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Аннотация. Объект исследования — гибкие стержни, испытывающие в процессе нагружения большие перемещения и 
малые деформации. Цель исследования — численный анализ напряженно-деформированного состояния (НДС) гибких 
стержней с учетом геометрической нелинейности в трехмерной постановке. В качестве математического аппарата исполь-
зован метод конечных элементов в форме метода перемещений. Процесс формоизменения стержня моделировался путем 
инкрементального нагружения в сочетании с перестроением геометрии модели с учетом полученных перемещений. Стер-
жень моделировался набором прямолинейных балочных конечных элементов, соединенных в смежных узлах линейными 
и поворотными комбинированными элементами с переменной жесткостью. Для проведения вычислительных эксперимен-
тов написаны и верифицированы макросы на языке APDL, встроенного в программный комплекс ANSYS Mechanical. Вы-
полнены вычислительные эксперименты с применением конечно-элементных моделей с упругими шарнирными вставка-
ми и без шарнирных вставок. На основании полученных результатов установлено, что предлагаемый прямой инкремен-
тальный алгоритм решения геометрически нелинейных задач строительной механики является абсолютно сходящимся. 
Разработанная методика назначения жесткостей поворотных пружин может быть использована при моделировании про-
странственных кинематически изменяемых стержневых систем.  
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метод 

Заявление о конфликте интересов. Авторы заявляют об отсутствии конфликта интересов. 

Вклад авторов: Гайджуров П.П.— научное руководство; формализация математической модели; написание исходного 
текста статьи; формулировка выводов; Даник Н.Б. — выполнение вычислительных экспериментов; обзор литературы по 
теме исследования; практические рекомендации по расчетам; Климух А.В. — обзор литературы; подготовка исходных 
данных; обработка результатов моделирования, оформление рисунков. Все авторы ознакомлены с окончательной версией 
статьи и одобрили ее. 

Благодарности. Авторы выражают благодарность редакции за рекомендации, позволившие повысить качество статьи. 

Для цитирования: Гайджуров П.П., Даник Н.Б., Климух А.В. Численное моделирование формоизменения гибких стерж-
ней // Строительная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 462–473. http://doi.org/10.22363/ 
1815-5235-2025-21-5-462-473 EDN: DFDCNF 

Гайджуров Пётр Павлович, советник РААСН, доктор технических наук, профессор кафедры строительной механики и теории сооружений, 
Донской государственный технический университет, Российская Федерация, 344010, г. Ростов-на-Дону, пл. Гагарина, д. 1; eLIBRARY SPIN-код: 
6812-9718, ORCID: 0000-0003-3913-9694; e-mail: gpp-161@yandex.ru 
Даник Никита Борисович, аспирант кафедры строительной механики и теории сооружений, Донской государственный технический универси-
тет, Российская Федерация, 344010, г. Ростов-на-Дону, пл. Гагарина, д. 1; ORCID: 0009-0007-3766-6913; e-mail: danik3777@mail.ru 
Климух Александр Витальевич, аспирант кафедры строительной механики и теории сооружений, Донской государственный технический уни-
верситет, Российская Федерация, 344010, г. Ростов-на-Дону, пл. Гагарина, д. 1; ORCID: 0009-0001-8844-2123; e-mail: sancho.klimukh.96@mail.ru 

© Гайджуров П.П., Даник Н.Б., Климух А.В., 2025 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License 
https://creativecommons.org/licenses/by-nc/4.0/legalcode 

 

https://orcid.org/0000-0003-3913-9694
https://orcid.org/0000-0003-3913-9694
https://orcid.org/0009-0007-3766-6913
https://orcid.org/0009-0007-3766-6913
https://orcid.org/0009-0001-8844-2123
https://orcid.org/0009-0001-8844-2123


Гайджуров П.П., Даник Н.Б., Климух А.В. Строительная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 462–473 
 

 

АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА КОНСТРУКЦИЙ 463 

 

Numerical Modeling of Change of Shape of Flexible Bars 

Peter P. Gaidzhurov , Nikita B. Danik , Alexander V. Klimukh  

Don State Technical University (DSTU), Rostov-on-Don, Moscow, Russian Federation 
 gpp-161@yandex.ru 

