this study, all done 
on the Ansys workbench software, i.e. Steady-state Thermal, 
Static Structural, and Eigenvalue Buckling. The geometrical 
model was created by the design modeller (see Figure 14). 
A circular surface was imprinted at the centre of the plate 
using the Boolean tool, highlighting where the load would be 
placed for analysis 1 (see Figure 15). A shell element model 
type was used with a 30 mm thickness (see Figure 15–16). 
Both faces were meshed using a meshing element size of 
200 mm.  

2.1. Material Properties 

The physical and mechanical properties used for both 
plates (aluminium alloy and steel alloy) are summarised in 
Table 6. 

Table 6 
Physical and mechanical properties of aluminium and steel 

Properties Symbol Aluminium alloy Steel alloy 

Density, kg/m3 ܳ 2,770 7,850

Elastic modulus, MPa 71,000 ܧ 200,000

Poisson’s ratio 0.33 ݒ 0.3

Yield strength, MPa ܴ280 ݑ 250

Secant coefficient of thermal expansion 10-6 (°C)-1 23 12

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi.

2.2. Supports and Loading 

Both plates were simply supported. All the nodes at the 
edges were restrained along the z-axis, the nodes on the 
longer sides were free to rotate about z- and y-axis, but fixed 
along the x-axis, while the nodes on the shorter sides were 
free to rotate about z- and x-axis, but fixed along the y-axis. 
Lastly, the node at the centre was fixed along both the x- and 
y-axis. In addition, the loads placed were dependent on the 
analysis.  

A n a l y s i s  1: Temperature-Influenced Deformation of Plates Under Concentrated Load. In this 
analysis, five (5) levels of uniform loading (Table 7) were applied to the circular area (diameter = 9 mm) 
at the centre of the plate (see Figure 15). 
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Figure 15. Analysis 1: 
plate and loading area dimensions 

S o u r c e: compiled by P.C. Chiadighikaobi, 
O.C. Onuoha, A.E. Fagbuyi. 

Figure 16. Analysis 2: 
plate and loading area dimensions 

S o u r c e: compiled by P.C. Chiadighikaobi, 
O.C. Onuoha, A.E. Fagbuyi.

Table 8 
The 7 different temperatures 

S/N 1 2 3 4 5 
Temperature, °C 0 11 22 33  44 

S o u r c e: compiled by P.C. Chiadighikaobi, 
O.C. Onuoha, A.E. Fagbuyi.

A n a l ys i s  2 :  Total Buckling Deformation of the 
Plate. In this case, the plate was subjected to a uniaxial 
compressive force along the y-axis (see Figure 16). The 
loads were applied as line pressure, and the load applied 
was 10000 N/m. In addition, with the aspect ratio being 
four, the first mode is expected to have four half-waves. 

2.3. Temperature Conditions 

The plates were subjected to 6 (six) different 
temperatures during loading in both analyses. 

The reference temperature used was 22°C (Table 8). 

3. Results

The FEA results for Analyses 1 and 2 are stated in this 
section below. 

Analysis 1 result:  Temperature Influenced Defor- 
mation. The derived FEA deformation results validate the 
formulae stated in the previous section, i.e. Equations (7) 
and (13). Using Equation (13), the expected total maximum 
deformation (TMD) for the unloaded 33 °C plate was 
0.506 mm (2 × 0.253 mm) for aluminium and 0.264 mm 
(2 × 0.132 mm) for Steel. Tables 9 and 10 show that the 
TMD was 0.5216 mm and 0.27214 mm, respectively. In 
addition, the Equation (7) derived TMD for 25 °C plates 
under 100 MPa load were 0.60798 mm for aluminium and 
0.21583 mm for steel. While Tables 8 and 9 show the TMD 
was 0.57823 mm and 0.2095 mm. These results are quite 
precise with less than a 5-percentile difference. Hence, 
proving the accuracy of the FEA results.  

Table 9 
Aluminium plate: total maximum deformation 

0°C 11°C 22°C 33°C 44°C
0 MPa  0.97516mm 0.50629mm 0mm 0.5216mm 1.0432mm 
25 MPa 0.97516mm 0.50629mm 0.14456mm 0.5216mm 1.0432mm 
50 MPa 0.97516mm 0.50629mm 0.28900mm 0.5216mm 1.0432mm 
75 MPa 0.97516mm 0.50629mm 0.43368mm 0.5216mm 1.0432mm 
100 MPa 0.97516mm 0.57823mm 0.57823mm 0.57823mm 1.0432mm 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

Table 10 
Steel plate: total maximum deformation 

0°C 11°C 22°C 33°C 44°C
0 MPa  0.49892mm 0.26193mm 0mm 0.27214mm 0.54428mm 
25 MPa 0.49892mm 0.26193mm 0.05240mm 0.27214mm 0.54428mm 
50 MPa 0.49892mm 0.26193mm 0.10475mm 0.27214mm 0.54428mm 
75 MPa 0.49892mm 0.26193mm 0.15712mm 0.27214mm 0.54428mm 
100 MPa 0.49892mm 0.26193mm 0.2095mm 0.27214mm 0.54428mm 

S o u r c e: compiled by  P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 
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Figure 17. Total maximum deformation of aluminium and steel plates 
S o u r c e: compiled by  P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

