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AJITOPUTM pacyeTa 3a1a4¥ 0JJHOCTOPOHHEI0 KOHTAKTA C TPEHHEM
C HApPaCTAIIUM NAapaMeTPOM BHeEIIHell HATPY3KHU

AH. Honos "=, A 1. JIoBuos

TuxooKeaHCKHI TOCYAapCTBEHHBIN YHUBEPCUTET, Xabaposck, Poccutickas ®edepayus
B SanyaPov@mail.ru

Hcropust cratbu AnHoTanus. [IpeameToM nccienoBaHus SBISETCS KOHTAKTHOE B3auUMOJEH-
cTBHE Ae(POPMUPYEMBIX BIIEMEHTOB CTPOUTEIbHBIX KOHCTpyKuuil. ns perue-
HUS 3aJ1a9¥ MOJEIMPOBAHUS OJHOCTOPOHHETO B3aMMOJIEHCTBHUS C YIETOM Tpe-
HUS B 30HE KOHTAKTa Yalle BCET0 MCIOJIb3yIOTCS BapHallMOHHbIE MOCTAHOBKHU.
IIpennaraercst anpTepHaTHBA MOMYJSIPHBIM ITOCTAHOBKAM TUCKPETH30BAaHHBIX

Iocrynuna B penakuuto: 12 urons 2023 r.
Jlopaborana: 27 aBrycra 2023 r.
IMpunsra k myonaukamuu: 15 centadps 2023 r.

3aga4 u I/ITCpa]_Il/IOHHbIM MeTOo4aM HUX pemex—ma. 33.[[3.‘{3 KOHTAaKTa C TpCHI/ICM
3asiBiieHue 0 KOH(JIUKTE HHTEPECOB pacimpsieTcst B BHJE JIMHEHHOM 3a1aud JONOJHHUTEIbHOCTH. J{s perieHus
JIMHEWHOW 3a/a4 JTOMOJHUTENBHOCTH MpUMeHseTcs MeTo JIeMke ¢ BBeACHH-
€M HapacTalollero rnapaMerpa BHEIIHEro HarpyxeHus. B mpeanaraemom noj-
XOJIe peIlaeTcsl BRIPOXKICHHAS MaTpPHUIA 32 KOHEYHOE YHUCIIO IIAaroB, MPHU 3TOM
pa3MEepHOCTh 3aJa4ll OrpaHHWYeHa 00JacThi0 KOHTakTa. [y peumieHus 3anadu
(dbopmupyertcs HauanbHas Tabiuia Meroaa JIeMke ¢ UCIOJIb30BAHHEM KOHTAKT-

ABTOpBI 3asBIAIOT 00 OTCYTCTBUM KOH(IUKTA
HHTEPECOB.

HOW MaTpHIIbl )KECTKOCTH M KOHTAaKTHOTO IPy30BOr0 BeKTopa. B kauecTBe He-
W3BECTHBIX B 3ajJjaue€ BBICTYIAIOT B3aMMHBIC NEPEMELICHUS U yCHUJIMS B3aUMO-
HepaszgenbHoe cOaBTOPCTBO. JEHCTBUS KOHTAKTUPYIOIIUX Map To4ek, aedhopmupyembix tei. [Ipeanaraemprit
IIOJIXOJ] TIO3BOJISIET OLICHUTh CMEHY pabOuYuX CXeM 10 Mepe pocTa mapamerpa
BHEIIHEro Bo3/eHcTBHs. [loka3aHbl OCOOCHHOCTH MpeajaraeMoi MOCTaAHOBKH
3aJla4ud, pPacCMOTPEHbl KPUTEPUU OCTAHOBKHM WIArOBOTO IPOIECCa PELICHUs
TaKOBBIX 3a1ad4. [IpuBeneHbl MOAENbHBIE MPUMEPHI AN TPeIaraeMoro airo-
pUTMa. AJIrOpUTM IOKa3al CBOIO 3((GEKTUBHOCTh B IPUMEHEHUH, B TOM YHCIIE
1 Ha CIIOXHBIX MOAEJBHBIX 3a/1auaX. JlaHbl peKOMEHIALUH 110 UCIIOIb30BAHHIO
IIpeaaraeMoro MoAxXoaa.

