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Abstract. In this study, thin shells in the form of algebraic surfaces defined by a geometric frame of three plane superellipses lying 
respectively in three coordinate planes are considered. As the main focus of the study, the case when the horizontal superellipse is 
a circle is examined. It is shown that depending on the type of the other two superellipses, it is possible to obtain a conical surface, 
or a surface of negative Gaussian curvature, including conoids, or surfaces of positive Gaussian curvature. The construction of 
12 particular cases of such surfaces with a circular base is illustrated. Six of them are investigated in detail using the methods of 
differential geometry, i.e. expressions of the fundamental quadratic forms are obtained, for the first time. Out of the 12 presented 
shell shapes, two ruled shells of zero and negative Gaussian curvature (conical and cylindroidal respectively) with the same 
geometric frame were selected for comparative static analysis. The two shells were analyzed for uniform distributed load using 
displacement-based FEM implemented in the SCAD software. It is shown that despite the two shells having identical geometric 
frames, the conical shell demonstrated better performance over the most strength parameters. 
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Аннотация. Рассмотрены тонкие оболочки в форме алгебраических поверхностей с геометрическим каркасом из трех 
суперэллипсов, лежащих в трех координатных плоскостях, в случае, когда горизонтальный суперэллипс представляет 
собой круглое основание. Показано, что в зависимости от формы остальных двух суперэллипсов можно получить кониче-
скую поверхность, поверхность отрицательной гауссовой кривизны, включая коноиды, или поверхность положитель-
ной гауссовой кривизны. Проиллюстрировано построение 12 примеров таких поверхностей на круглом основании. 
Из них 6 поверхностей впервые исследованы подробно методами дифференциальной геометрии, получены их коэффици-
енты квадратичных форм. Из 12 представленных форм оболочек для сравнительного статического расчета выбраны две 
линейчатые оболочки нулевой и отрицательной гауссовой кривизны (коническая поверхность и цилидроид) с одинаковым 
геометрическим каркасом. Расчет оболочек с равномерно распределенной нагрузкой производился с использованием метода 
конечных элементов (МКЭ) в перемещениях, реализованном в программном комплексе SCAD. Показано, что, несмотря на 
одинаковый геометрический каркас этих двух оболочек, по большинству параметров НДС лучшие показатели у кониче-
ской оболочки. 

Ключевые слова: круглое основание, алгебраическая поверхность, цилиндроид, коническая поверхность, статический 
расчет, МКЭ 

Заявление о конфликте интересов. Авторы заявляют об отсутствии конфликта интересов. 

Вклад авторов: Карневич В.В. — исследование, анализ, программное обеспечение, визуализация, написание оригиналь-
ного проекта; Мамиева И.А. — методология, валидация, написание, рецензирование и редактирование текста. Оба автора 
ознакомлены с окончательной версией статьи и одобрили ее. 

Благодарности: Авторы всегда будут помнить профессора Сергея Николаевича Кривошапко за его отзывчивость, готовность 
прийти на помощь и глубокий интерес к работе над статьей. Особую признательность хочется выразить за его детальные 
комментарии и ценные рекомендации на всех этапах подготовки текста, а также за конструктивные идеи касательно даль-
нейших научных изысканий. Сергей Николаевич, оказавший значительное влияние на развитие науки в области тонко-
стенных конструкций, благодаря своему богатому опыту, широте взглядов и способности доступно преподносить слож-
ный материал, сыграл ключевую роль в пробуждении интереса к исследованию поверхностей и оболочек. 

Для цитирования: Karnevich V.V., Mamieva I.A. Analysis of geometry and strength of shells with middle surfaces defined by 
two superellipses and a circle // Строительная механика инженерных конструкций и сооружений. 2025. Т. 21. № 5. С. 399–413. 
http://doi.org/10.22363/1815-5235-2025-21-5-399-413 EDN: DRENKL 

1. Introduction 

In descriptive geometry, the frame of a surface is a set of lines, which define the surface. Surfaces 
constructed from a geometric frame of three curves lying respectively in three coordinate planes are widely 
used in shipbuilding for the design of hulls of above- and under-water vessels. In [1], the author discusses 
issues of modelling hull surfaces with discrete points and the computational advantages and geometric 
intuitivity of using parametric representation in the surface modeling. In [2], thirteen analytical surfaces for 
preliminary stages of hull shape selection and different methods of their construction are presented. There 
were suggestions of using superellipses as the plane curves of the geometric frame [3–6], which allow to 
significantly expand the number of shapes for ship hulls by varying the parameters of the superellipses. 
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Paper [7] presents parametric equations and a technique for generating complex submarine hull shapes, 
which are composed of fragments of surfaces defined by a frame of superellipses. In [8], thin shells with 
middle surfaces containing three plane superellipses as the geometric frame were originally suggested to be 
used in construction and architecture. 

