
СТРОИТЕЛЬНАЯ МЕХАНИКА ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ 

STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS 

2024. 20(5). 404–417 

ISSN 1815-5235 (Print), 2587-8700 (Online) 
HTTP://JOURNALS.RUDN.RU/STRUCTURAL-MECHANICS

404 ANALYTICAL AND NUMERICAL METHODS OF ANALYSIS OF STRUCTURES 

DOI: 10.22363/1815-5235-2024-20-5-404-417 
UDC 69.04 
EDN: CONRDX 

1 Research article / Научная статья  

Algorithm for Calculating Statically Indeterminate Trusses Using the Force Method 

Vladimir V. Lalin1,2 , Timur R. Ibragimov1   

1 Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia 
2 RUDN University, Moscow, Russia 
 timuribragimov.ra@gmail.com 
Received: July 3, 2024 
Accepted: October 1, 2024 

Abstract. The study focuses on developing an algorithm for calculating statically indeterminate trusses using the force 
method. The main challenge in algorithmizing the force method lies in obtaining the solution to the homogeneous equilibrium 
equations, which is complicated by the ambiguity in selecting the primary system. The idea behind the presented algorithm is 
based on using the transposed compatibility matrix of the structure as the general solution to the homogeneous equilibrium 
equations. The governing system of equations eliminates the need to select redundant unknowns, as the column of unknowns 
is generated automatically. The method for obtaining compatibility equations in statically indeterminate truss cells is 
presented through a direct examination of changes in the area of truss loops. The compatibility matrix of the system is 
composed of rows of compatibility equations for independent statically indeterminate truss loops. Compatibility equations 
for the deformations of triangular and rectangular truss cells are derived, and a method for obtaining compatibility equations 
for externally statically indeterminate trusses is described. Using the proposed algorithm, the flexibility matrix of a truss 
with parallel chords is presented. The algorithm removes the ambiguity in selecting the primary system, and the structure of 
the flexibility matrix is determined by the numbering of the statically indeterminate loops of the system. There is no need to 
use the equilibrium equations when constructing the flexibility matrix of the structure. 
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Аннотация. Работая посвящена построению алгоритма расчёта статически неопределимых ферм методом сил. 
Основной трудностью в алгоритмизации метода сил является построение общего решения однородных уравнений 
равновесия, что объясняется неоднозначностью выбора основной системы. Идея излагаемого алгоритма основана 
на использовании транспонированной матрицы совместности деформации конструкции в качестве общего решения 
однородных уравнений равновесия узлов конструкции. Построенная система разрешающих уравнений позволяет 
отказаться от выбора лишних неизвестных, столбец неизвестных формируется автоматически. Изложен метод по-
лучения уравнений совместности деформаций ячеек статически неопределимых ферм с помощью рассмотрения 
изменения площади контуров ячейки. Матрица совместности деформаций системы составляется из строк уравне-
ний совместности деформаций независимых статически неопределимых ячеек фермы. Получены уравнения сов-
местности деформаций треугольной и прямоугольной ячеек ферм, изложен метод построения уравнений совмест-
ности деформаций для внешне статически неопределимых ферм. С использованием изложенного алгоритма приве-
дена матрица податливости конструкции фермы с параллельными поясами с крестовой решёткой. Изложенный 
алгоритм снимает неоднозначность выбора основной системы, структура матрицы податливости конструкции 
однозначно определяется нумерацией статически неопределимых контуров системы. Для построения матрицы 
податливости конструкции нет необходимости использования уравнений равновесия узлов. 

Ключевые слова: ферма, общее решение уравнений равновесия, уравнения совместности деформаций, условия 
неразрывности площади, метод сил, матрица податливости 
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1. Introduction 

The duality of the displacement method and the force method in structural mechanics is well known, 
and the application of the methods for “manual” analysis structures is approximately equally labor-intensive. 
There are certain classes of problems where one or another method may be convenient, for example, in terms 
of the number of unknowns, but the methods can be considered to be on the same footing. 

