Mixed FEM for Shells of Revolution Based on Flow Theory and its Modifications

Rumia Z. Kiseleva¹✉, Natalia A. Kirsanova², Anatoliy P. Nikolaev¹, Yuriy V. Klochkov¹, Vitaliy V. Ryabukha¹

¹ Volgograd State Agrarian University, Volgograd, Russia
² Financial University under the Government of the Russian Federation, Moscow, Russia

✉ rumia1970@yandex.ru

Article history
Received: September 21, 2023
Revised: December 3, 2023
Accepted: December 17, 2023

Conflicts of interest
The authors declare that there is no conflict of interest.

Abstract. For describing elastoplastic deformation, three versions of constitutive equations are used. The first version employs the governing equations of the flow theory. In the second version, elastic strain increments are defined the same way as in the flow theory, and the plastic strain increments are expressed in terms of stress increments using the condition of their proportionality to the components of the incremental stress deviator tensor. In the third version, the constitutive equations for a load step were obtained without using the hypothesis of separating strains into the elastic and plastic parts. To obtain them, the condition of proportionality of the components of the incremental strain deviator tensor to the components of the incremental stress deviator tensor was applied. The equations are implemented using a hybrid prismatic finite element with a triangular base. A sample calculation shows the advantage of the third version of the constitutive equations.

Keywords: shell of revolution, physical nonlinearity, prismatic finite element, mixed functional, implementation of mixed FEM

For citation
For the majority of deformable materials, Hook’s law is only valid at loading levels, at which the stresses do not exceed the yield stress of the material. Usually, plastic deformations emerge in stress concentration zones already at insignificant levels of loading. Hence, structural analysis with account of elastoplastic deformation zones is an important engineering problem.

Two elastoplastic deformation theories are most commonly used for solid bodies: flow plasticity theory and the theory of incremental elastoplastic deformation 1 [1–3].

Displacement-based finite element method (FEM) has been widely used for elastoplastic deformation analysis 2 [4–7]. This method was applied to thermoplastic and contact problems of continuum mechanics [8–12].
FEM was also effectively employed in finite strain cases of elastoplastic deformation processes [13–16]. Mixed finite element method has been extensively applied to elastoplastic deformation problems [17–21].

In this study, a prismatic finite element with triangular bases has been developed in mixed FEM formulation. Three versions of governing equations are used as constitutive relations. The first version uses the flow theory equations. The second version employs the governing equations obtained from the authors’ hypothesis, that the components of the incremental plastic strain tensor are proportional to the components of the combined stress deviator tensor.

The third version does not separate strains into the elastic and plastic parts. For determining the relationships between the strain increments and the stress increments, the condition of proportionality between the components of the incremental strain deviator tensor to the components of the incremental stress deviator tensor was used.

2. Methods

2.1. Shell Geometry

Arbitrary point \(M^0 \) of the shell, which is located at distance \(t \) from the middle surface, is defined by the following position vector:

\[
\vec{R}^0 = \vec{R}_0 + t\vec{a}^0, \tag{1}
\]

where \(\vec{R}_0 = x\vec{i} + r\sin \theta \vec{j} + r\cos \theta \vec{k} \) is the position vector of the corresponding point \(M_0 \) of the middle surface; \(r \) is the radius of curvature of the middle surface point; \(\vec{i}, \vec{j}, \vec{k} \) are the unit vectors of the Cartesian coordinate system; \(x, \theta \) are the axial and angular coordinates of point \(M_0 \);

\(\vec{a}^0 = \vec{a}_1^0 \times \vec{a}_1^0 \) is the normal line to the middle surface at point \(M_0 \); \(\vec{a}_1^0 \times \vec{a}_1^0 \) are the unit basis vectors at point \(M_0 \).

