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Abstract. The study focuses on developing an algorithm for calculating statically indeterminate trusses using the force
method. The main challenge in algorithmizing the force method lies in obtaining the solution to the homogeneous equilibrium
equations, which is complicated by the ambiguity in selecting the primary system. The idea behind the presented algorithm is
based on using the transposed compatibility matrix of the structure as the general solution to the homogeneous equilibrium
equations. The governing system of equations eliminates the need to select redundant unknowns, as the column of unknowns
is generated automatically. The method for obtaining compatibility equations in statically indeterminate truss cells is
presented through a direct examination of changes in the area of truss loops. The compatibility matrix of the system is
composed of rows of compatibility equations for independent statically indeterminate truss loops. Compatibility equations
for the deformations of triangular and rectangular truss cells are derived, and a method for obtaining compatibility equations
for externally statically indeterminate trusses is described. Using the proposed algorithm, the flexibility matrix of a truss
with parallel chords is presented. The algorithm removes the ambiguity in selecting the primary system, and the structure of
the flexibility matrix is determined by the numbering of the statically indeterminate loops of the system. There is no need to
use the equilibrium equations when constructing the flexibility matrix of the structure.
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AuHoTtauusi. Pabotas mocBsiiieHa OCTPOCHHUIO aJIropUTMa pacu€ra CTaTUUECKH HEOINPENeIUMbIX ()epM METOJOM CHIL
OCHOBHO# TPYIHOCTBIO B aJITOPUTMH3ALNN METOJa CHJI SBJIACTCS MOCTPOCHHE OOIEro PelieHHs OTHOPOIHBIX YPaBHEHUH
paBHOBECHS, YTO OOBICHSIETCSI HEOJHO3HAYHOCTBIO BHIOOpa OCHOBHOW CHCTEMBI. Mjes m3naraeMoro ajiroputMa OCHOBaHa
Ha MCIIOJIb30BaHUN TPAHCIIOHUPOBAHHON MaTPHUIBI COBMECTHOCTH Ae(OPMALNN KOHCTPYKIIH B KQUECTBE OOIIET0 PEeIICHHS
OTHOPOIHBIX YpaBHEHUI paBHOBECHS Y3JI0B KOHCTPYKHWHU. [locTpoeHHAs cHCTeMa pa3pellaloniinX YpaBHEHHH ITO3BOIISET
OTKa3aThbCsa OT Bbl60pa JIMITHUX HCU3BCCTHBIX, CTOHGGH HEHU3BCCTHBIX (l)OpMI/lpyeTCH aBToMaTnyecku. M3noxen METO/ II0-
Jy4eHHs ypaBHEHHH COBMECTHOCTH Ae(OpMalfii S4eeK CTATUYECKH HEONpeNeIMMbIX (epM C MOMOIIBI0 PACCMOTPEHHS
M3MEHEeHHS TUIOMAIN KOHTYPOB sSYelkd. MaTpuila COBMECTHOCTH Ae(opMaIiii CHCTEMBI COCTABISETCA U3 CTPOK YpaBHE-
HUI COBMECTHOCTH JaedopMaluii He3aBHCUMBIX CTATHYCCKH HEONpEeNeTNMEIX stueek (pepmbl. [lonydeHsl ypaBHEHUS COB-
MECTHOCTH JAedopMaIiii TpeyroabHON U MPSAMOYTONBHON s9eek (hepM, M3I0KEH METOJ TIOCTPOCHUS YPaBHEHUI COBMECT-
HOCTH AedopMariii isi BHEITHE CTaTHIECKH HeonpenenuMbIx GepM. C UCTI0Np30BaHIEM H3II0KEHHOTO aJITOPUTMA IpHBe-
JIeHA MaTpHUIa MOJATIMBOCTH KOHCTPYKIMH (PEpMBI C MapalIeIbHBIME MOsICAMHU C KPECTOBOW peméTKoi. M310KeHHBIN
AJITOPUTM CHHMAeT HEOJHO3HAYHOCTh BBIOOpAa OCHOBHOW CHUCTEMBI, CTPYKTypa MATpHUIlbl MOJATIMBOCTH KOHCTPYKIMH
OHO3HAYHO OIpelessieTcss HyMepanueil CTaTHIeCKH HEeONpeAeTUMBIX KOHTYPOB CHUCTEMBI. J[JIs1 MOCTPOCHHUS MaTpHUIIBI
MOIATJINBOCTH KOHCTPYKITUH HET HEOOXOIUMOCTH HCIIOJIb30BAHUS YPABHCHUI PAaBHOBECHS Y3JIOB.