Bkuiag aBTopoB

KiroueBble cji0Ba: CTPOUTEIbHBIE KOHCTPYKIMU, KOHCTPYKTHBHAsI HEJIMHEH-
HOCTb, OJHOCTOPOHHME CBS3H, JIMHEHHAs 3a/a4a JOMOJHHUTEIBHOCTH, YUCIIECH-
HBIE MOJIENIH, METOJ] KOHEYHBIX 3JIEMEHTOB, HAPACTAIOLIAsA HATPy3Ka

I[JISI HUTUPOBAHUSA

Popov A.N., Lovtsov A.D. Algorithm for calculating the problem of unilateral frictional contact with an increscent external load
parameter // CTpouTenbHas MEXaHWKa WH)KCHEPHBIX KOHCTPYKIMHA U coopyxkenuit. 2023. T. 19. Ne 5. C. 491-501. http://doi.org/
10.22363/1815-5235-2023-19-5-491-501

1. Introduction

One of the important tasks of the strength calculation of building structures is the task of determining the
parameters of the stress-strain state (SSS) while changing the parameters of external loading [1]. The object of
this study is the contact interaction of deformable building structures under increscent external load.

Constructively nonlinear problems have been popular since 1970s in works of Kravchuk, Bathe, Kikuchi,
Glowinski [2—6]. Klarbring, Hlavacek and Cottle considered variational formulations [7—10]. A step-by-step
algorithm is used in the most popular software systems in case of force incrimination problems for non-linear
calculation of building structures. According to this algorithm the loading process is divided by the user into
several stages (the method of successive loadings). Iterative methods are used at each stage of loading to
determine the increments of the structure’s SSS parameters. It is necessary to solve the problem of contact
interaction in these problems at each stage. Such tasks have been popular since the 1980s [11-15] and have
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maintained their popularity until the present [16-20]. These problems are stated in the form of variational
inequalities [21-24], and the following numerical methods were used to solve them: Lagrange multipliers [25—
27], penalty functions [28; 29] and their combinations [30-32]. And other methods using contact finite elements
[32-33]; quadratic programming approach [34-36]; finite element methods (Spigot-algorithms) [37-39]; and
other [40—46].

The user should specify the following parameters at the stage of a problem modeling:

1. The final value of the external load.

2. The number of loading stages (the value of load increment).

3. Method for solving the contact problem and its parameters.

The purpose of this work is to create an algorithm that allows tracking the change of working schemes at the
parametric increment in external load. The problem expansion parameter, whose physical meaning was the
“tightening weight” in contact pairs, was used in [47] in the algorithm for solving the linear complementarity
problem (LPC). In this paper, it was proposed to take the external load growth parameter as the parameter of the
problem expansion. This approach enables automating the process of load splitting into stages, within each of
them a linear problem can be solved. The following tasks arising from this:

1. Program implementation of the algorithm for solving similar problems.

2. Description of the solution peculiarities.

3. Testing the algorithm.

2. Methods

The formulation of the calculation of frictional contact problems proposed below considers a node-to-node
contact (contact pair). Let m denote the number of contact pairs. It is assumed that the points in each contact pair
are connected by unilateral constraints. The constraint that is normal to the contact zone works only on
compression and is enabled when these points are in contact and disabled otherwise. Tangential connection to
the contact zone is enabled if the interaction forces are less than the ultimate friction forces and disabled if the
interaction forces are equal to the ultimate friction forces. This means that slippage of the contact pair points is
not possible when the connection is on, whereas it is possible when the connection is off.

The following rule for the use of signs has

been adopted: 2 >0
> for forces and displacements normal to L] ﬁ

the contact surface: compressive force of inter- T ——— = >

action of points of the contact pair X,; >0; z,>0x,>0 2y >0, >0 2 >0

mutual displacement of points of the contact pair « b ¢

z.; > 0 (Figure 1, a);
n (Fig @), Figure 1. Unilateral constraints.