The basis vectors of arbitrary point \(M^0 \) are determined by differentiating position vector (1):

\[
\begin{align*}
\vec{g}_1^0 &= \vec{R}_{1t}^0; \\
\vec{g}_2^0 &= \vec{R}_{2t}^0; \\
\vec{g}_3^0 &= \vec{R}_{3t}^0 = \vec{a}^0,
\end{align*}
\tag{2}
\]

and by following [17], the matrix expressions of the derivatives of the basis vectors of an arbitrary point in the basis of this point are formed:

\[
\begin{align*}
\begin{bmatrix}
\vec{g}_{1,0}^- \\
\vec{g}_{2,0}^- \\
\vec{g}_{3,0}^-
\end{bmatrix} &= \begin{bmatrix} m \end{bmatrix} \begin{bmatrix} \vec{g}_1^0 \\
\vec{g}_2^0 \\
\vec{g}_3^0
\end{bmatrix}, &
\begin{bmatrix}
\vec{g}_{1,0}^+ \\
\vec{g}_{2,0}^+ \\
\vec{g}_{3,0}^+
\end{bmatrix} &= \begin{bmatrix} n \end{bmatrix} \begin{bmatrix} \vec{g}_1^0 \\
\vec{g}_2^0 \\
\vec{g}_3^0
\end{bmatrix}, &
\begin{bmatrix}
\vec{g}_{1,0}^{	ext{T}} \\
\vec{g}_{2,0}^{	ext{T}} \\
\vec{g}_{3,0}^{	ext{T}}
\end{bmatrix} &= \begin{bmatrix} l \end{bmatrix} \begin{bmatrix} \vec{g}_1^0 \\
\vec{g}_2^0 \\
\vec{g}_3^0
\end{bmatrix},
\end{align*}
\tag{3}
\]

where \(\begin{bmatrix}
\vec{g}_{1,0}^- \\
\vec{g}_{2,0}^- \\
\vec{g}_{3,0}^-
\end{bmatrix} \) are the row matrices of the derivatives of the basis vectors of \(M^0 \).

Under gradually applied load, the incremental displacement vector at a load step is represented by components in the basis of point \(M^0 \):

\[
\Delta \vec{V} = \Delta v^1 \vec{g}_1^0 + \Delta v^2 \vec{g}_2^0 + \Delta v^3 \vec{g}_3^0 = \begin{bmatrix} \Delta v^1 \\
\Delta v^2 \\
\Delta v^3
\end{bmatrix} \begin{bmatrix}
\vec{g}_{1,0}^- \\
\vec{g}_{2,0}^- \\
\vec{g}_{3,0}^-
\end{bmatrix}^{	ext{T}},
\tag{4}
\]

where \(\begin{bmatrix} \Delta v^1 \\
\Delta v^2 \\
\Delta v^3
\end{bmatrix}^{	ext{T}} \) is the row matrix of displacements of point \(M^0 \).
The derivatives of the displacement vector are also expressed in terms of the basis vectors of point M_0:

$$
\Delta \mathbf{V}_s = f_1^1 \mathbf{g}_1 + f_1^2 \mathbf{g}_2 + f_1^3 \mathbf{g}_3;
\Delta \mathbf{V}_{s\theta} = f_2^1 \mathbf{g}_1 + f_2^2 \mathbf{g}_2 + f_2^3 \mathbf{g}_3;
\Delta \mathbf{V}_{s\tau} = f_3^1 \mathbf{g}_1 + f_3^2 \mathbf{g}_2 + f_3^3 \mathbf{g}_3,
$$

where

$$f_1^i = \Delta v^i_{s_1} + \Delta v^i_{m_1} + \Delta v^i_{s_2} + \Delta v^i_{m_2} + \Delta v^i_{s_3}; \quad \cdots \quad f_3^i = \Delta v^i_{s_1} + \Delta v^i_{l_1} + \Delta v^i_{s_2} + \Delta v^i_{l_2} + \Delta v^i_{s_3};$$

m_{ij}, n_{ij}, l_{ij} are the elements of matrices $[m], [n]$ and $[l]$.

Under specified load, an arbitrary point of the shell will displace to position M, which is determined by position vector $\mathbf{R} = \mathbf{R}_0 + \Delta \mathbf{V}$.