Received: June 20, 2025 
Revised: September 15, 2025 
Accepted: October 1, 2025 
 
Abstract. Flexible bars experiencing large displacements and small strains during loading are investigated. The purpose of the 
study: numerical analysis of the stress-strain state of flexible bars, taking into account geometric nonlinearity in a three-
dimensional formulation. The displacement-based finite element method is used as the mathematical framework. The process of 
shape changing of the bar was modeled by incremental loading in combination with the restructuring of the geometry of the model, 
taking into account the resulting displacements. The bar was modeled using rectilinear beam finite elements connected at adjacent 
nodes by linear and rotational combined elements with variable stiffness. To conduct computational experiments, macros in the 
APDL language, embedded in the ANSYS Mechanical software, were written and verified. Numerical experiments were 
performed using finite element models with elastic hinges and without hinges. Based on the results obtained, it is established that 
the proposed direct incremental algorithm for solving geometrically nonlinear problems of structural mechanics is absolutely 
convergent. The developed method of defining the stiffness of rotational springs can be used in modeling spatial unstable frames. 
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1. Введение 

Упругие гибкие стержни, обладающие изгибной жесткостью, находят широкое применение в 
расчетных схемах газопроводов, несущих канатов большепролетных висячих мостов, трансмисси-
онных валов различного назначения, приводов измерительных приборов, пространственных строи-
тельных конструкций [1–3]. Конечно-элементное моделирование пространственных стержневых си-
стем базируется на использовании матрицы жесткости балочного конечного элемента (КЭ) с шестью 
степенями свободы в узле1 [4]. Как правило, при линейном анализе перемещения углы поворота ба-
лочного КЭ считаются малыми. Вместе с тем при расчете гибких стержней имеют место большие 
линейные и угловые перемещения при малых деформациях [5; 6]. В этом случае численное решение 
геометрически нелинейной задачи строится на базе итерационной процедуры Ньютона — Рафсона и 
метода «корректирующих дуг», суть последнего состоит в адаптивной корректировке величины ша-
га нагружения при приближении и после прохождения точки «бифуркации» [7–10]. Следует отме-
тить, что при расчете стрежневой системы методом конечных элементов с учетом больших переме-

 
1 Мяченков В.И., Мальцев В.П., Майборода В.П. и др. Расчеты машиностроительных конструкций методом конеч-

ных элементов : справочник. Москва : Машиностроение, 1989. 520 с. 
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Рис. 1. Балочно-пружинная схема 
гибкого стержня 

И с т о ч н и к: автор В.И. Усюкин. 

Figure 1. Beam-spring diagram 
of a flexible bar 

S o u r c e: author V.I. Usyukin. 
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щений используется касательная матрица жесткости. Общепринятый подход к построению данной 
матрицы в лагранжевых координатах базируется на минимизации потенциала энергии деформации 
дискретной модели [11]: 
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где Π  — потенциальная энергия деформации; 1 2, , , Nu u u  — обобщенные перемещения. В резуль-

тате линеаризованная (касательная) матрица жесткости конструкции получает вид 
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При этом рекуррентная формула Ньютона — Рафсона принимает форму 
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где { }f  — вектор обобщенных сил. 

В [7] для минимизации потенциала энергии деформации применено следующее уравнение 
(использованы ранее принятые обозначения): 
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Отмечается, что в структуре приведенного уравнения первое слагаемое является аналогом мат-
рицы жесткости КЭ, а второе слагаемое представляет собой корректирующую составляющую для век-
тора узловых сил. Вычисление касательной матрицы жесткости КЭ сводится к двукратному диффе-
ренцированию энергии деформаций по обобщенным перемещениям, а вычисление корректирующей 
составляющей вектора упругих сил КЭ — к соответствующему однократному дифференцированию. 

Следует отметить, что при численных расчетах гибких стерж-
ней в геометрически нелинейной постановке активизируется одно-
временно учет больших поворотов и уменьшение жесткости, обу-
словленное формоизменением [9; 10].  

Альтернативным упрощенным методом расчета гибких упругих 
стержней является представление стержня набором прямолинейных 
балочных КЭ одинаковой длины, соединенных пружинами. Пример 
балочно-пружинной схемы консольного стержня показан на рис. 12. 