 
Figure 17 shows that the TMD of plates at various temperature, except the ones at reference 

temperature (22 °C), are greatly dependent on the temperature of the plate and not the load acting on it. The 
aluminium and steel plate TMD remained constant at 0 °C, 11 °C, 33 °C, and 44 °C, particularly under the 
condition where the applied load was less than 100 MPa. Moreover, as seen in Figure 18, the unloaded 0 °C 
aluminium plate (a) and steel plate (c) TMD point is at the bottom corner of the plate, and after the 100 MPa 
load was applied on aluminium plate (b) and steel plate (d), the TMD point was retained. In addition, the 
mid node total deformation of 0 °C plates under 100 MPa loading was 0.42115 mm for aluminium and 
0.20825 mm for steel, both lower than the mid node deformations at the reference temperature (22 °C), 
which is 0.57823 mm and 0.2095 mm, respectively (see Figure 19). Thus, proving aluminium slight gain in 
strength at lower temperatures. Validating the study Guo et al. [46], which stated that low temperatures 
improved both strength and ductility of aluminium, while higher temperatures reduced the strength due to 
softening.  In addition, the plates (aluminium and steel) at lower temperatures (0 °C and 11 °C) deformed by 
contracting, while the plates at higher temperatures (33 °C and 44 °C) deformed my expanding. Thus, 
proving why the loaded plate mid-node total deformation was more at higher temperatures than at lower 
temperatures. In Figure 20, b and d total mid node deformation was 0.57823 mm and 0.22573 mm, 
respectively, which is higher than the other temperature cases. 

 

 

a b c d 

Figure 18. Total maximum deformation for unloaded and loaded 0 °C plates: 
а — Aluminium; b — Aluminium; c — Steel; d —Steel 

S o u r c e: compiled by  P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 
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a b c d 

Figure 19. Total maximum deformation for unloaded and loaded 22 °C plates: 
a — Aluminium; b — Aluminium; c — Steel; d — Steel 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

 

 
a b c d 

Figure 20. Total maximum deformation for unloaded and loaded 44 °C plates: 
a — Aluminium; b — Aluminium; c — Steel; d — Steel 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

 
Analysis 2 Result: Temperature Influenced Buckling. The FEA buckling results accuracy was 

validated by equation (10). Equation (10) derived buckling load for plates at reference temperature was 
7,070,232 N/m for aluminium and 19,502,505 N/m for steel, while the FEA load was 7,330,000 N/m and 
20,237,000 N/m (see Table 10). The results are quite precise with less than a four-percentile difference. 
Thus, proving accuracy of the FEA method used.  

Table 10 
Critical buckling load results 

 Aluminium Steel 
 Mode 1 Mode 2 Mode 1 Mode 2 

Uniaxial Compression Load, 10,000 N/m 
0 °C –761.76 733.5 –1576 2024.1 

11 °C 733.47 781.16 2024.1 2155.6 
22 °C 733.33 781.29 2023.7 2156.1 
33 °C 732.89 781.43 2020.3 2156.7 
44 °C 699.88 739.80 1435.6 1856.3 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 
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Figure 21. Critical buckling of uniaxially compressed plates 
S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

 
Figure 21 shows that both plates mode 1 critical buckling load is quite temperature sensitive, with the 

higher buckling loads observed near the reference temperature. At mode 1, the steel critical bulking load 
significantly dropped by 40.7% due to the temperature change from 33 °C to 44 °C (see Figure 24), while 
aluminium dropped only by 4.71%. A similar phenomenon was observed in mode 2, where the critical 
buckling load for the steel plate dropped by 16.18% when the temperature changed from 33 °C to 44 °C 
(see Figure 24), while aluminium dropped 5.63%. Validating that, despite the buckling mode, the steel 
critical buckling load is much more sensitive to temperature than aluminium. In addition, it was observed 
that despite the mode, the plates at 0 °C and 44 °C had no more than 4 half-wavelengths. While for mode 
2 plates closer to the reference temperature (22°C), an additional wavelength was formed (see Figure 23). 
Hence proving that the environmental temperature plays a crucial role in plate buckling modes (see 
Figure 24).  

 

 

a b c d 

Figure 22. Buckling deformation of plates at 0 °C: 
a — Aluminium (mode 1); b — Aluminium (mode 2); c — Steel (mode 1); d — Steel (mode 2) 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 
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a b c d 

Figure 23. Buckling deformation of plates at 22 °C: 
a — Aluminium (mode 1); b — Aluminium (mode 2); c — Steel (mode 1); d — Steel (mode 2) 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

 

 

a b c d 

Figure 24. Buckling deformation of plates at 44 °C: 
a — Aluminium (mode 1); b — Aluminium (mode 2); c — Steel (mode 1); d — Steel (mode 2) 

S o u r c e: compiled by P.C. Chiadighikaobi, O.C. Onuoha, A.E. Fagbuyi. 

4. Conclusion 

In conclusion, this study illuminates the potential for aluminium as a suitable construction material. 
The finite element analysis (FEA) results agreed with their analytical formulations with less than 5 percentile 
difference, thus proving the efficiency of FEA. The conclusive findings of this study are as follows.  

1. The results showed that aluminium plates experienced slightly greater overall maximum deformation 
than steel under every temperature and loading condition. However, aluminium was discovered to be more 
thermally stable. At low temperatures (0° C and 11 °C), aluminium experienced lesser deformation, with 
mid-node deformation going down to 0.42115 mm under 100 MPa, whereas 0.57823 mm at the reference 
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temperature (22°C). Steel also performed well at low temperatures, but with minimal change in mid-node 
deformation. 

2. Under buckling analysis, aluminium experienced stable performance with a reduction of just 4.71% 
in critical buckling load between 33 °C and 44 °C. Steel's critical buckling load in Mode 1, on the other 
hand, dropped precipitously by 40.7% over the same temperature range, illustrating its vulnerability to 
temperature change. Mode 2’s results also indicated a lower but noticeable drop in steel performance, 
whereas aluminium again remained relatively stable. 

These findings show that while steel offers higher stiffness and lower deformation at moderate 
conditions, recycled aluminium offers a better performance under large temperature fluctuations, thus high- 
lighting its potential as a viable material for enhancing thermal and structural efficiency in a hot climate. 
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