» for forces and displacements tangential to The signs’ rule for interaction forces x and mutual displacements z
the contact surface: if the points of the contact pair

are conditionally separated normally to the contact zone, then the interaction forces x,; > 0 will create a pair of

forces with a clockwise moment; mutual displacement z; >0, if it coincides in direction with x, >0

(Figure 1, b, ¢).
Papers [47] and [48] proposed a LCP formulation for frictional contact considering initial gaps:

Xn Rnn Rn‘r - Rm' Zy

X: =| R+ / Rpy Rer+/ Ryr  —Rpr—f Ry |- Z: +

X; _R‘m +f'Rnn _R‘r'r"'f'Rn‘r R‘r‘r_f'Rn'r Z;
Rpn =Rpp 1M

+| Rpp+/ (Rpy —Rpp M) —Ryeom |
_RFT+f'(RFn_Rnn'“)+Rnr'n

. - -0
2, 20; x,20; z, -x, =0;

(1

X:ZO; X, 20; Z:ZO; Z; 20; Z:T~X:=0; Z;T-x;=0,
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where: X,,Z, are vectors [mx1] of interaction forces and mutual displacements of contact pairs along the normal
to the contact zone; X, = (XJTr —X.)/2 is the vector [mx1] of interaction forces of contact pairs along the

tangent to the contact zone; z, = (Z: —2.)/2 is the vector [mx1] of mutual displacements of contact pairs

tangentially to the contact zone; Ry, is the contact stiffness matrix (CSM) [mxm] for the constraints in the
contact pairs along the normal to the assumed contact zone from a single dislocation of nodes of contact pairs
along the normal to the specified contact zone; R, is the CSM [mxm)] for the links introduced in the contact

pairs tangential to the contact zone from the unit dislocation of the contact pairs nodes tangentially to the contact
zone; f is a coefficient of friction between the nodes of the contact pair; Ry, is a contact load vector (CLV)
[mx1] for the links which are normal to the contact zone; R, is a CLV for the links which are tangential to the
contact zone; 1] is a vector of mutual initial gaps in the contact zone. Thus, three non-negative variables are

required to determine the parameters of the stress-strain state (SSS) in the contact pair: one is responsible for the
interaction along the normal and two are responsible for the interaction along the tangent.
The system of equations and inequalities (1) can be written in the following reduced form:

x=R-z+Ryg; 2
ZZO;XZO;ZT~X=O.
It was assumed that the external influences are: force influence Ry, kinematic influence Rjand

temperature influence R¢ . The external influence was divided as follows:
Ry +Ry +R =R+ p Ry,

where: pis the vector increment parameter; Ry,R; are vectors of contact loads from any combination of
external influences.

Therefore, assuming that Ry =Rgand R, =Rj +R¢ =0, the parametric incrimination of the force load is
modeled. It is proposed to extend the formulation (2) by introducing the parameter p of force load increment:

x=R-z+p-Ry;

zZO;xZO;zT-x:O;pZO.

To solve the problem, we use the Lemke method [49], [50]. Then, the initial table of the Lemke method
takes the form:

X
[E R -R,]|z|=0
p

b

where E is a diagonal identity matrix [3mx3m].

To initialize the solution process (selection of the leading row), an artificial compression (tightening weight)
pc of all unilateral links is introduced, and the initial table takes the form:

X
[E R -R,]|z|=pce, 3)
p

where: e =[1,1,...,,1] is a vector with dimension [3m x1].
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There are peculiarities of the solution by the Lemke algorithm with an increasing parameter of the external
influence. First, it is necessary to select R,, as the leading column. The leading row is chosen by the rule of

minimum ratio. Then the standard steps of Lemke algorithm are performed. There are two criteria for stopping
the stepped process of the solution:

Criterion 1. Suppose that at step K the parameter became more than one: p > 1. The criterion is used if it is
necessary to obtain a solution for a given load value (the load at which the contact load vector R, was formed).

In order to get a solution to the linear complementarity problem (LCP) it is necessary to return to the previous
step; take p out of the basis and determine the values of basis variables by the formula — p-R,,, where p=1.

Criterion 2. Suppose that at step k a ray solution is obtained (including the first step of the algorithm) for
any non-negative value of P. In this case, in order to get a solution to LCP it is necessary to take the parameter

p out of the basis by choosing the corresponding leading line.
» If the leading element is not equal to zero, then p should be removed from the basis6 and the values of

the basis variables should be determined by formula —p-R,,, where p> py. From physical point of view, the
result obtained should be interpreted as impossibility to change the working scheme at further load increment.
If the ray solution is obtained at Py <1, and the solution is to be obtained for a given load value, then the
parameter p=1.