Полагается, что между узловым моментом iM  и соответству-

ющим углом поворота iα  существует линейная зависимость 

i iM kα= , 1, 2,3i = , 

где k  — коэффициент пропорциональности, характеризующий в 
данном случае жесткость поворотной пружины. Для расчета гибких 
стержней в двумерной постановке3 использован следующий функ-
ционал: 

 
2 Усюкин В.И. Строительная механика конструкций космической техники : учебник для студентов вузов. Москва : 

Машиностроение, 1988. 392 с. ISBN 5-217-00147-Х 
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При этом считается, что жесткость поворотных пружин прямо пропорциональна изгибной 
жесткости стержня. 

В [12] на базе концепции локальности линейных перемещений и ортогональности виртуальных 
углов поворотов стержневого КЭ представлена методика конечно-элементного моделирования гиб-
ких составных балок, подвергающихся значительным статическим и динамическим деформациям. 
Отмечается, что разработанный конечный элемент позволяет с высокой точностью учесть геометри-
ческую нелинейность в сочетании с начальной погибью составной балочной конструкции. Алгоритм 
построения матрицы жесткости балочного конечного элемента трубчатого сечения, основанный на 
гипотезе Эйлера — Бернулли, в сочетании с аппроксимациями перемещений с помощью полиномов 
Эрмита предложен в [13]. Для учета геометрической нелинейности введен тензор напряжений 
Пиолы — Кирхгофа и тензор деформаций Грина — Лагранжа. 

Для решения задач механики оболочек с учетом конечных перемещений В.З. Власов4 разработал 
метод последовательных нагружений. Суть метода состоит в последовательном нагружении кон-
струкции внешними силами, подобранными таким образом, чтобы на каждом шаге перемещения и 
углы поворота оставались малыми. В дальнейшем этот метод В.А. Светлицкий [6] распространил на 
криволинейные линейно упругие гибкие стержни. В [14] приведен вариант метода последовательных 
нагружений для решения плоских задач механики гибких стержней. Здесь же отмечается, что дан-
ный подход может быть распространен и на пространственные стержни со сложной геометрией. 

Оригинальный метод конечно-элементного моделирования стержневых систем в условиях 
больших перемещений и углов поворота предложен в [15]. Данный метод, названный метод матери-
альной точки (Material Point Method), базируется на построении уравнения состояния механической 
системы, обладающей существенной геометрической нелинейностью, в гибридных лагранжево-
эйлеровых координатах. При этом геометрия модели задается в лагранжевых (материальных) коор-
динатах, а уравнение движения решается с использованием фиксированной эйлеровой (фоновой) 
координатной сетки. 

В [16] разработана 2D-модель ферменной конструкции, состоящей из упругих нерастяжимых 
стержней, связанных между собой на концах упруговязкими узловыми шарнирами, допускающими 
большие углы поворота. Отмечается, что формоизменение ферменной конструкции из начального 
положения в конечное рабочее осуществляется с помощью кинематического воздействия, имитиру-
ющего трос с изменяемой длиной. 

Постановка задачи контактного взаимодействия деформируемых строительных конструкций с 
учетом трения при сдвиге рассмотрена в [17]. Предлагаемый подход базируется на шаговом алго-
ритме Лемке в виде метода перемещений. 

Резюмируя, можно отметить, что рассмотренные способы численного анализа НДС гибких 
стержней не позволяют выполнить моделирование процесса формоизменения пространственной 
конструкции с регулярной решетчатой структурой при управляемом кинематическом воздействии. 
Для конечно-элементного моделирования таких конструкционных решений требуется разработка 
принципиально нового подхода, базирующегося на концепции универсальной дискретно стержневой 
схемы с упруго-шарнирными узловыми соединениями. 