However, the equality of the methods is lost when CAE packages are used to analyze structures. The 
absolute majority of commercial software packages are based on the displacement method. The advantage 
of the displacement method is the relative simplicity of its algorithmization, the matrix of governing equations 
is unambiguously determined by the numbering of the structure nodes. At the same time, the stiffness 
matrix has a band structure, is sparsely populated and, generally, is well-conditioned. 

In contrast, the matrix of the governing equations of the force method can be formed in a non-unique 
way. From the point of view of classical structural mechanics, this is explained by the non-uniqueness of the 
choice of the primary system. 
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In turn, the force method is important in optimization problems and exhibits efficiency in comparison 
with the displacement method [1–3], nonlinear analysis of structures [4–6], analysis of prestressed 
structures [7], and design of adaptive structures [8]. 

The known ways of algorithmization of the force method can be divided into three main groups: 
algebraic, topological and mixed. 

Algebraic methods are generally reduced to particular operations on the matrix of nodal equilibrium 
equations. One of the first attempts to construct an algorithm for selecting redundant unknowns was the use 
of the Gauss-Jordan method [9; 10]. Subsequently, LU decomposition methods [11–13], singular value 
decomposition [14; 15] were proposed, as well as one of the methods for constructing the general solution 
presented in [16]. The mixed algebraic-topological methods are discussed in papers [17–20]. 

The main disadvantage of the algebraic methods is the necessity of preliminary application of complex 
operations on the matrix of equilibrium equations of the structure to form the matrix of governing equations 
of the force method. This disadvantage prevents from constructing an efficient algorithm in terms of the 
number of computational operations. 

Topological methods are based on the use of the geometric properties of the structure, such as periodicity 
and cyclicity. The methods proposed in [21–23] can be referred to topological methods. One of the varieties 
of such methods is discussed in studies [24–26] devoted to the use of the fundamental basis of cycles of 
a graph, which is equivalent for the considered structure. Algorithms that exploit the cyclic nature of the 
structure have been proposed [27; 28]. The issue with the methods based on periodicity or cyclicity of the 
structure is that they cannot be applied to problems with arbitrary geometry. The use of graph operations has 
the same disadvantage as the algebraic methods. 

The widely used integrated force method, first proposed in [29], can be highlighted. Currently, the 
integrated force method has been generalized to plane and spatial problems of elasticity theory and nonlinear 
problems [30–32]. The key idea of the method is to solve the joint system of equilibrium equations of the 
structure and strain compatibility equations. However, the structure of the obtained matrix and the number 
of unknowns do not indicate efficiency of the method in comparison with the displacement method. 

Thus, no algorithm for the force method comparable in complexity to the displacement method has 
been constructed so far. 

This paper presents a method for the analysis of statically indeterminate trusses. The key idea is to use 
the transposed strain compatibility matrix as the matrix of general solution of the homogeneous equilibrium 
equations. 

2. Method 

2.1. Problem Statement of Force Method Algorithmization 

The equations of structural mechanics of trusses can be written in the form of the following system of 
equations: 

,TA N P=  (1а) 
0 ,eAU = ε = ε + ε  (1b) 

Λ ,e Nε =  (1c) 

where TA  is the specified nodal equilibrium matrix; [ ]...
T  is the matrix transpose operation; N  is the 

column of axial forces in the truss members; P  is the column of specified nodal loads; U  is the column of 
nodal displacements; ε  is the column of axial strains of the members; 0ε  is the column of specified initial 
strains of the members; eε  is the column of elastic strains of the members; ( )Λ= /i idiag l EA  is the 

flexibility coefficient matrix of the members of the system; il  is the length of the i-th member; iEA  is the 

axial stiffness of the i-th member. 
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Equation (1a) represents the equilibrium equations of the system nodes, (1b) represents the geometric 
equations relating displacements and deformations, and (1c) represents the constitutive equations relating 
forces and deformations. 

It is known that the general solution of a non-homogeneous system of equations is the sum of some 
particular solution of this system and the general solution of the corresponding homogeneous system of 
equations. 

In statically indeterminate systems, the rank of matrix TA  is equal to the number of its rows and is 
obviously less than the number of unknowns, and therefore, the system of the homogeneous equilibrium 
equations has a nontrivial solution. The construction of the general solution is the main difficulty in the 
algorithmization of the force method. 