» If the leading element is equal to zero, then removing the parameter p from the basis leads to the
undefined basis variables. In this case, at the current step, the values of the basic variables should be obtained
as: — p-R,, . From physical point of view, obtained result is interpreted as the transformation of the system into
a mechanism in case of a further increment of the load. We obtain the ultimate value of the load parameter
corresponding to the transition of the system into a mechanism.

3. Results and discussions

Many test problems have been solved to verify the algo- EA=1N lFVZl N
rithm’s operation. Some of the problems with the description of El=1Nm?
the algorithm operation are given below. AN AN AN

Example 1. The scheme of the problem is a beam on three
unilateral supports (Figure 2). The load is a vertical concentrated ‘ ‘ ‘
force in the middle of the right span. The algorithm with an e Lm e 02m,|, 05m |
increment external influence parameter is implemented within 2 Figure 2. Scheme of the beam
steps. To initialize the stepped process, an artificial compression with unilateral supports
is introduced in each assumed contact pair F,=1.

Leading rows and columns are highlighted in gray in all the tables below, the initial table of the problem is
shown in Table 1.
At the first step (Figure 3, a), the parameter increases to p=10.(6) (Table 2). At this value of the parameter

of the external load, the moment of detachment of the left support occurs (X is eliminated from the basis),
which indicates that the interaction force Xy is equal to zero.

At the second step, Zy should be introduced into the basis. The components of the leading column are neg-

ative with the exception of two small positive values. These values are the result of round-off errors, so they are
assumed to be equal to zero. Thus, there are no positive components in the leading column, so it means that a ray
solution is obtained. In this case, the ray solution can be represented as the impossibility of changing the working
scheme with further increase of the load parameter (Figure 3, b). To obtain the solution, the parameter p should
be taken out of the basis, and only the variable part of the external influence should be considered: p-F,; F.=0.
The final table is shown in Table 3.

For this example, it is possible to obtain the solution of the problem for any value of parameter p. For
example: for load p-FK, =1, after removing the parameter p from the basis, it is possible to take P=1 and obtain

the basis variables respectively —1-R,, =1 (Figure 3, C). As can be seen from Table 2, round-off errors can lead to

values that are close to zero. In order to stop the algorithm in time, a user-defined parameter of the problem
accuracy [47] is introduced.
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Initial table of Lemke algorithm

Table 1

Basis | Xa1  Xn2  Xa3 Xt xXe2©  Xxo Xr©  Xe2© X3 Zn1 Zn2 Zn3 zat ot zat Zr1 7 Zy pRv Rc  Min ratio
0 1 0 0 0 0 0 0 0 0 -0.1875 0.375 -0.1875 0 0 0 0 0 0 0.09375 1 10.6666
1 0 1 0 0 0 0 0 0 0 0.375 -0.75 0.375 0 0 0 0 0 0 —0.688 1
2 0 0 1 0 0 0 0 0 0 -0.1875 0.375 -0.1875 0 0 0 0 0 0 —0.4063 1
3 0 0 0 1 0 0 0 0 0 -0.1125 0.225 -0.1125 -0.5 0.5 0 0.5 -0.5 0 0.05625 1 17.7777
4 0 0 0 0 1 0 0 0 0 0.225 —0.45 0.225 0.5 -1 0.5 -0.5 1 —0.5 —0.413 1
5 0 0 0 0 0 1 0 0 0 —0.1125 0.225 —0.1125 0 0.5 -0.5 0 —0.5 0.5 —0.2438 1
6 0 0 0 0 0 0 1 0 0 -0.1125 0.225 —0.1125 0.5 -0.5 0 -0.5 0.5 0 0.05625 1 17.7777
7 0 0 0 0 0 0 0 1 0 0.225 —0.45 0.225 -0.5 1 -0.5 0.5 -1 0.5 —-0.413 1
8 0 0 0 0 0 0 0 0 1 -0.1125 0.225 -0.1125 0 -0.5 0.5 0 0.5 -0.5 —0.2438 1