В качестве объекта настоящего исследования в общем случае рассмотрен пространственный 
гибкий стержень в условиях больших перемещений, сопровождающихся малыми деформациями. Цель 
исследования — разработка линейно упругой механико-математической модели геометрически не-
линейного формоизменения исходной геометрии гибкого стержня на основе модифицированного ме-

 
3 Усюкин В.И. Строительная механика конструкций космической техники : учебник для студентов вузов. Москва : 

Машиностроение, 1988. 392 с. ISBN 5-217-00147-Х 
4 Власов В.З. Избранные труды. Общая теория оболочек. Т. 1. Москва : Изд-во Академии наук СССР, 1962. 528 с. 
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тода Лагранжа, суть которого состояла в пошаговом перестроении конечно-элементной сетки с уче-
том полученных инкрементальных перемещений. В задачи исследования входило построение балоч-
но-пружинной механической модели путем введения в смежных узлах дискретной стержневой моде-
ли трехмерных блоков из комбинированных конечных элементов в виде линейных и поворотных 
пружин; написание и отладка макроса на языке APDL программного комплекса ANSYS Mechanical5, 
позволяющего удалять и заново строить конечно-элементную сетку с сохранением исходной тополо-
гии модели; тарирование жесткостей комбинированных элементов; решение тестовых задач. 

2. Метод исследования 

Конечно-элементное моделирование линейно упругой деформации гибкого стержня с учетом 
больших перемещений при статическом нагружении выполнялось в среде программного комплекса 
ANSYS Mechanical. Стержень разбивался на пространственные (3D) двухузловые балочные конеч-
ные элементы. В дальнейшем были рассмотрены две конечно-элементные модели узловых соедине-
ний: обычная модель, связывающая узловые перемещения и углы поворота смежных КЭ, и модель, 
в которой балочные элементы соединялись в смежных узлах с помощью комбинированных (пружин-
ных) КЭ. Процесс трансформации формы стержня из исходного состояния в конечное представлялся 
в виде последовательности шагов. На каждом шаге выполнялась коррекция и перестроение геомет-
рии сетки с учетом полученных перемещений на предыдущем шаге. При перестроении исходная 
топологическая информация модели полностью сохранялась. В общем случае координаты в узлах i 
и j КЭ на k-м шаге нагружения вычислялись по формулам (рис. 2): 

( )( ) ( 1)
s

kk k
s s xx x u−= + Δ , ( )( ) ( 1)

s

kk k
s s yy y u−= + Δ , ( )( ) ( 1)

s

kk k
s s zz z u−= + Δ , ,s i j= . 

Для написания макросов использовался язык программирования APDL, встроенный в ANSYS. 
Блок-схема макроса, реализующего инкрементальное нагружение и коррекцию узловых перемеще-
ний КЭ, представлена на рис. 3.  

 

 

Рис. 2. Схема трансформации геометрии балочного КЭ (nstep — число шагов нагружения) 
И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 2. The diagram of transformation of the geometry of the beam finite element 
(nstep — the number of loading steps)  

S o u r c e: made by P.P. Gaidzhurov. 

 
5 ANSYS Mechanical APDL Tutorials. URL: http://www.worldcolleges.info/sites/default/files/me1.pdf (accessed: 21.04.2025). 
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Рис. 3. Блок-схема макроса для расчета стержня с учетом корректировки геометрии: 
ГУ — граничные условия; СЛАУ — система линейных алгебраических уравнений 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

 

 
Figure 3. Flow diagram of the macro for calculating bars, taking into account geometry adjustments: 

BC — boundary conditions; SLAE — system of linear algebraic equations 
S o u r c e: made by P.P. Gaidzhurov. 
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Рис. 4. Схема стержня 
с блоками упругих шарниров 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 4. Diagram of a bar 
with blocks of elastic hinges 

S o u r c e: made by P.P. Gaidzhurov. 

 
 
 

 

Рис. 5. Визуализация деформации 
гибкого консольного стержня 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 5. Visualization of the deformation 
of a flexible cantilever bar 

S o u r c e: made by P.P. Gaidzhurov. 
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Главным недостатком предлагаемого подхода к конечно-элементному моделированию формоиз-
менения гибкого стержня является то, что при таком анализе НДС не учитываются осевые повороты 
(вращение) балочных элементов «как жесткое целое». Вместе с тем разработанный прямой инкре-
ментальный метод расчета гибких стержней в силу своего детерминизма является, безусловно, схо-
дящимся.  

3. Результаты и обсуждение 

С целью валидации разработанной математической модели формоизменения гибкого стержня, 
а также оценки сходимости предлагаемого вычислительного алгоритма, базирующегося на инкре-
ментальной схеме процесса нагружения и соответствующем перестроении конечно-элементной сет-
ки, решены тестовые примеры.  