KiroueBbie ciioBa: ¢epma, odOliee pelieHre YpaBHEHHWH paBHOBECHS, YPaBHEHHsS COBMECTHOCTH Ae(OpMalliid, YCIOBHS
HEPa3pbIBHOCTH IUIOLIAIH, METO]] CHJI, MATPHLA ITOJATINBOCTH

3asBienne 0 KOHGUINKTE HHTEPECOB. ABTOPbI 3asBIISIFOT 00 OTCYTCTBUHM KOH(IMKTA HHTEPECOB.
Bxuaaa aBTopoB. HepasnenbHoe COaBTOPCTBO.

Jas uurupoBanus: Lalin V.V., Ibragimov T.R. Algorithm for calculating statically indeterminate trusses using the force
method // CtpoutenpHas MeXxaHUKa HH)KEHEPHBIX KOHCTPYKIMH 1 coopyskeHuit. 2024. T. 20. Ne 5. C. 404—417. http://doi.org/
10.22363/1815-5235-2024-20-5-404-417

1. Introduction

The duality of the displacement method and the force method in structural mechanics is well known,
and the application of the methods for “manual” analysis structures is approximately equally labor-intensive.
There are certain classes of problems where one or another method may be convenient, for example, in terms
of the number of unknowns, but the methods can be considered to be on the same footing.

However, the equality of the methods is lost when CAE packages are used to analyze structures. The
absolute majority of commercial software packages are based on the displacement method. The advantage
of the displacement method is the relative simplicity of its algorithmization, the matrix of governing equations
is unambiguously determined by the numbering of the structure nodes. At the same time, the stiffness
matrix has a band structure, is sparsely populated and, generally, is well-conditioned.

In contrast, the matrix of the governing equations of the force method can be formed in a non-unique
way. From the point of view of classical structural mechanics, this is explained by the non-uniqueness of the
choice of the primary system.
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In turn, the force method is important in optimization problems and exhibits efficiency in comparison
with the displacement method [1-3], nonlinear analysis of structures [4—6], analysis of prestressed
structures [7], and design of adaptive structures [8].

The known ways of algorithmization of the force method can be divided into three main groups:
algebraic, topological and mixed.

Algebraic methods are generally reduced to particular operations on the matrix of nodal equilibrium
equations. One of the first attempts to construct an algorithm for selecting redundant unknowns was the use
of the Gauss-Jordan method [9; 10]. Subsequently, LU decomposition methods [11-13], singular value
decomposition [14; 15] were proposed, as well as one of the methods for constructing the general solution
presented in [16]. The mixed algebraic-topological methods are discussed in papers [17-20].

The main disadvantage of the algebraic methods is the necessity of preliminary application of complex
operations on the matrix of equilibrium equations of the structure to form the matrix of governing equations
of the force method. This disadvantage prevents from constructing an efficient algorithm in terms of the
number of computational operations.

Topological methods are based on the use of the geometric properties of the structure, such as periodicity
and cyclicity. The methods proposed in [21-23] can be referred to topological methods. One of the varieties
of such methods is discussed in studies [24—26] devoted to the use of the fundamental basis of cycles of
a graph, which is equivalent for the considered structure. Algorithms that exploit the cyclic nature of the
structure have been proposed [27; 28]. The issue with the methods based on periodicity or cyclicity of the
structure is that they cannot be applied to problems with arbitrary geometry. The use of graph operations has
the same disadvantage as the algebraic methods.

The widely used integrated force method, first proposed in [29], can be highlighted. Currently, the
integrated force method has been generalized to plane and spatial problems of elasticity theory and nonlinear
problems [30-32]. The key idea of the method is to solve the joint system of equilibrium equations of the
structure and strain compatibility equations. However, the structure of the obtained matrix and the number
of unknowns do not indicate efficiency of the method in comparison with the displacement method.

Thus, no algorithm for the force method comparable in complexity to the displacement method has
been constructed so far.

This paper presents a method for the analysis of statically indeterminate trusses. The key idea is to use
the transposed strain compatibility matrix as the matrix of general solution of the homogeneous equilibrium
equations.