In [5; 9], the curves defining the considered surfaces are expressed in the following form: 
 the first curve of the geometric frame in the xOy plane (z = 0): 

1 ,
t

r r
t

x
y W

L

 




= 



−   (1) 

 the second curve of the geometric frame in the yOz plane (x = 0): 
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 the third curve of the geometric frame in the xOz plane (y = 0): 
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where for convex curves r, t, n, m, s, k > 1; for concave curves r, t, n, m, s, k < 1. Curves (1)–(3) represent 
superellipses if the exponents within each equation are equal, or arbitrary plane curves otherwise. The 
exponents in equations (1)–(3) can take on any positive value. In this study, only superellipses are considered 
to constitute the geometric frame, so r = t, n = m, s = k. If r = t = 1, n = m = 1, s = k = 1, then curves (1)–(3) 
degenerate into straight lines, and superellipses degenerate into rhombs. 

Using the method described in [6; 9], it is possible to derive the explicit equations of three algebraic 
surfaces with the same geometric frame of curves (1)–(3): 

 generated by a family of sections in x = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
ns m rk m tkz T x L y W x L= −  

 
− −


 (4) 

 generated by a family of sections in у = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
sn k tm k rmz T y W x L y W = − − −  

 (5) 

 generated by a family of sections in z = const planes: 

( ) ( )
1/1/ /

1 / 1 / / 1 / ,
rm t kn t sny WW z T x L z T = − − −  

 (6) 

where , , 0 .L x L W y W z T− ≤ ≤ − ≤ ≤ ≤ ≤  

The explicit equations of surfaces (4)–(6) can be transformed into parametric equations: 

( ) ( ) ( )
1/1/ 1/

, , 1 ;, , 1 1
nr r mt kx x u uL y y u v vW u z z u v T u v    = = ± = = − = = − −       (7) 

( ) ( ) ( )
1/1/ 1/

, 1– , , ;1– 1–
st n kr mx x u v vL u y y u uW z z u T u v    = = = = ± = =       (8) 



Karnevich V.V., Mamieva I.A. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):399–413 
 

 

402 ANALYSIS OF THIN ELASTIC SHELLS 

( ) ( ) ( )
1/1/ 1/

, 1– , , 1 ,– 1– ,
rk m ts nx x u v vL u y y u v W u v z z u uT    = = = = ± = =       (9) 

where 0 1, 1 1; ,  u v u v≤ ≤ − ≤ ≤  are non-dimensional parameters. 

The considered surfaces can be referred to as “kinematic surfaces”, since they are formed by the 
motion of a generatrix of variable or constant curvature along a directrix. By taking each of the three super-
ellipses of the geometric frame as the generatrix one-at-a-time, three analytical surfaces are obtained, which 
are defined by explicit equations (4)–(6) or parametric equations (7)–(9). 

Equations (4)–(9) were used in paper [10] for constructing five groups of new ruled surfaces. Some 
of these ruled surfaces were taken as middle surfaces of thin shells, which were analyzed for dead load 
in [11]. 

In scientific literature and in practice, thin shells with a circular base are the most popular. Virtually all 
shells with a circular base known to date are shells of rotation, for which about three dozens of optimality 
criteria have been proposed [12]. Less known is the method of defining the geometry of shells where middle 
surfaces contain three plane curves as the frame, and one of these curves is a circle. 

The objective of this paper is to investigate shells with middle surfaces defined by a geometric frame 
of superellipses in the particular case when the horizontal curve (base outline) is a circle. Some specific 
groups of such surfaces are analysed in detail using the methods of differential geometry for the first time to 
demonstrate the geometrical equivalence or distinction of surfaces with the same frame, but different 
method of generation. In addition, static analysis is applied to shells with middle surfaces from a particular 
group to identify the differences in the structural behavior. 