The strain increments for a load step are governed by relations [3] in a geometrically linear definition

$$
\Delta \mathbf{e}_{ij} = \frac{1}{2} \left(\mathbf{g}_i^0 \cdot \Delta \mathbf{V}_{si} + \mathbf{g}_j^0 \cdot \Delta \mathbf{V}_{sj} \right).
$$

Considering (5), strains (7) can be expressed in matrix form as

$$
\begin{bmatrix}
\Delta \mathbf{e}
\end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} \Delta \mathbf{v} \end{bmatrix},
$$

where $\{\Delta \mathbf{e}\}^T = \{\Delta \mathbf{e}_{ss}, \Delta \mathbf{e}_{00}, \Delta \mathbf{e}_{ss}, 2\Delta \mathbf{e}_{s0}, 2\Delta \mathbf{e}_{ss}, 2\Delta \mathbf{e}_{0t}\}$ is the row matrix of strain increments; $[L]$ is the matrix of differentiation operators.

2.2. Relations of Flow Plasticity Theory

Full strain increments $\Delta \mathbf{e}_{ij}$ are combinations of elastic strains $\Delta \mathbf{e}_{ij}^e$ and plastic strains $\Delta \mathbf{e}_{ij}^p$:

$$
\Delta \mathbf{e}_{ij} = \Delta \mathbf{e}_{ij}^e + \Delta \mathbf{e}_{ij}^p.
$$

The relationships between the elastic strain increments and the stress increments are defined by expressions

$$
\Delta \mathbf{e}_{ij}^e = \frac{1}{E} \left[1 - \nu \Delta \sigma_{ij} - \nu \Delta \sigma_c \delta_{ij} \right],
$$

where E is the material Young’s modulus; ν is the Poisson’s ratio; $\Delta \sigma_c$ is the mean value of the normal stress increments; δ_{ij} is the Kronecker delta.

In the flow theory, the plastic strain increments are defined by relations

\[\Delta \varepsilon^p_{ij} = k \left(\sigma_{ij} - \sigma_c \delta_{ij} \right), \] (11)

where \(k \) is the coefficient of proportionality, which is defined according to expression

\[k = \frac{3}{2 \sigma_i} \left(\frac{1}{E_k} - \frac{1}{E_n} \right) \Delta \sigma_i. \] (12)

Here: \(\sigma_i \) is the stress intensity; \(E_n \) is the modulus of the initial segment of the stress-strain intensity diagram; \(E_k \) is the tangent modulus at the considered point on the stress-strain intensity diagram; \(\Delta \sigma_i = \frac{\partial \sigma_i}{\partial \sigma_{mn}} \Delta \sigma_{mn} \) is the stress intensity increment.

By combining (10) and (11) and taking into account (12), the matrix expression for the constitutive equations of the flow theory is formed:

\[\{ \Delta \varepsilon \} = \left[C^{11} \right] \{ \Delta \sigma \}. \] (13)

The second version of the post-yield constitutive equations uses the hypothesis of proportionality between the components of the incremental plastic strain tensor and the components of the incremental stress deviator tensor:

\[\Delta \varepsilon_{ij}^p = \psi_1 \left(\Delta \sigma_{ij} - \Delta \sigma_c \delta_{ij} \right). \] (14)

Proportionality coefficient \(\psi_1 \) is defined according to expression

\[\psi_1 = \frac{3}{2} \left(\frac{1}{E_k} - \frac{1}{E_n} \right). \] (15)

By combining (10) and (14), the matrix expression for the second version of constitutive relations is obtained:

\[\{ \Delta \varepsilon \} = \left[C^{11} \right] \{ \Delta \sigma \}. \] (16)

The third version of constitutive relations is based on the hypothesis of proportionality between the incremental strain deviator tensor and the incremental stress deviator tensor components:

\[\Delta \varepsilon_{ij} - \delta_{ij} \Delta \varepsilon_c = \psi_2 \left(\Delta \sigma_{ij} - \delta_{ij} \Delta \sigma_c \right), \] (17)

where \(\psi_2 = \frac{3}{2} \frac{\Delta \varepsilon_{ij}}{\Delta \sigma_i} = \frac{3}{2} \frac{1}{E_k} \), and the volumetric strain increment is determined as in the case of elastic deformation, \(\Delta \varepsilon_c = \Delta \sigma_c \left(\frac{1 - 2\nu}{E} \right). \)