Пример  1.  Расчет консольного стержня, загруженного на свободном конце сосредоточенной си-
лой. Исходные данные: длина консоли l = 1 м; квадратное поперечное сечение со стороной a = 0,01 м; 
величина сосредоточенной силы F = 0,04167 Н. Полагалось, что в процессе деформирования консо-
ли направление силы не изменяется. Для конечно-элементного моделирования использовался про-

странственный балочный КЭ с шестью степенями свобо-
ды в узле. Рассматривались две конечно-элементные мо-
дели консоли: 1 — разбивка на «стандартные» прямоли-
нейные КЭ одинаковой длины; 2 — разбивка на неде-
формируемые прямолинейные КЭ одинаковой длины. 
Для обеих моделей смежные узлы КЭ соединялись с по-
мощью упругих шарниров (рис. 4). Модули упругости 
материала балочного КЭ для первой и второй моделей: 

(1)E = 107 Н/м2 и (2)E = 1015 Н/м2. Значения жесткостей 
упругих шарниров (рис. 4):  

,x zk  = 1.0 Н/м; 

yk  = 107 Н/м; 

,x yk  = 1.0 Н·м/рад; 

для 4 КЭ zk = 0.03333 Н·м/рад; 

для 8 КЭ zk = 0.06667 Н·м/рад. 

Вычисление эквивалентной жесткости поворотной 
пружины выполнялось по формуле 

(1)( ) /z ik E J l= , 

где il  — длина КЭ. 

Визуализация консоли до и после деформации пред-

ставлена на рис. 5. На этом рисунке lx  и ly  — резуль-

тирующие координаты точки приложения сосредоточен-
ной силы F.  

Из графиков на рис. 6, б и 7, б видно, что уменьше-
ние шага разбивки приводит к заметному уменьшению 
жесткости конечно-элементной модели консоли. 
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а                                          б 

Рис. 6. Графики xl ~ nstep: 
а — первая модель; б — вторая модель 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 6. Graphs of xl ~ nstep: 
а — the first model; б — the second model 

S o u r c e: made by N.B. Danik, A.V. Klimukh. 

 

  
а                                          б 

Рис. 7. Графики yl ~ nstep: 
а — первая модель; б — вторая модель 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 7. Graphs of yl ~ nstep: 
а — the first model; б — the second model 

S o u r c e: made by N.B. Danik, A.V. Klimukh. 

 
N, Н / N 

  
Рис. 8. Эпюра N (ANSYS нелинейный решатель)

И с т о ч н и к: выполнено П.П. Гайджуровым.  

Figure 8. Diagram of N (ANSYS nonlinear solver) 
S o u r c e: made by P.P. Gaidzhurov. 

 

 

Рис. 9. Эпюра N (первая модель) 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.

Figure 9. Diagram of N (the first model) 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 
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Этот эффект не наблюдается при использовании 
первой модели (рис. 6, а и 7, а). Из анализа представлен-
ных графиков step~lx n  и step~ly n  также следует, что 

процесс является монотонно сходящимся. После 

stepn  = 100 уточнение величин lx  и ly  для обеих моде-

лей происходит только в третьем знаке. 
Для сравнения в табл. 1 приведены значения lx  и ly , 

полученные для аналогичных моделей консоли с исполь-
зованием нелинейного решателя комплекса ANSYS. 

Таблица 1 / Table 1   

Значения lx  и ly  консоли / Cantilever beam values lx  and ly  

Тип модели / 
Model Type 

lx , м / m ly , м / m 

4 КЭ / FE 8 КЭ / FE 4 КЭ / FE 8 КЭ / FE 

1 0,6121 0,6123 –0,7199 –0,7153 

2 0,7362 0,5515 Процесс не сходится / 
The process does not converge 

И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух / 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 
Сравнивая графики на рис. 7 и 8 с данными табл. 1, 

устанавливаем, что результаты, полученные с помощью 
моделей 1 и 2, качественно согласуются с величинами lx  

и ly  комплекса ANSYS.  