2. Method
2.1. Problem Statement of Force Method Algorithmization

The equations of structural mechanics of trusses can be written in the form of the following system of
equations:

A"N=P, (1a)
AU=g=¢"+¢°, (1b)
g = AN, (1c)

where A’ is the specified nodal equilibrium matrix; []T is the matrix transpose operation; N is the

column of axial forces in the truss members; P is the column of specified nodal loads; U is the column of
nodal displacements; € is the column of axial strains of the members; €° is the column of specified initial

e

strains of the members; e° is the column of elastic strains of the members; A=diag(l;/E4;) is the
flexibility coefficient matrix of the members of the system; /; is the length of the i-th member; E4; is the

axial stiffness of the i-th member.
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Equation (1a) represents the equilibrium equations of the system nodes, (1b) represents the geometric
equations relating displacements and deformations, and (1c) represents the constitutive equations relating
forces and deformations.

It is known that the general solution of a non-homogeneous system of equations is the sum of some
particular solution of this system and the general solution of the corresponding homogeneous system of
equations.

In statically indeterminate systems, the rank of matrix 4" is equal to the number of its rows and is
obviously less than the number of unknowns, and therefore, the system of the homogeneous equilibrium
equations has a nontrivial solution. The construction of the general solution is the main difficulty in the
algorithmization of the force method.

Suppose that the fundamental system of solutions of the homogeneous system is constructed. The columns
of the fundamental system are taken as the rows of some matrix B . By definition of the fundamental
system:

A"B" =0. )
Therefore, for an arbitrary column F the following is valid:
A"B"F=0. )

Thus, B'F is the general solution of the system of the homogenous equilibrium equations.
Considering an arbitrary particular solution N,, and (1a):

N=B"F+N,. “4)

By transposing (2), one obtains:

BA=0. (5)

Multiplying (1b) by B yields:

BAU = Be=B(e’ +¢°), (6)
and taking into account (5), the following is valid for any column U :

B(so+e‘?)=0. (7)

By substituting (3) into (1c), one obtains:

e°=AB"F+AN,,. (8)

Substituting (8) into (7) yields the governing system of equations of the force method:

BAB"F +Be” +BAN, =0. ©)

Similar to the method of displacements, BAB” is the flexibility matrix of the structure. The solution of

the problem is now reduced to the solution of system (9), the forces in the structural elements are
recalculated according to (4).
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Expression (7) has the physical meaning of the strain compatibility equations. From the algebraic point
of view, the transpose of compatibility matrix B produces the desired general solution of the homogeneous
equilibrium equations. This is the essence of the proposed method, as it will be shown later, the strain
compatibility equations can be constructed without using the nodal equilibrium matrix.

The physical meaning of the unknown column F in system (9) remains unknown. There is no need to
choose the primary system and “extra” unknowns, the vector of unknowns is formed “automatically”.

2.2. Construction of Strain Compatibility Equations

The idea behind the proposed method of constructing the strain compatibility equations is the
relationship between the strain of particular members constituting a loop and the change in area of this loop.
For illustration, a truss cell, which is statically indeterminate to the first degree, is shown in Figure 1, a.
Here, the members are numbered, arrows indicate their orientation, and letters i,k,m,s denote the nodes of
the structure. It should be noted that the numbering and orientation of the members do not affect the final
result.

The cell under consideration consists of three independent loops 1, 2, 3 denoted in Figure 1, . These
three loops together constitute the fourth one, shown in Figure 1, c.

a b c

Figure. 1. Truss diagram:
a — numbering of members and nodes; b — loops No. 1, 2, 3; ¢ — loop No. 4
Source:madeby V.V. Lalin, T.R. Ibragimov

The following relationship is valid for the areas of the considered loops:
S,=8,+85,+85;, (10)

where §; is the area of the j-th loop.
After deformation of the structure due to external loads, the areas of the loops will change, but for the
new values of the areas the same identity will be true due to the continuity of the structure:

S, =8, +8, +8;. (11)
By denoting the change in area of the j-th loop as AS; = S} — S, the following relationship is obtained:
AS, = AS, + AS, +AS,. (12)

Expression (12) has the meaning of the continuity condition of the loop area. If expressed through the
member strains, equation (12) will be the desired equation of strain compatibility of the considered truss cell.
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3. Results and Discussion

3.1. Strain Compatibility Equation of 6-member and 4-node Cell

Before obtaining the strain compatibility equations of the truss cell in Figure 1, an arbitrary member in
x,y plane and nodes i and k is considered. The member is oriented by unit vector " :[tx,ty]. Unit

T

vector n' = [nx,ny] , Which is normal to vector ¢, is introduced such that vectors ¢,n,z constitute a right-

hand vector system, similar to coordinate system x, y, z.