Based on (17), the third version of the constitutive relations is formed:

\[\{ \Delta \varepsilon \} = \left[C^{11} \right] \{ \Delta \sigma \}. \] (18)

2.3. Finite Element Stiffness Matrix

A prismatic finite element with triangular bases is considered. The nodal unknowns are the displacement and stress increments. Coordinates \(s, \theta, t \) of an arbitrary point of the shell are defined in terms of nodal coordinates using linear functions \(\xi, \eta, \zeta \) with ranges \(0 \leq \xi, \eta \leq 1; -1 \leq \zeta \leq 1 \),

\[
\lambda = \{f(\xi, \eta, \zeta)\}^T \{\lambda_y\} \quad \text{for} \quad b \times 6
\]

where \(\{\lambda_y\} = \{\lambda^i, \lambda^j, \lambda^k, \lambda^m, \lambda^n, \lambda^p\} \) is the row of nodal coordinate \(s, \theta \) or \(t \);

\[
\{f(\xi, \eta, \zeta)\}^T = \left\{\left(1 - \xi - \eta\right) \frac{1 - \xi - \zeta}{2}; \xi \frac{1 - \zeta}{2}; \eta \frac{1 - \zeta}{2}; \left(1 - \xi - \eta\right) \frac{1 + \zeta}{2}; \xi \frac{1 + \zeta}{2}; \eta \frac{1 + \zeta}{2}\right\}
\]

By using linear approximating functions (19), the interpolation expressions for \(\Delta v \) components and the components of the incremental stress tensor are formed:

\[
\{\Delta v\} = [A] \{\Delta v_y\} \quad \{\Delta \sigma\} = [S] \{\Delta \sigma_y\} \quad \text{for} \quad b \times 6 \quad \text{and} \quad 18 \times 6d
\]

where \(\{\Delta v_y\} = \{\Delta v^1, \Delta v^2, \Delta v^3, \Delta v^4, \Delta v^5, \Delta v^6\} \) is the row-matrix of the nodal displacement increments;

\[
\{\Delta \sigma\} = \{\Delta \sigma_{ss}, \Delta \sigma_{st}, \Delta \sigma_{xt}, \Delta \sigma_{tt}, \Delta \sigma_{tt}, \Delta \sigma_{tt}\} \quad \text{is the row of stress increments at a point;}
\]

\[
\{\Delta \sigma_y\} = \{\Delta \sigma_{sxy}, \Delta \sigma_{sxy}, \Delta \sigma_{sxy}, \Delta \sigma_{sxy}, \Delta \sigma_{sxy}, \Delta \sigma_{sxy}\} \quad \text{is the row of stress increments at the nodes of the finite element.}
\]

Considering (20), strain increments (8) can be represented in matrix form:

\[
\{\Delta \varepsilon\} = [L] \{\Delta v\} = [L] [A] \{\Delta v_y\} = [B] \{\Delta v_y\} \quad \text{for} \quad b \times 6 \quad 18 \times 6d \quad 18 \times 6d
\]

The nonlinear mixed functional for a load step, obtained in [17], is expressed as

\[
\Phi \equiv \int_{\gamma} \{\Delta \sigma\}^T [L] \{\Delta v\} dV - \frac{1}{2} \int_{\gamma} \{\Delta \sigma\}^T [C_{\mu}] \{\Delta \sigma\} dV - \frac{1}{2} \int_{s} \{\Delta q\}^T \{q\} dS - \int_{s} \{\Delta \sigma\}^T \{\Delta \varepsilon\} dV \quad (\mu = 1, 2, 3).
\]