Suppose that the fundamental system of solutions of the homogeneous system is constructed. The columns 
of the fundamental system are taken as the rows of some matrix . By definition of the fundamental 
system: 

0.T TA B =  (2) 

Therefore, for an arbitrary column  the following is valid: 

0.T TA B F =  (3) 

Thus, TB F  is the general solution of the system of the homogenous equilibrium equations. 
Considering an arbitrary particular solution ௣ܰ and (1а): 

.T
PN B F N= +  (4) 

By transposing (2), one obtains: 

0.BA=  (5) 

Multiplying (1b) by B  yields: 

( )0 ,eBAU B B= ε = ε + ε  (6) 

and taking into account (5), the following is valid for any column U : 

( )0 0.eB ε + ε =  (7) 

By substituting (3) into (1c), one obtains: 

.Λ Λe T
pB F Nε = +  (8) 

Substituting (8) into (7) yields the governing system of equations of the force method: 

0 .Λ Λ 0T
pB B F B B N+ ε + =  (9) 

Similar to the method of displacements, Λ TB B  is the flexibility matrix of the structure. The solution of 
the problem is now reduced to the solution of system (9), the forces in the structural elements are 
recalculated according to (4). 

B

F
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Expression (7) has the physical meaning of the strain compatibility equations. From the algebraic point 
of view, the transpose of compatibility matrix  produces the desired general solution of the homogeneous 
equilibrium equations. This is the essence of the proposed method, as it will be shown later, the strain 
compatibility equations can be constructed without using the nodal equilibrium matrix. 

The physical meaning of the unknown column F  in system (9) remains unknown. There is no need to 
choose the primary system and “extra” unknowns, the vector of unknowns is formed “automatically”. 

2.2. Construction of Strain Compatibility Equations 

The idea behind the proposed method of constructing the strain compatibility equations is the 
relationship between the strain of particular members constituting a loop and the change in area of this loop. 
For illustration, a truss cell, which is statically indeterminate to the first degree, is shown in Figure 1, a. 
Here, the members are numbered, arrows indicate their orientation, and letters , , ,i k m s  denote the nodes of 
the structure. It should be noted that the numbering and orientation of the members do not affect the final 
result. 

The cell under consideration consists of three independent loops 1, 2, 3 denoted in Figure 1, b. These 
three loops together constitute the fourth one, shown in Figure 1, c. 

 

 

а b c 
 

Figure. 1. Truss diagram: 
а — numbering of members and nodes; b — loops No. 1, 2, 3; c — loop No. 4 

S o u r c e : made by V.V. Lalin, T.R. Ibragimov 
 
The following relationship is valid for the areas of the considered loops: 

4 1 2 3 ,S S S S= + +  (10) 

where ௝ܵ is the area of the j-th loop. 
After deformation of the structure due to external loads, the areas of the loops will change, but for the 

new values of the areas the same identity will be true due to the continuity of the structure: 

' ' ' '
4 1 2 3S .S S S= + +  (11) 

By denoting the change in area of the j-th loop as ' ,Δ j j jS S S= − the following relationship is obtained: 

4 1 2 3Δ Δ Δ Δ .S S S S= + +  (12) 

Expression (12) has the meaning of the continuity condition of the loop area. If expressed through the 
member strains, equation (12) will be the desired equation of strain compatibility of the considered truss cell. 

B
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Figure. 2. Loop No. 4 

S o u r c e: made by V.V. Lalin, T.R. Ibragimov 

 

3. Results and Discussion 

3.1. Strain Compatibility Equation of 6-member and 4-node Cell 

Before obtaining the strain compatibility equations of the truss cell in Figure 1, an arbitrary member in 
,x y  plane and nodes i  and k  is considered. The member is oriented by unit vector ,T

x yt t t =   . Unit 

vector ,T
x yn n n =   , which is normal to vector t , is introduced such that vectors , ,t n z  constitute a right-

hand vector system, similar to coordinate system , , .x y z  

The nodal displacements of the member are written as , ,T
i ix iyU U U =   , .T

k kx kyU U U =    Axial strains 

of the member can now be expressed as: 

( ).T
k it U Uε = −  (13) 

The following notation is introduced: 

( ).T
k in U Uω = −  (14) 

Thus, ω  represents the relative displacement along the normal to the axis of the member, that is, the 
relative displacement of the nodes corresponding to the rotation of the member as a rigid body. 