The nodal displacements of the member are written as U/ = [UI.X,U l.y], Ul = [U o U ky] Axial strains
of the member can now be expressed as:

e=t" (U, -U,). (13)

The following notation is introduced:

w=n" (U, -U,). (14)

Thus, ® represents the relative displacement along the normal to the axis of the member, that is, the
relative displacement of the nodes corresponding to the rotation of the member as a rigid body.

The following expression follows from equations (13), (14), which relates the member strains and the
displacements of its nodes:

U, -U, =¢t+on. (15)

A convenient tool for evaluating the change in area is the outer product operation [33]. The outer

T T :
product of two vectors a = [ax, ay] , b= [bx,by] lying in the x,y plane can be written as:

o (16)

y y

a/\bzdet[a,b]z

a

where det[... ] is the matrix determinant.
The main properties of the outer product [33]:

anb=-bna,

an(Ab)=A(aAb)=(ha)rb, LeR,

an(b+c)=anb+anc, (17)
anb=0al|lb, ab#0.

The outer product is the oriented area of the parallelogram
constructed with the multiplied vectors, that is, it is equal to the
area of the parallelogram with a positive or negative sign
depending on whether the axis triples x,y,z and a,b,z coincide
in orientation or not.

Now loop 4 is examined to determine its change in area.
Unit vectors for each member (Figure 2) are introduced.

Let r,n.,r, be the position vectors of the nodes of loop

Figure. 2. Loop No. 4 i,k,m having an arbitrary origin. By using outer product, the

S ource: made by V.V. Lalin, T.R. Ibragimov change in area may be written as:
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2AS, :54_S"‘ :(rk—r,)/\(r —n)—(rk +U, —r.—Ul-)/\(rm +U,, —rl-—Ul-). (18)

1 m 1 1

By expanding the brackets and grouping the terms, the following is obtained:
20S, =U; AU +U, AU, +U,, AU +(U,, ~U ) A1 + (U, =U;) A1, +(U; =U,, ) AT (19)

It should be noted that the second group of terms consists of the products of the difference between the
displacements of the nodes and the position vector of the opposite node. The strains of each of the three
members of the loops are expressed according to (15):

Uy -U; =gt + oymy;
U, —Up =&t +yny; (20)

Thus, expression (19) will include the products of the member strains (and their rotation as a rigid
body) and the position vectors of the opposite nodes. According to the properties of the outer product,
the rotation component can be eliminated by requiring the position vector and vector n normal to the
member to be parallel. For any triangular loop this is possible if the orthocenter of the triangle (point O in
Figure 2) is taken as the origin of the position vector. By rewriting (19), leaving the non-zero terms, one
obtains:

2AS, =U, AU, +U, AU, +U, AU, +&it; Ar¥" w1, Ar¥" + ety Ar™, 1)

where the upper index ikm denotes that the origin of the position vector is the orthocenter of triangle ikm .
Similarly, the changes in area of loops 1, 2, 3 are determined:

2AS, =U, AU, +U, AU, +U, AU, +e,t; Ar —g b, nrt™ +ests nr™; (22a)
2AS, =U, AU, +U, AU, +U, AU, +¢,4t, /\rssmk —€5ts /\r,‘;mk — €4l A rksmk ; (22b)
208, =U, AU, +U, AU, +U; AU, +&5t4 /\rssmi + &4ty /\r,f;mi + €4l A}’,-‘Ym". (22¢)

Substituting now (21)—(22) into (12), it can be seen that the quadratic displacement terms are
identically eliminated. The obtained expression will be the strain compatibility equation for a statically
indeterminate to the first degree truss cell:

§hH A rn’;]”” +E,0, A r,.ikm +&045 A r,fkm =

_ ski ski ski
=g AT, —E AT HESI AT+

23
+e,t, AT —ests AT gt AT+ 23)
ety AP ety AT et AT
Expression (23) is valid for any nondegenerate cell consisting of 6 members connected in a similar

way to the considered case. Thus, for the cell shown in Figure 3, the outer product for the terms of the

second loop will be obtained with a negative sign and expression (12) will be reduced to the following
form:

ASikm + ASkxm = ASiks + ASism . (24)
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m Y
N
3 6 2
N
4 5
i - Koy
k ! 7
a
Figure 3. Topologically similar statically indeterminate cell Figure 4. Equilateral triangle truss panel
Source: made by V.V. Lalin, T.R. Ibragimov Source: made by V.V. Lalin, T.R. Ibragimov

Strain compatibility matrix B can now be constructed from the rows of the strain compatibility equations

for each statically indeterminate elementary cell. Thus, structure flexibility matrix L =BAB’ is uniquely
determined by the numbering of statically indeterminate loops of the system. At the same time, it is not

necessary to use matrix A’ of nodal equilibrium equations to construct the structure flexibility matrix.