Taking into account matrix relations (18) and (21), functional (22) for the prismatic finite element becomes

\[
\Phi \equiv \int_{\gamma} \{\Delta \sigma\}^T [L] \{\Delta v\} dV - \frac{1}{2} \int_{\gamma} \{\Delta \sigma\}^T [C_{\mu}] \{\Delta \sigma\} dV - \int_{s} \{\Delta q\}^T \{q\} dS - \int_{s} \{\sigma\}^T \{\Delta \varepsilon\} dV \quad (\mu = 1, 2, 3).
\]
\[
\Phi \equiv \left\{ \Delta \sigma_y \right\}^T \int \left[S \right]^T \left[B \right] dV \left\{ \Delta \sigma_y \right\} - \frac{1}{2} \left\{ \Delta \sigma_y \right\}^T \int \left[S \right]^T \left[C^H \right][S] dV \left\{ \Delta \sigma_y \right\} - \\
- \frac{1}{2} \left\{ \Delta \sigma_y \right\}^T \int \left[A \right]^T \left\{ \Delta q \right\} dS - \left\{ \Delta \sigma_y \right\}^T \int \left[B \right]^T \left\{ \sigma \right\} dV.
\]

By varying functional (23) with respect to nodal unknowns \(\left\{ \Delta \sigma_y \right\}^T \) and \(\left\{ \Delta \sigma_y \right\}^T \), the following systems of equations are obtained:

\[
\frac{\partial \Phi}{\partial \left\{ \Delta \sigma_y \right\}^T} = \left[Q \right] \left\{ \Delta \sigma_y \right\}^T \left[H \right] \left\{ \Delta \sigma_y \right\} = 0; \quad \frac{\partial \Phi}{\partial \left\{ \Delta \sigma_y \right\}^T} = \left[Q \right]^T \left\{ \Delta \sigma \right\} - \left\{ \Delta \sigma_y \right\} - \left\{ R \right\} = 0,
\]

where \([Q] = \int \left[S \right]^T \left[B \right] dV; \quad [H] = \int \left[S \right]^T \left[C^H \right][S] dV; \quad \left\{ \Delta \sigma \right\} = \int \left[A \right]^T \left\{ \Delta q \right\} dS; \]

\[\left\{ R \right\} = \int \left[A \right]^T \left\{ \Delta q \right\} dS - \int \left[B \right]^T \left\{ \sigma \right\} dV \] is the Raphson residual.

Systems (24) can be combined into one

\[
[K] \left\{ Z_y \right\} = \left\{ F_y \right\}
\]

where \([K] = \left[-\frac{[H]}{\Delta \sigma_y} \right] \) — is the matrix of the stress-strain state of the hybrid finite element at a load

step; \[\left\{ Z_y \right\}^T = \left\{ \Delta \sigma_y \right\}^T \left\{ \Delta \sigma_y \right\}^T \] — is the vector of nodal unknowns; \[\left\{ F_y \right\} = \left\{ \left(0 \right)^T \right\} \left\{ \Delta \sigma_y \right\} + \left\{ R \right\}
\]

is the vector of nodal loads with residuals.

3.1. Sample Calculation 1

The shell of revolution depicted in Figure 1 with the middle surface in the shape of a truncated ellipsoid was analyzed. The following input values were specified: \(a = 0.21 \text{ m}; \quad b = 0.15 \text{ m}; \quad h = 0.01 \text{ m}; \quad l_k = 0.2 \text{ m}; \quad E = 2 \times 10^5 \text{ MPa}; \quad \nu = 0.3 \). The height of truncation of the elliptical shell is

\[
z_\Delta = b \cdot \sqrt{1 - \frac{l_k^2}{a^2}} = 0.15 \cdot \sqrt{1 - \frac{0.20^2}{0.21^2}} = 0.0457 \text{ m.}
\]