The following expression follows from equations (13), (14), which relates the member strains and the 
displacements of its nodes: 

.k iU U t n− = ε + ω  (15) 

A convenient tool for evaluating the change in area is the outer product operation [33]. The outer 

product of two vectors , , ,
T T

x y x ya a a b b b   = =     lying in the ,x y  plane can be written as: 

[ ]det , ,
x x

y y

a b
a b a b

a b
∧ = =  (16) 

where detሾ… ሿ is the matrix determinant. 
The main properties of the outer product [33]: 

,a b b a∧ = − ∧  

( ) ( ) ( ) , ,a b a b a b∧ λ = λ ∧ = λ ∧ λ ∈  

( ) ,a b c a b a c∧ + = ∧ + ∧  

0 ,  , 0.a b a b a b∧ = ↔ ≠  

(17)

The outer product is the oriented area of the parallelogram 
constructed with the multiplied vectors, that is, it is equal to the 
area of the parallelogram with a positive or negative sign 
depending on whether the axis triples , ,x y z  and , ,a b z  coincide 

in orientation or not. 
Now loop 4 is examined to determine its change in area. 

Unit vectors for each member (Figure 2) are introduced. 
Let , ,i k mr r r  be the position vectors of the nodes of loop 

, , i k m  having an arbitrary origin. By using outer product, the 
change in area may be written as: 
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( ) ( ) ( ) ( )'
4 4 42Δ .k i m i k k i i m m i iS S S r r r r r U r U r U r U= − = − ∧ − − + − − ∧ + − −  (18) 

By expanding the brackets and grouping the terms, the following is obtained: 

( ) ( ) ( )42Δ .i k k m m i m k i k i m i m kS U U U U U U U U r U U r U U r= ∧ + ∧ + ∧ + − ∧ + − ∧ + − ∧   (19) 

It should be noted that the second group of terms consists of the products of the difference between the 
displacements of the nodes and the position vector of the opposite node. The strains of each of the three 
members of the loops are expressed according to (15): 

1 1 1 1

2 2 2 2

3 3 3 3

;

.

;k i

m k

i m

U U t n

U U t n

U U t n

− = ε + ω
− = ε + ω

− = ε + ω
 (20) 

Thus, expression (19) will include the products of the member strains (and their rotation as a rigid 
body) and the position vectors of the opposite nodes. According to the properties of the outer product, 
the rotation component can be eliminated by requiring the position vector and vector ݊ normal to the 
member to be parallel. For any triangular loop this is possible if the orthocenter of the triangle (point ܱ in 
Figure 2) is taken as the origin of the position vector. By rewriting (19), leaving the non-zero terms, one 
obtains: 

4 1 1 2 2 3 32 ,Δ ikm ikm ikm
i k k m m i m i kS U U U U U U t r t r t r= ∧ + ∧ + ∧ + ε ∧ + ε ∧ + ε ∧  (21) 

where the upper index ikm  denotes that the origin of the position vector is the orthocenter of triangle ikm . 
Similarly, the changes in area of loops 1, 2, 3 are determined: 

1 1 1 4 4 5 52ΔS ski ski ski
s k k i i s s k iU U U U U U t r t r t r= ∧ + ∧ + ∧ + ε ∧ − ε ∧ + ε ∧ ; (22a) 

2 2 2 5 5 6 62ΔS smk smk smk
s m m k k s s m kU U U U U U t r t r t r= ∧ + ∧ + ∧ + ε ∧ − ε ∧ − ε ∧ ; (22b) 

3 3 3 4 4 6 62Δ smi smi smi
s m m i i s s m iS U U U U U U t r t r t r= ∧ + ∧ + ∧ + ε ∧ + ε ∧ + ε ∧ . (22c) 