The algorithm of analysis using the force method comes down to the construction of strain compatibility
equations for independent statically indeterminate cells in order to form the strain compatibility matrix of
the system, construct of the structure flexibility matrix and solve the governing system.

Figure 4 demonstrates a structure in the form of an equilateral triangle with base a and node s in the
center of mass of triangle ikm . Construction of the strain compatibility equations for this system is presented

below.
Unit vectors ¢, for the members are expressed as:

tzl,t:l_l,t:—ll,
‘ M ’ 2{6} ’ iﬁ}
IR ER I | BN I

The position vectors originating from the orthocenter and pointing to the nodes of loop 4:

I/}ikm :—al 1 , r/jkm =al -1 , r’;km =a 0 )
2|\3/3 2(\3/3 373

As a result of calculating the outer products, the following is obtained:
E AT, —Siet AT =€ ii-:t AT —Si

1°1 m 1\/§522 i 2\/5333 k 3\/§'
Thus, the left-hand side of expression (12):

a
— (&, +¢&, +&).

V3

Similar procedure is applied to loops 1, 2, 3 to obtain:

1
loop ks : a(e1 +&5——=¢ |,
NE
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1
loop kms : a[85+86——82 ,
3
loop ism : a(e +€ ! € j
: 4 6_T 3
3

By substituting the obtained expressions into (23), expanding the brackets and grouping the terms, the
strain compatibility equation is derived:

a|:81+82+83—\/§(E4+85+86):|=0. (25)

Figure 5. Rectangular truss panel
Source: made by V.V. Lalin,
T.R. Ibragimov

3.2. Cross Brace Truss

As mentioned earlier, expression (23) is suitable for any cell
with 6 members, however, there is an important degenerate case for
which equation (23) is not acceptable.

Consider the design shown in Figure 5. The requirement of
taking the orthocenter of the triangle as the origin of the position
vector makes the terms accounting for the strains of members 5 and 6
equal to zero, since the orthocenter of a right triangle is at the apex of
aright angle.

The strain compatibility equation can be obtained from the
following equality for the areas:

AS, +AS,,,, =AS,, +AS,,, +AS, . +AS

wsm

(26)

iom*

In this case, the following equalities must be used:

1

vu,-U,=U0,-U, ZE(U'" -Uy);

U[ _Uo :Uo _US :%(Ui_US)'

27

For the orientation of the members shown in Figure 5, the following unit vectors are used:

SESHESH

t_O t_l—a t_la
A I Y L O O R A

where ¢ =+a* +b°.

For the loop constructed with vertices i,k,s the orthocenter is point & , therefore

raH

and to the nearest quadratic terms:

412
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2AS; =&t AV HER AT, =Eya+ED.
Similarly, for loop ism :
2AS,,,, =€4a+€5b.

For the loop with vertices i, k, o:

bz—az 0 a 1 a 1
r,= S h=—— == ;
2b 1 2lalb 21—alb

1 1 a-c
2AS,, =gt AT, +§£5t5 A +586t6 AF, :_213 (85 +£6)—£1

2 2
b*—a

2b

Similarly, the change in area of the loop with vertices m,o,s,

b —d*

2b

a-c
2ASmos =E(85 +86)_83

For the loop with vertices i, 0, m:

b —al1 blb/a b|-b/a
r,= , === s by == ;
2a 0 21 1 2 1

1 1 .
2 2 2a

a’—b?
2a

wom

Similarly, for loop kos:

2 2
2AS/{09 22(85 +86)_82 - b .
- 2a 2a

After substitution into condition (26), the following strain compatibility equation is obtained after
simplifications:

a(e, +&)+b(e, +e,)—Va® +b° (g5 +g¢)=0. (28)

In the particular case of a square cell (a =5), the equation becomes:
a[el+82+83+84—\/§(85+86)]=0. (29)

A similar expression is given in [34], where it was obtained by analyzing the matrix of nodal
equilibrium equations of the structure.