The stress-strain curve for the shell material was assumed to be in the form of Figure 2, where \(\sigma_y = 200 \text{ MPa} \) is the yield stress of the material; \(\varepsilon_y = 0.001 \) is the yield strain; \(\varepsilon_h = 0.02 \) is the final strain; \(\sigma_h = 400 \text{ MPa} \) is the final stress.
The stress-strain intensity curve was constructed using formulas:\(^6\)

\[
\sigma_i = \frac{1}{\sqrt{2}} \left[\left(\sigma_{11} - \sigma_{22} \right)^2 + \left(\sigma_{22} - \sigma_{33} \right)^2 + \left(\sigma_{33} - \sigma_{11} \right)^2 \right] = \frac{1}{\sqrt{2}} \left[\sigma^2 + 0 + \sigma^2 \right] = \sigma;
\]

\[
\varepsilon_i = \frac{\sqrt{2}}{3} \left[\left(\varepsilon_{11} - \varepsilon_{22} \right)^2 + \left(\varepsilon_{22} - \varepsilon_{33} \right)^2 + \left(\varepsilon_{33} - \varepsilon_{11} \right)^2 \right] = \frac{\sqrt{2}}{3} \left[\left(\varepsilon + \varepsilon \right)^2 + 0 + (-\varepsilon - \varepsilon)^2 \right] = \frac{2(1+\nu)}{3} \varepsilon.
\]

Values of the parameters of the stress-strain intensity curve:

\(\sigma_{iT} = \sigma_T = 200 \text{ MPa} \) is the stress intensity at yield point;

\(\varepsilon_{iT} = \frac{2}{3}(1+\nu)\varepsilon_T = \frac{2}{3}(1+0.3) \cdot 0.001 = 0.866667 \times 10^{-3} \) is the strain intensity at yield point;

\(\varepsilon_{ik} = \frac{2}{3}(1+\nu)\varepsilon_k = \frac{2}{3}(1+0.3) \cdot 0.01 = 0.866667 \times 10^{-2} \) is the final strain intensity;

\(\sigma_{ik} = \sigma_k = 300 \text{ MPa} \) is the final stress intensity.

The stress-strain intensity curve is assumed to be defined by function \(\sigma_i = f(\varepsilon_i) \) in the form of a parabola
\[
\sigma_i = a\varepsilon_i^2 + b\varepsilon_i + c \quad \text{(when } \varepsilon_i > \varepsilon_{IT} \text{)},
\]
where \(a = -6612835.5282 \text{ MPa}; \ b = 242231.47902 \text{ MPa}; \ c = 1795.030258 \text{ MPa}. \)

The presented shell of revolution was analyzed for the case of elastic deformation \((q = 18.0 \text{ MPa})\). The normal stress values at the fixed support are presented in Table 1, where the first column contains the number of discretization nodes of the shell along its axis \((NM)\) and along its thickness \((NT)\).

The other columns contain normal stresses of the internal fibers along the axis \((\sigma_{11}^{int})\) and circumference \((\sigma_{00}^{int})\). For the external fibers, these variables are denoted as \((\sigma_{11}^{ext})\) and \((\sigma_{00}^{ext})\) respectively.

<table>
<thead>
<tr>
<th>(NM \times NT)</th>
<th>(\sigma_{11}^{int}, \text{ MPa})</th>
<th>(\sigma_{00}^{int}, \text{ MPa})</th>
<th>(\sigma_{11}^{ext}, \text{ MPa})</th>
<th>(\sigma_{00}^{ext}, \text{ MPa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>20×3</td>
<td>116.484</td>
<td>210.103</td>
<td>117.640</td>
<td>203.671</td>
</tr>
<tr>
<td>40×5</td>
<td>116.324</td>
<td>209.843</td>
<td>118.267</td>
<td>203.857</td>
</tr>
<tr>
<td>30×7</td>
<td>116.234</td>
<td>209.766</td>
<td>118.396</td>
<td>203.834</td>
</tr>
</tbody>
</table>

The results presented in Table 1 demonstrate convergence of the computational process with respect to normal stresses of the shell at the fixed support.

3.2. Sample Calculation 2

The analysis of the shell from the previous section was performed under internal pressure \(q = 27.65 \text{ MPa}\). The specified load value was achieved in 16 steps and in 32 steps, and the results of the analysis using the three versions of constitutive equations were found to be virtually identical.

The values of meridional stresses \(\sigma_{ss}\) and circumferential stresses \(\sigma_{00}\) after 32 load steps are presented in Table 2. The stress values were calculated along the shell thickness \(h\) in the left section using the third version of the constitutive equations.