Substituting now (21)–(22) into (12), it can be seen that the quadratic displacement terms are 
identically eliminated. The obtained expression will be the strain compatibility equation for a statically 
indeterminate to the first degree truss cell: 

1 1 2 2 3 3

1 1 4 4 5 5

2 2 5 5 6 6

3 3 4 4 6 6 .

ikm ikm ikm
m i k

ski ski ski
s k i

smk smk smk
s m k

smi smi smi
s m i

t r t r t r

t r t r t r

t r t r t r

t r t r t r

ε ∧ + ε ∧ + ε ∧

ε ∧ − ε ∧ + ε ∧ +

+ ∧

=

ε ∧ − ε ∧ − ε +

+ε ∧ + ε + ε ∧

=

∧

  (23) 

Expression (23) is valid for any nondegenerate cell consisting of 6 members connected in a similar 
way to the considered case. Thus, for the cell shown in Figure 3, the outer product for the terms of the 
second loop will be obtained with a negative sign and expression (12) will be reduced to the following 
form: 

.Δ Δ Δ Δikm ksm iks ismS S S S+ = +  (24) 
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Figure 4. Equilateral triangle truss panel 

S o u r c e: made by V.V. Lalin, T.R. Ibragimov
Figure 3. Topologically similar statically indeterminate cell 

S o u r c e: made by V.V. Lalin, T.R. Ibragimov 

 

 
Strain compatibility matrix B can now be constructed from the rows of the strain compatibility equations 

for each statically indeterminate elementary cell. Thus, structure flexibility matrix Λ TL B B=  is uniquely 
determined by the numbering of statically indeterminate loops of the system. At the same time, it is not 

necessary to use matrix TA  of nodal equilibrium equations to construct the structure flexibility matrix. 
The algorithm of analysis using the force method comes down to the construction of strain compatibility 

equations for independent statically indeterminate cells in order to form the strain compatibility matrix of 
the system, construct of the structure flexibility matrix and solve the governing system. 

Figure 4 demonstrates a structure in the form of an equilateral triangle with base a  and node s  in the 
center of mass of triangle ikm . Construction of the strain compatibility equations for this system is presented 
below. 

Unit vectors it  for the members are expressed as: 

1 2 3

1 11 1 1
, , ,

0 2 23 3
t t t

−    
= = = −    
     

 

4 5 6

01 13 3
. , , 

12 21 1
t t t

     −= = =     
    

 

The position vectors originating from the orthocenter and pointing to the nodes of loop 4: 

3
.

1 1 01 1
, ,  

2 23 / 3 / 3 3 / 3
ikm ikm ikm

i k mr a r a r a
−     

− = =     
 

=
   

 

As a result of calculating the outer products, the following is obtained: 

1 1 1 2 2 2 3 3 3 ., , 
3 3 3

m i k
a a a

t r t r t rε ∧ = ε ε ∧ = ε ε ∧ = ε  

Thus, the left-hand side of expression (12): 

( )1 2 3 .
3

a ε + ε + ε  

Similar procedure is applied to loops 1, 2, 3 to obtain: 

loop iks :  1 5 1
1

,
3

a
 ε + ε − ε 
 
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Figure 5. Rectangular truss panel 
S o u r c e: made by V.V. Lalin, 

T.R. Ibragimov 

loop kms :  5 6 2
1

,
3

a
 ε + ε − ε 
 

 

loop ism :   4 6 3
1

.
3

a
 ε + ε − ε 
 

 

By substituting the obtained expressions into (23), expanding the brackets and grouping the terms, the 
strain compatibility equation is derived: 

( )1 2 3 4 5 63 0.a  ε + ε + ε − ε + ε + ε =   (25) 

3.2. Cross Brace Truss 

As mentioned earlier, expression (23) is suitable for any cell 
with 6 members, however, there is an important degenerate case for 
which equation (23) is not acceptable. 

Consider the design shown in Figure 5. The requirement of 
taking the orthocenter of the triangle as the origin of the position 
vector makes the terms accounting for the strains of members 5 and 6 
equal to zero, since the orthocenter of a right triangle is at the apex of 
a right angle. 