Table 2
Table for Step 1 of Lemke algorithm

Basis Xn1 Xn2  Xn3  Xal X2t X3 Xi1©  Xt2 Xo3 Zn1 Zn2 Zn3 't 2t zt za Zr z3  pRy R. Min ratio
19 10.667 0 0 0 0 0 0 0 0 -2 4 -2 0 0 0 0 0 0 1 10.667
1 7.3333 1 0 0 0 0 0 0 0 -1 2 -1 0 0 0 0 0 0 0 8.3333
2 4.3333 0 1 0 0 0 0 0 0 -1 2 -1 0 0 0 0 0 0 0 5.3333
3 -0.6 0 0 1 0 0 0 0 0 1E-17 0 0 -0.5 0.5 0 0.5 -0.5 0 0 0.4
4 4.4 0 0 0 1 0 0 0 0 —0.6 1.2 | 0.6 0.5 -1 0.5 -0.5 1 -0.5 0 5.4
5 2.6 0 0 0 0 1 0 0 0 -1 1.2 -1 0 0.5 -1 0 -1 0.5 0 3.6
6 -0.6 0 0 0 0 0 1 0 0 1.4E-17 0 0 0.5 -0.5 0 -0.5 0.5 0 0 0.4
7 4.4 0 0 0 0 0 0 1 0 -0.6 1.2 | -0.6 | -0.5 1 -0.5 0.5 -1 0.5 0 5.4
8 2.6 0 0 0 0 0 0 0 1 -1 1.2 -1 0 -1 0.5 0 0.5 -1 0 3.6

Table 3
Table for Step 2 of Lemke algorithm

Basis Xnl Xiz  Xm3 Xt X2t Xt X X2 X3 Zm Zn2 Zn3 b7 S 7% M 7 M 7 W 25 S 2 3 pRy Rc Min ratio
9 -5.33333 0 0 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 -0.5 -5.33333
1 2 1 0 0 0 0 0 0 0 0 4E-15 ~7TE-16 0 0 0 0 0 0 -0.5 3
2 -1 0 1 0 0 0 0 0 0 0 -3.1E-15 1.33E-15 0 0 0 0 0 0 -0.5 —1.8E-15
3 -0.6 0 0 1 0 0 0 0 0 0 3E-17 —1E-17 —0.5 0.5 0 0.5 | -0.5 0 7E-18 0.4
4 1.2 0 0 0 1 0 0 0 0 0 3E-15 —3E-16 0.5 -1 0.5 | -0.5 1 -0.5 -0.3 2.2
5 -0.6 0 0 0 0 1 0 0 0 0 —2E-15 8E-16 0 0.5 -0.5 0 -0.5 0.5 -0.3 0.4
6 -0.6 0 0 0 0 0 1 0 0 0 3E-17 -0 0.5 -0.5 0 -0.5 0.5 0 7E-18 0.4
7 1.2 0 0 0 0 0 0 1 0 0 3E-15 -0 -0.5 1 -0.5 0.5 -1 0.5 -0.3 2.2
8 -0.6 0 0 0 0 0 0 0 1 0 —2E~15 8E-16 0 -0.5 0.5 0 0.5 | -0.5 -0.3 0.4
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Example 2. An analytical solution of the following
frictional contact problem at known friction limit forces
was obtained in [1]. A cantilevered beam of length
L=260 m was considered, which was placed on a rigid
base (Figure 4, a). The load is a constant pressing
vertical uniformly distributed load ¢=3975N/m, the

longitudinal force at the right end F, =243750N was

considered as a load with increasing parameter.

The analytical solution is compared with the
numerical solution obtained by the proposed method.
The foundation is modeled by a set of discrete rigid
supports. A plane frame finite element (FE) with three
degrees of freedom at a node is used to model the
console. The cantilevered beam is divided into » =10
elements. The FE nodes contact the supports according
to the Coulomb friction scheme. The concentrated
vertical pressing force in the node is

Fc=q-§=114833.33N.

The friction coefficient is assumed to be /' =0.3.

The results for the longitudinal displacements of the
beam are shown in Figure 4, b.

The dependence of the error on the number of
accepted elements is shown in Table 4. The error is
calculated by the formula:

U, = abs(analytical — numerical)/ analytical .

Due to round-off errors, there is no clear correlation.
Table 4
Error calculation

n 5 10 20 40 80 160
U, error, % | 0.016 | 0.085 | 0.036 | 0.91 | 0.021 | 0.84

Example 3. The problem of plane deformation of a
sheet pile wall in soil with an underlying layer of rocky
soil is considered (Figure5). The sheet pile wall
interacts with the soil on its two sides according to the
Coulomb friction scheme. The sheet pile wall and the
soil are conventionally separated in Figure 5. A hori-
zontal concentrated force at the top of the sheet pile wall
is taken as a variable load, which is affected by the
increasing external load parameter; the dead weight of
the soil is not considered. Horizontal displacements for
the soil are forbidden on the sides, vertical and
horizontal displacements are forbidden at the base, and
the pile has a hinge immobile support at the base.