Using the obtained expression (29), the formation of the structure flexibility matrix of the example
truss presented in Figure 6 is discussed below. The truss consists of # square cells, the axial stiffness of each
member is EA4. The members are numbered according to the scheme shown in Figure 6. The total number

of members in the truss is 1+ 5n, the total number of nodes is 2(n + 1) .

The diagonal matrix of the member flexibility coefficients:
A =édiag[l,l,l,l,ﬁ,ﬁ,l,...,1,\/5,\/5].
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3 8 A+4

\ .y
s| 1 4 9 k /f+5\

2 7 k+3

Figure 6. Rectangular truss
Source: made by V.V. Lalin, T.R. Ibragimov

The strain compatibility matrix of the system, according to (29), will have the following form (only the
first three rows are shown):

1111 =2 =2 0
B=al0 001 0 0 1 1 1 =2 =2 0
01 0 0 1 1 1 =2 =20

By multiplying out BABT, the following tridiagonal flexibility matrix of the system is obtained:

_4(1+ﬁ) 1
&3 1 4(1+J§) 1
EA

1 4(1+2)

(30)

Thus, the obtained flexibility matrix has the size of nxn. The displacement method stiffness matrix, in
turn, will have the dimension of 4(n+1).

3.3. Externally Statically Indeterminate Trusses

In this section, the problem of composing the strain compatibility equations for externally statically
indeterminate trusses is considered. These are trusses, the support reactions of which cannot be determined
from the equilibrium equations.

Figure 7, a shows a statically indeterminate to the first degree cell with two independent loops 1 and 2,
and the third loop denoted in Figure 7, b.

An obvious equality is true for the areas of the loops:

AS; = AS, +AS,. @31

In the case of no additional support, the cell would be statically determinate and the quadratic
displacement terms in equation (31) would not reduce.

The presence of supports leads to some constraints on the displacements of the nodes, as a result of
which the quadratic terms are reduced and the equality can be expressed through the member strains.
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m
a b

Figure 7. Externally statically indeterminate truss:
a— loops No. 1, 2; b — loop No. 3
Source: made by V.V. Lalin, T.R. Ibragimov

The changes in area of the loops taking into account that U, -U, =U, -U,+U, -U, :
2AS, =U, AU, +U, AU, +U, AU, +

+(U, U, ) A" + (U, U Ar™ +(U, U, ) Ar™; (32a)
2AS, =U; AU, +U, AU, +U, AU, +

+(U, =U, ) A" +(U,, —U ) A" +(U; =U, ) AT, (32b)
2AS, =U, AU, +U, AU, +U, AU, +

+(U, =U A" + (U, —U ) A +(U,, U, ) ar™. (32¢)

For the given cell, the displacements of nodes s, k are parallel, hence by the properties of the outer
product:

U, AU, =0. 33)

In turn, the displacement of node i is zero and the remaining non-zero terms are:

2A8,=U, AU, +(Uk —Um)/\r[mik +(Um —U,-)/\rk""k +(US —Uk)/\r,:lmk; (34a)
2A8, =U,, AU, +(U, =U, YA (U, U ) ArE" + (U, U ) AT (34b)
2AS, =U, AU, +U AU, +(U, U ) A" +(U,, ~U ) A +(U,, =U, ) Ar™. (34c)

As seen from expressions (34), the quadratic terms are identically eliminated when substituted into
expression (31). The remaining ones, written in terms of member strains in accordance with (15), represent
the strain compatibility equation for the considered externally statically indeterminate truss.

By taking, for example, the lengths of members 1, 2, 3 equal to a, and correspondingly the lengths of
members 4, 5 equal to ~/2a , it is possible to obtain the following strain compatibility equation using (31):

a[el+ez+2£3—\/§(e4+e5)]:0. (35)
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4. Conclusion

1. The main problem in the algorithmization of the force method is finding the general solution to the
homogeneous equilibrium equations of the structure 4" N = 0. The method of obtaining the strain compatibility
equations completes the construction of the algorithm for solving the problems of statically indeterminate
trusses using the force method.

2. The proposed formulation of the force method allows to not have to select the “primary system” and
the unknowns of the force method. The proposed method automatically “selects” the vector of unknowns F.
The numbering of statically indeterminate loops unambiguously determines the structure of the flexibility
matrix of the system.

3. The advantage of the proposed method is that the equilibrium equations of the structure are not required.
There is no need to store in the computer memory and use the matrix of nodal equilibrium equations of the

structure A4'.
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