The strain compatibility equation can be obtained from the 
following equality for the areas: 

ΔS ΔS ΔS Δ Δ Δ .iks ism iko kso mos iomS S S+ = + + +  (26) 

In this case, the following equalities must be used: 

( )1
;

2m o o k m kU U U U U U− = − = −  

( )1
.

2i o s io sU U U U U U− = − = −  (27) 

For the orientation of the members shown in Figure 5, the following unit vectors are used: 

1 2 3

1 0 1
, , ;

0 1 0
t t t

−     
= = =     
     

 

4 5 6

0 1 1
, , ,

1

a a
t t t

b bc c

−     
= = =     −     

 

where 2 2.c a b= +  
For the loop constructed with vertices , ,i k s  the orthocenter is point k , therefore 

0
, ,

0i s

a
r r

b

   
= − =   

   
 

and to the nearest quadratic terms: 
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2 2 1 1 2 12Δ .iks i sS t r t r a b= ε ∧ + ε ∧ = ε + ε  

Similarly, for loop ism : 

4 32Δ .ismS a b= ε + ε  

For the loop with vertices i, k, o: 

2 2 0 1 1
, , ;

1 / /2 2 2o i k
b a a a

r r r
a b a bb

     −= = − =     −     
 

( )
2 2

1 1 5 5 6 6 5 6 1
1 1

2Δ .
2 2 2 2iko o i k

a c b a
S t r t r t r

b b

⋅ −= ε ∧ + ε ∧ + ε ∧ = ε + ε − ε  

Similarly, the change in area of the loop with vertices , , ,m o s  

( )
2 2

5 6 32Δ .
2 2mos

a c b a
S

b b

⋅ −= ε + ε − ε  

For the loop with vertices , , :i o m  

2 2 1 / /
, , 

0 1 12 2 2o i m

b a b ab a b b
r r r

a

−     −= = − =     
     

; 

( )
2 2

4 4 6 6 5 5 5 6 4
1 1

2Δ .
2 2 2 2iom o m i

b c a b
S t r t r t r

a a

⋅ −= ε ∧ − ε ∧ + ε ∧ = ε + ε − ε  

Similarly, for loop :kos  

( )
2 2

5 6 22Δ .
2 2kos
b c a b

S
a a

⋅ −= ε + ε − ε  

After substitution into condition (26), the following strain compatibility equation is obtained after 
simplifications: 

( ) ( ) ( )2 2
1 3 2 4 5 6 0.a b a bε + ε + ε + ε − + ε + ε =  (28) 

In the particular case of a square cell ( )a b= , the equation becomes: 

( )1 2 3 4 5 62 0.a  ε + ε + ε + ε − ε + ε =   (29) 

A similar expression is given in [34], where it was obtained by analyzing the matrix of nodal 
equilibrium equations of the structure. 

Using the obtained expression (29), the formation of the structure flexibility matrix of the example 
truss presented in Figure 6 is discussed below. The truss consists of n square cells, the axial stiffness of each 
member is EA . The members are numbered according to the scheme shown in Figure 6. The total number 
of members in the truss is 1 5n+ , the total number of nodes is ( )2 1n + . 

The diagonal matrix of the member flexibility coefficients: 

Λ diag 1,1,1,1, 2, 2,1, ,1, 2, 2 .
a

EA
 = …   
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Figure 6. Rectangular truss 
S o u r c e: made by V.V. Lalin, T.R. Ibragimov 

 
The strain compatibility matrix of the system, according to (29), will have the following form (only the 

first three rows are shown): 

1 1 1 1 2 2 0

0 0 0 1 0 0 1 1 1 2 2 0 .

0 1 0 0 1 1 1 2 2 0

B a

 − −
 

= − − 
 

− −  





 

 

By multiplying out ܤΛ்ܤ, the following tridiagonal flexibility matrix of the system is obtained: 

( )
( )

( )

3

4 1 2

4 1 2
.

4 1

1

1 1

21

a
L

EA

 +
 
 + =
 
 
 + 


 (30) 

Thus, the obtained flexibility matrix has the size of .n n×  The displacement method stiffness matrix, in 
turn, will have the dimension of ( )4 1 .n +  

3.3. Externally Statically Indeterminate Trusses 

In this section, the problem of composing the strain compatibility equations for externally statically 
indeterminate trusses is considered. These are trusses, the support reactions of which cannot be determined 
from the equilibrium equations. 