A frame element of plane problem with 3 degrees
of freedom at a node is used to model the sheet pile
wall, and a 4 node element of plane problem of elasticity
theory is used for soil. The coefficient of friction
between steel and soil is assumed to be f=0.4.
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The area of cross section of one meter of sheet pile is Ap =1.831-1072 m?, modulus of elasticity is

Ep = 210! P4, moment of inertia I,=1.016 107> m*. For soil modulus of elasticity is £=4.5-10" Pa,
Poisson's ratio is £ =0.27, soil thickness is t =1m .
In this example, the external load parameter increases until a ray solution is obtained at p-F,=213518V.

The zones of sheet pile detachment from soil appear at the top of the sheet to the left and at the bottom of the
sheet pile to the right. Zones of contact appear at the top of the sheet pile to the right and at the bottom of the
sheet pile to the left. In this case, the adhesion zone occurs only on the left side in two nodes. On the right, the
soil slides along the sheet pile (Figure 6).
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Figure 6. Results for Problem 3. Interaction forces x, mutual displacements z

It should be noted that according to the results of solving the testing problems, the following feature of the
algorithm was revealed. During the step-by-step process of the Lemke algorithm, the problem of comparison
with zero arises. The occurrence of small values is due either to the “physics” of the problem (small load incre-
ment leading to a change in the working scheme of the structure) or to round-off errors. This leads to the prob-
lem of finding a criterion for the difference of these small values from zero. For this purpose, a single artificial
parameter for the accuracy of stopping the step-by-step process was introduced. It determines how much the ob-

tained value of the ultimate desired external load p-F,, will differ from the exact value within the framework of

the discretized problem.

The necessity of comparison with zero appears, as a rule: 1) at the last stage if several variables, including
the parameter p, tend to leave the basis simultaneously; 2) in the case if the values are close to zero in the lead-
ing column or close to zero and negative in the load column. In the first case, one should act according to Crite-
rion 2 for stopping the step-by-step process. In the second case, small values are interpreted as the result of
round-off errors and should be assumed to be zero. It has been experimentally determined that the optimum

range for the value of the parameter is from 107 to 10 in the most difficult cases. This describes an absolute
error in external load increment parameter.

The examples presented in the paper have been selected, among other reasons, to show the effect of
round-off errors on the interpretation of the algorithm’s solution results. Thus, in Example I (Table 2) small
values appeared in the leading column, and in Example 2 (Table 4) the tendency of the numerical solution to the
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analytical one is not monotonous. due to rounding errors. The value of the external load that gives the ray
solution in Example 3 due to the accumulation of round-off errors, it was necessary to decrease the parameter for

stopping the step process to 107 , which did not affect the accuracy of the solution.

4. Conclusions

An algorithm for tracking the change of working schemes at parametric increment of external load for
structurally nonlinear contact problems with friction has been developed. The algorithm has shown its
effectiveness in solving problems with large contact interaction forces. The physical meaning of the algorithm is
a sequential change of working schemes (differing one from another by switching of unilateral constraints) at
parametric increment of force load. This enables to automate the process of load dividing into stages, within each
of which a linear problem is solved. The use of the proposed approach makes it possible to fulfill strictly the
condition of mutual non-penetration of contacting bodies. However, if there is a frequent change of working
schemes with a small increase in the parameter of external influence, then this leads to the accumulation of
round-off errors and to the complication of determining of the criterion for stopping the step process. The
algorithm shows good results for problems with a small contact area and large interaction forces in the assumed
contact area. The accuracy of calculating the results remains high enough even in difficult conditions for the
algorithm.

In the process of the work the following tasks have been fulfilled:

1. A Python program has been written that implements the Lemke algorithm with an increment parameter of
external influence.

2. A number of features of the algorithm solution have been described, i.e., the beginning of the step process
of the solution, its completion and interpretation.

3. The process of solution has been shown and described for a number of testing problems. The peculiarities
of the algorithm operation have been identified and shown in examples.
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