Эпюры распределения продольных сил N в элемен-
тах консоли, полученные с помощью нелинейного реша-
теля ANSYS и по предлагаемой методике с использова-
нием первой модели (без упругих шарниров), приведены 
на рис. 8 и 9. Как видно из рис. 8, максимальное значение 
силы N = 0,03907 Н, вычисленное при включенной оп-
ции “Large Displacement Static” (большие перемещения), 
по величине сопоставимо с величиной заданного усилия 
F = 0,04167 Н. Вместе с тем при моделировании консоли 
с помощью разработанной балочно-шарнирной модели 
продольные силы в элементах консоли с пятого по вось-
мой на три порядка превышают величины N, представ-
ленные на рис. 8. Отметим, что в соответствии с предла-
гаемой методикой продольные усилия в элементах вы-
числялись по «хрестоматийной» формуле 

( )stepni
i i

i

E A
N l

l
= Δ ,   1,2, , ei n=  , 

где А  — площадь поперечного сечения стержня; il  — 

длина i-го КЭ; step( )n
ilΔ  — изменение длин элементов на 

последнем шаге нагружения; en  — число КЭ 

nstep nstep

nstep nstep
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а                                          б 

Рис. 10. График зависимости φ ~i j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.  

Figure 10. Graph of φ ~i j : 

а — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 

    
а                                          б 

Рис. 11. График зависимости ~im j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух. 

Figure 11. Graph of ~im j : 

а — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 

 

   
а                                          б 

Рис. 12. График зависимости ~z ik j : 

а — 4 КЭ; б — 8 КЭ 
И с т о ч н и к: выполнено Н.Б. Даником и А.В. Климух.  

Figure 12. Graph of ~z ik j : 

a — 4 FE; б — 8 FE 
S o u r c e: made by N.B. Danik and A.V. Klimukh. 
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Выявленное несоответствие в эпюрах N объясня-
ется тем, что при использовании нелинейного решателя 
ANSYS активизируется режим уменьшения жесткости 
стержня в зависимости от степени его формоизмене-
ния. В предлагаемой методике продольная жесткость 
стержня в процессе деформирования не изменяется, 
что соответствует физической картине рассматривае-
мой изгибной деформации. 

Графики зависимости углов поворотов (φ j ), момен-

тов ( jm ) и жесткостей ( z jk ) от положения упругих 

вставок (вторая модель) для вариантов разбивки консо-
ли на четыре и восемь КЭ показаны на рис. 10–12.  

На этих рисунках значение параметра j соответству-
ет номеру упругого шарнира (нумерация шарниров от за-

делки); in  — номер ступени нагружения ( in  = 2, 3, …, 20). 

Величины z ik  вычислялись по формуле / φz j j jk m= .  

Из приведенных на рис. 10 и 11 графиков видно, 
что двукратное уменьшение шага сетки практически 
не влияет на значения φ j  и jm . Назначенные априо-

ри величины жесткостей поворотных пружин z jk  

(0,03333 Н·м/рад для 4 КЭ и 0,06667 Н·м/рад для 8 КЭ) 
согласуются с аналогичным максимальными значе- 

ниями z jk  на графиках рис. 12, а (0,025 Н·м/рад) и 9, б 

(0,056 Н·м/рад) при k = 2.  
Пример 2. Гибкий криволинейный стержень пря-

моугольного поперечного сечения 1×1 м радиусом 
100 м и углом раствора дуги 450 , жестко закрепленный 
на конце (x = 0, y = 0, z = 0) и нагруженный на свобод-
ном конце из плоскости сосредоточенной силой zF = 

600 Н (рис. 13). Координаты x, y, z свободного конца 
стержня в исходном положении: 29,29 м; 70,71 м; 0 м. 
Модуль упругости материала стержня Е = 10 МПа. 
Стержень разбивался на 16 пространственных КЭ ба-
лочного типа. По аналогии с предыдущим примером на 
стыках элементов вводились блоки из упругих шарни-
ров (рис. 14).  

Расчеты выполнялись для трех вариантов конечно-
элементных моделей криволинейного стержня: 1 — ис-
пользуются только балочными КЭ; 2, 3 — используются 
балочные КЭ в сочетании с блоками из упругих шарни-
ров. Параметры блоков шарниров:  

• для модели 2: 

xk  = yk  = zk  = xk  = yk  = zk  = E; 
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Рис. 13. Расчетная схема 
криволинейного стержня 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 13. Model of a curved bar 
S o u r c e: made by P.P. Gaidzhurov. 