Figure 7, a shows a statically indeterminate to the first degree cell with two independent loops 1 and 2, 
and the third loop denoted in Figure 7, b. 

An obvious equality is true for the areas of the loops: 

3 1 2ΔS ΔS Δ .S= +  (31) 

In the case of no additional support, the cell would be statically determinate and the quadratic 
displacement terms in equation (31) would not reduce. 

The presence of supports leads to some constraints on the displacements of the nodes, as a result of 
which the quadratic terms are reduced and the equality can be expressed through the member strains. 
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a  b 

Figure 7. Externally statically indeterminate truss: 
a — loops No. 1, 2; b — loop No. 3 

S o u r c e: made by V.V. Lalin, T.R. Ibragimov 

 
The changes in area of the loops taking into account that :i k i s s kU U U U U U− = − + −  

32Δ i m m k k iS U U U U U U= ∧ + ∧ + ∧ +  

( ) ( ) ( ) ;mik mik mik
k m i m i k s k mU U r U U r U U r+ − ∧ + − ∧ + − ∧  (32a) 

12Δ i m m s s iS U U U U U U= ∧ + ∧ + ∧ +  

( ) ( ) ( ) ;ism ism ism
s m i m i s i s mU U r U U r U U r+ − ∧ + − ∧ + − ∧  (32b) 

22Δ m k k s s mS U U U U U U= ∧ + ∧ + ∧ +  

( ) ( ) ( ) .skm skm skm
s k m m s k m k sU U r U U r U U r+ − ∧ + − ∧ + − ∧  (32c) 

For the given cell, the displacements of nodes ݏ, ݇ are parallel, hence by the properties of the outer 
product: 

0s kU U∧ = . (33) 

In turn, the displacement of node ݅ is zero and the remaining non-zero terms are: 

( ) ( ) ( )32Δ mik mik mik
i m k m i m i k s k mS U U U U r U U r U U r= ∧ + − ∧ + − ∧ + − ∧ ; (34a) 

( ) ( ) ( )12Δ ism ism ism
m s s m i m i s i s mS U U U U r U U r U U r= ∧ + − ∧ + − ∧ + − ∧ ; (34b) 

( ) ( ) ( )22Δ skm skm skm
m k s m s k m m s k m k sS U U U U U U r U U r U U r= ∧ + ∧ + − ∧ + − ∧ + − ∧ . (34c) 

As seen from expressions (34), the quadratic terms are identically eliminated when substituted into 
expression (31). The remaining ones, written in terms of member strains in accordance with (15), represent 
the strain compatibility equation for the considered externally statically indeterminate truss. 

By taking, for example, the lengths of members 1, 2, 3 equal to ܽ, and correspondingly the lengths of 
members 4, 5 equal to 2a , it is possible to obtain the following strain compatibility equation using (31): 

( )1 2 3 4 52 2 0a  ε + ε + ε − ε + ε =  . (35) 



Lalin V.V., Ibragimov T.R. Structural Mechanics of Engineering Constructions and Buildings. 2024;20(5):404–417 
 

 

416 ANALYTICAL AND NUMERICAL METHODS OF ANALYSIS OF STRUCTURES 

 

4. Conclusion 
 
1. The main problem in the algorithmization of the force method is finding the general solution to the 

homogeneous equilibrium equations of the structure T 0A N = . The method of obtaining the strain compatibility 
equations completes the construction of the algorithm for solving the problems of statically indeterminate 
trusses using the force method. 

2. The proposed formulation of the force method allows to not have to select the “primary system” and 
the unknowns of the force method. The proposed method automatically “selects” the vector of unknowns ܨ. 
The numbering of statically indeterminate loops unambiguously determines the structure of the flexibility 
matrix of the system. 

3. The advantage of the proposed method is that the equilibrium equations of the structure are not required. 
There is no need to store in the computer memory and use the matrix of nodal equilibrium equations of the 

structure TA . 
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