2. Methods 

2.1. Construction of Surfaces Defined by Two Superellipses and a Circle 

Assuming that a surface with the frame of superellipses has a circular base in the xOy coordinate plane, 
then the following values of parameters in equations (1)–(9) can be adopted: 

2, , 0 0 – , – ,,r t L W R z R x R R y R= = = = ≤ ≤ ≤ ≤ ≤ ≤
 

and z-axis is directed upwards. In this case, expressions (7)–(9) can be rewritten as 

( ) ( ) ( )1/2 1/ 1/2, 1 , , 1 1 ;,
s nk mx x u vR y y u v vR u z z u v T u v     = == ± = = ± − = = − −       (10) 

( ) ( ) ( )1/2 1/ 1/2, 1 – , 1 – 1 – ;,
n sm kx x u v vR u y y u uR z z u T u v     = = ± = = ± = =       (11) 

( ) ( ) ( )1/ 1/ 1/22, 1 – , 1 – 1 – , ,,
k ms nx x u v vR u y y u v R u v z z u uT     = = ± = = ± = =       (12) 

where 1,0 1 0 , ;u v u v≤ ≤ ≤ ≤
 
are non-dimensional parameters. 

Parametric equations (10)–(12) allow to construct an unlimited number of groups of three surfaces. 
And in each group, the three surfaces will have the same geometric frame of two half-superellipses in 
vertical coordinate planes and the same circular base in the horizontal plane. 

Several specific groups of three surfaces with the same frame are constructed and illustrated below. 
Using parametric equations (10)–(12), the first group of three surfaces is constructed for the case of n = m = 
= s = k = 1 (Figure 1), the second group of three is constructed with n = m = 1, s = k = 2 (Figure 2), 
the third group of three has s = k = 1, n = m = ¾ (Figure 3), and the fourth group of three is constructed with 
n = m = 2, s = k = ¾ (Figure 4). The surfaces are visualized using Matplotlib v3.4.2 plotting library for 
Python programming language [13]. 
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а b c 

Figure 1. Analytical surfaces with a circular base (the 1st group of three where n = m = s = k = 1): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 2. Analytical surfaces with a circular base (the 2nd group of three where n = m = 1, s = k = 2): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 3. Analytical surfaces with a circular base (the 3rd group of three where s = k = 1, n = m = 3/4): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 

 

 
а b c 

Figure 4. Analytical surfaces with a circular base (the 4th group of three where n = m = 2, s = k = 3/4): 
а — generated using equations (10); b — generated using equations (11); c — generated using equations (12) 

S o u r c e: compiled by Valery Karnevich. 
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By changing the values of exponents n, m, s, k in equations (10)–(12), it is possible to continue the 
construction of various surfaces with a circular base. The surfaces demonstrated in Figures 1–4 can be 
implemented as architectural structures in the form of rigid shells or in the forms of tent coverings. The 
potential for application of thin shells with middle surfaces shown in Figures 1–4 was originally considered 
in [14]. 

2.2. Geometric Analysis 

Geometric properties of the first two groups of the presented surfaces (Figures 1 and  2) are examined 
using the methods of differential geometry. 

A two-dimensional manifold (surface) naturally involves the use of two independent parameters. Any 
analytical surface defined by parametric equations can be expressed in vector form: 

( ) ( ) ( ) ( ), , , , ,u v x u v y u v z u v= = + +r r i j k  

where u and v are independent parameters. The terminal points of all vectors ( ),u v=r r  form a surface in 

space. 
Internal and external geometry of a surface is described numerically by the coefficients of the 

fundamental forms. Coefficients E, G, F of the first quadratic form characterize the internal geometry of a 
surface, coefficients L, M, N of the second quadratic form characterize the curvature of the surface in space 
and coefficient K defines the Gaussian curvature [15]: 

2 2 2 2, , ;u v u vE A G B F= = = = =r r r r  

2 2 2 2 2 2 2 2 2
, , ;

( ) ( ) ( )uu u v uv u v vv u vL M N
A B F A B F A B F

= = =
− − −

r r r r r r r r r
 

2

2 2 2
.

–

LN MK
A B F

−=  

2.3. Static Analysis 

Thin shells with the middle surfaces shown in Figure 1 is are selected for a comparative static analysis 
under uniformly distributed vertical load. The choice of the analysis method is discussed below. 