 

 

Рис. 14. Схема стержня и блока 
упругих шарниров 

И с т о ч н и к: выполнено П.П. Гайджуровым. 

Figure 14. Diagram of the bar and block  
of elastic hinges 

S o u r c e: made by P.P. Gaidzhurov. 
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• для модели 3: 

xk = yk = zk = Е = 1010 (недеформируемый стер-

жень); xk = yk = zk  = 0,295·106 Н·м/рад.  

Результаты моделирования в виде координат точки 

приложения силы в деформированном состоянии ρx , 

ρy , ρz  (рис. 13) и соответствующего радиус-вектора 

2 2 2
ρ ρ ρρ x y z= + +  сведены в табл. 2. Здесь построчно 

приведены данные для трех моделей в зависимости от 
числа ступеней нагружения stepn . Для сравнения анало-

гичный расчет криволинейного стержня без шарнирных 
блоков был выполнен в ANSYS с использованием нели-
нейного решателя. В итоге получены следующие значе-
ния координат: 

ρx = 15,5639 м; ρy = 46,8962 м; 

ρz = 53,613 м; ρ= 72,91 м. 

Данный результат достаточно хорошо согласуется с 
расчетом по предлагаемой методике с применением тре-
тьей модели при ni = 20 (в табл. 2 подчеркнуто).  

Эталонным решением рассматриваемой задачи яв-
ляются координаты [7; 8]: 

ρx = 15,56 м;   ρy = 46,884 м;   ρz = 53,66 м. 

 
Таблица 2 / Table 2 

Значения lx  и ly  для криволинейного стержня / Values of lx  and ly  for the curved bar 

stepn  
Первая модель, вторая модель, третья модель / The first model, the second model, the third model 

ρx , м / m ρy , м / m ρz , м / m ρ , м / m 

10 
14,301 

7,24618 
16,022 

33,996 
31,714 
46,690

65,405 
67,803 
55,900

75,09 
75,22 
74,58

20 
14,841 
8,2624 
16,100 

35,122 
33,037 
46,814 

61,973 
63,914 
53,743

72,76 
72,42 
73,07

60 
15,171 
8,7549 
16,166 

35,826 
33,855 
46,922

59,906 
61,601 
52,385

71,43 
70,83 
72,16

100 
15,281 
8,920 

16,192 

36,064 
34,130 
46,964

59,221 
60,84 
51,925

71,0 
70,33 
71,86

И с т о ч н и к: выполнено П.П. Гайджуровым / S o u r c e: made by P.P. Gaidzhurov. 
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Безусловно рассмотренный подход к моделированию гибких стержней является достаточно 
приближенным, так как не учитывает осевых поворотов балочных элементов «как жесткое целое». 
Однако введение дополнительный упругих шарниров позволяет качественно оценить картину де-
формирования стержней любой конфигурации как для консервативной, так и для «следящей» 
нагрузки. Это делает данную концепцию весьма привлекательной при конечно-элементном модели-
ровании сложных трансформируемых стержневых систем.  

4. Заключение 

1. Преимуществом моделирования упругого гибкого стержня двухузловыми 3D балочными ко-
нечными элементами, соединенными в смежных узлах упругими шарнирными вставками, по срав-
нению с общепринятым подходом, базирующимся на использовании касательной матрицы жестко-
сти, является простая алгоритмизация шаговой процедуры, которая позволяет достаточно точно для 
инженерной практики определить узловые перемещения и продольные усилия в исследуемом диапа-
зоне нагрузки. 

2. Предлагаемый прямой инкрементальный алгоритм решения геометрически нелинейной зада-
чи строительной механики в отличие от нелинейного решателя комплекса ANSYS является абсолют-
но сходящимся при любой схеме дискретизации гибкого стержня. 

3. В перспективе разработанная методика назначения жесткостей поворотных пружин может 
быть использована при моделировании процесса формоизменения регулярных пространственных 
стержневых систем при управляемом кинематическом воздействии.  
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