<table>
<thead>
<tr>
<th>(\sigma_{ss}, \text{ MPa})</th>
<th>163.8</th>
<th>170.7</th>
<th>175.4</th>
<th>181.8</th>
<th>186.9</th>
<th>193.2</th>
<th>205.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{00}, \text{ MPa})</td>
<td>323.2</td>
<td>318.9</td>
<td>314.4</td>
<td>313.1</td>
<td>309.0</td>
<td>306.9</td>
<td>302.8</td>
</tr>
<tr>
<td>(h, \text{ m})</td>
<td>0</td>
<td>0.00166</td>
<td>0.0033</td>
<td>0.005</td>
<td>0.0066</td>
<td>0.00833</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The of results from Table 2 are used to plot the distributions of meridional stresses (Figure 4) and circumferential stresses (Figure 5).

In order to control the accuracy of computation of meridional stresses, the check of \(\sum x = 0\) is performed. The check gives an acceptable discrepancy in the values of the resultant external and internal forces:

\[
\delta = \frac{Q_{\text{ext}} - Q_{\text{int}}}{Q_{\text{ext}}} \times 100\% = 2.4\%,
\]

where \(Q_{\text{ext}}\) is the resultant external force; \(Q_{\text{int}}\) is the resultant internal force.
As seen from Figure 5, the circumferential stresses exceed the elastic limit significantly. Table 3 provides the values of meridional and circumferential stresses in the external fibers along the meridian arc length.

Table 3

<table>
<thead>
<tr>
<th>Stress</th>
<th>Meridian arc length S, m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td>σ_{ss}, MPa</td>
<td>164.2</td>
</tr>
<tr>
<td>$\sigma_{\theta\theta}$, MPa</td>
<td>302.9</td>
</tr>
</tbody>
</table>

The results from Table 3 were used to plot the distributions of meridional stresses σ_{ss} and circumferential stresses $\sigma_{\theta\theta}$ (Figure 6).
The values of the meridional stresses in the end section are almost zero, which complies with the loading condition. The circumferential stresses vary insignificantly along the meridian.

The analysis of the results in Tables 1–3 indicates correctness of the developed algorithm and shows adequate convergence of the computational process.

4. Conclusion

The 3D stress-strain state of a shell is studied without using the straight-normal hypothesis for elastoplastic deformation.

1. The constitutive relations beyond the elastic limit are implemented in three versions.

The first version uses the relationships of the flow theory.

The second version employs the governing equations, where the authors’ hypothesis is used for determining the plastic strain increments. The hypothesis assumes that the components of the incremental plastic strain tensor are proportional to the components of the incremental stress deviator tensor.

The third version of equations is based on the hypothesis of proportionality between the components of the incremental strain deviator tensor and the components of the incremental stress deviator tensor without separating the strains into elastic and plastic.

2. The analysis of the shell is performed using mixed FEM. For this purpose, the authors developed a 6-node solid prismatic finite element with triangular bases. The nodal unknowns are the displacement vector components and the nodal stress tensor components. The target variables are approximated by the nodal unknowns using bilinear shape functions.

3. The presented study shows that all three versions of the governing equations for plastic deformation produce identical results. The analysis of the constitutive equations shows that the most physically reasonable version is the third one. This version does not separate the strain increments into elastic and plastic parts, and is based on the hypothesis of proportionality between the components of the incremental strain deviator tensor to the components of the incremental stress deviator tensor.

The proposed governing equations, without the strain separation, correspond to the physical meaning of the process of deformation and have great potential for analyzing reservoirs, submersibles and other engineering structures containing shells of revolution.

References

Список литературы

2. Петров В.В. Нелинейная инкрементальная строительная механика. М.: Инфра — Инженерия, 2014. 480 с. EDN: SFTTV

5. Голованов А.И., Тюленева О.Н., Шишкиутов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. М.: Физматлит, 2006. 391 с. EDN: QPRXV

15. Голованов А.И. Моделирование больших упругопластических деформаций оболочек, теоретические основы конечно-элементных моделей // Проблемы прочности и пластичности. 2010. № 72. С. 5–17. EDN: NCVHZV