Four stages of creation and development of the theory of plates and shells, which gave rise to 
mechanism of analysis of spatial roof systems of large-span buildings and structures on a contemporary 
level, are presented in [16]. The author supposes that the fourth stage of development of the shell theory, 
design and construction of large-span structures has begun in the 21st century. 

Now, a large variety of analytical, semi-analytical, and numerical methods of analysis of shells and 
shell structures exist. In the previous section, it was shown that the considered middle surfaces of shells 
can be defined in Cartesian coordinates using algebraic equations (4)–(6) or using parametric equations 
(10)–(12). Curved coordinate lines u, v of these surfaces can be non-orthogonal (F ≠ 0) or orthogonal (F = 0), 
non-conjugate (M ≠ 0) or conjugate (M = 0). 

Taking this into account, one may use Goldenveiser’s system of 20 governing equations [17] of the 
thin shell theory for arbitrary curvilinear coordinates containing internal “pseudo-forces” and “pseudo-
moments”, or the system of governing equations suggested by S.N. Krivoshapko [18] containing internal 
forces and moments generally used in engineering calculations, or the governing equations of 
Ya.M. Grigorenko, A.M. Timonin [19] expressed in tensor form. The linear theory of thin elastic shells is 
an approximate two-dimensional case of three-dimensional linear theory of elasticity [20]. The linear theory 
of thin elastic shells belongs to classical special two-dimensional models within linear elasticity [21]. The 
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governing equations suggested by these researchers contain coefficients of the fundamental quadratic forms, 
which have not been previously presented for the specific surfaces examined in this paper. 

Relevant literature analysis has shown that these three groups of governing equations of the linear 
theory of thin shells have been used only in the case of the simplified momentless theory of shells or for the 
analysis of ruled shells with a number of simplifications in geometry or governing equations. Hence, 
accurate application of analytical methods for the shells in question cannot be realized at present time. 

Several numerical methods were considered for the analysis of the shells in this study. Such included: 
method of numerical integration of the system of governing differential equations, asymptotic semi-
analytical method with a small parameter, finite difference energy method, finite element method in terms 
of displacements, and others [22]. It was decided to use displacement-based FEM [23]. In the 21st century, 
such FEM software as LIRA, SCAD, STARK, MicroFE, STADIO, ABAQUS, ADINA, ANSYS, LS-DYNA, 
COSMOS, MSC/NASTRAN, SOFISTIC, and other were successfully used for similar tasks. It was decided 
to select SCAD [24], which allows to conveniently define shell geometry using parametric equations and set 
the mesh discretization step along the curved coordinate lines. By changing the overall dimensions of shells, 
selecting appropriate exponents of algebraic curves (1)–(3) of the main frame of the shells, and by assuming 
a particular parameter of optimization, one can select an optimal structure among a large number of shells 
in automatic mode. 

3. Results 

3.1. Geometric Analysis 

3.1.1. First Group of Three Surfaces 

The coefficients of the fundamental forms of the surface in Figure 1, a can be expressed in the following 
form: 

( ) ( )22 2 2 2 2 2 2 2/ 1 1uE A R R u v u T v= = = + − + −r ;  (13) 

( ) ( ) ( )22 2 2 2 2 21 1vG B T u R u B u= = = − + − =r ;   (14) 

( )( )2 2 – 1 1u vF R uv T u v= = + − −r r ;             (15) 

( )

( )

2

3
2 2 2 2 2

1
 –

 1

R Tv u
L

A B F u

−
=

− −
 ;        (16) 

( )

( )

2

1
2 2 2 2 2

1
 

 1

R T u
M

A B F u

−
=

− −
 ;    (17) 

 0;N =  (18) 

( )2 2 2 2 / – 0K M A B F=− < .  (19) 

In expressions (13)–(19), the coefficient of the first fundamental form F ≠ 0 shows that coordinate 
lines u, v are non-orthogonal. The coefficient of the second fundamental form N = 0 shows that coordinate 
lines v coincide with the straight generators of the surface. The coefficient of the second fundamental form 
M ≠ 0 shows that the coordinate grid u, v is non-conjugate. The ruled surface presented in Figure 1, a  is a 
surface of negative Gaussian curvature, since K < 0. 
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The coefficients of the fundamental quadratic forms of the surface shown in Figure 1, b are also 
determined by expressions (13)–(19). Since the ruled surfaces presented in Figure 1, a and 1, b have the 
same coefficients of the fundamental forms, they are identical surfaces. They are both cylindroids [25]. 

The coefficients of the fundamental quadratic forms of the surface in Figure 1, c are expressed as 
follows: 

2 2 2 2;uE A T R= = = +r  (20) 

0;u vF = =r r  (21) 

( ) ( )22 2 2 21 / 1 ;vG B R u v= = = − −r  (22) 

0;L =  (23) 

0;M =  (24) 

( )

( ) ( )
12 2 2

2 2 22

1( )
;

1  

vv u v TR u
N

A B F T R v

− −
= =

− + −

r r r
 (25) 

2

2 2 2
 0.

LN MK
A B F

−= =
−

 (26) 

In expressions (20)–(26), the coefficient of the second fundamental form L = 0 shows that the curved 
coordinate lines u coincide with the straight generators of the surface. The coefficient of the first 
fundamental form F = 0 shows that coordinate lines u, v are orthogonal and the coefficient of the second 
fundamental form M = 0 shows that the coordinate grid u, v is conjugate. Therefore, the introduced 
curvilinear system of coordinates u, v is defined in lines of principal curvatures. The ruled surface shown in 
Figure 1, c is a surface of zero Gaussian curvature, since K = 0. 

This ruled surface is a right circular cone. Differentials of the corresponding arclengths of coordinate 
lines u and v can be determined using the expressions 

,    .u vds Adu ds Bdv= =  

3.1.2. Second Group of Three Surfaces 

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, a have the 
following form: 

( ) ( ) ( )22 2 2 2 2 2 2 2 2 2/ 1  1 / 1 ;uE A r u v R u u T v u R= = = − + − − +  (27) 

( )( ) ( )2 2 2 2 2 21 ;vG B T R u B u= = = + − =r  (28) 

( )2 2 1 ;u vF vR u T u v= = − + −r r  (29) 

( )
2

2 2 2 2
;

 1

R TL
A B F u

= −
− −

 (30) 

0;M =  (31) 

 0;N =  (32) 

K = 0. (33) 
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Expressions (27)–(33) indicate that the system of curvilinear coordinates u, v is non-orthogonal (F ≠ 0), 
but conjugate (M = 0). Coordinate lines v coincide with the straight generators (N = 0) of the cylindrical 
surface (K = 0) shown in Figure 2, a. 

The coefficients of the fundamental quadratic forms of the surface shown in Figure 2, b have the 
following form: 

( ) ( )2 2 2 2 2 2 2 2 2/ 1 1 ;uE A R R v u u T v= = = + − + −r  (34) 

( ) ( ) ( )22 2 2 2 2 2 21 1 – / 1 ;vG B R u T v u v= = = − + −r  (35) 

( )2 2 1 ;u vF R uv vT u= = − + −r r  (36) 

( )

( ) ( )

2 2

3 1
2 2 2 2 22 2

1
;

 1 1

R T u v
L

A B F u v

−
=

− − −
 (37) 

( )

( ) ( )

2

1 1
2 2 2 2 22 2

1
;

 1 1

R T u v
M

A B F u v

−
= −

− − −
 (38) 

( )( )
( )

1
2 2 2

3/22 2 2 2

1 1
;

 1

R T u u
N

A B F v

− −
=

− −
 (39) 

( )
( ) ( )( )

24 2 4

2 22 2 2 2 2

1
0.

1 1

R T u v
K

A B F u v

−
= >

− − −
 (40) 

The corresponding coefficients of the fundamental quadratic forms of the surface shown in Figure 2, c  
have the following form: 

( ) ( )2 2 2 2 2 2 2 2 2/ 1 1 ;uE A T R v u u R v= = = + − + −r  (41) 

( ) ( ) ( )22 2 2 2 2 2 21 1 – / 1 ;vG B R u R v u v= = = − + −r  (42) 

( )2 1 – 2 ;u vF vR u= =r r  (43) 

( )

( ) ( )

2 2

3 1
2 2 2 2 22 2

1
;

 1 1

R T u v
K

A B F u v

−
= −

− − −
 (44) 

( )

( ) ( )

2

1 1
2 2 2 2 22 2

1
;

 1 1

R T u v
M

A B F u v

−
=

− − −
 (45) 

( )( )
( )

1
2 2 2

3
2 2 2 2 2

 1 1
;

 1

R T u u
N

A B F v

− −
= −

− −
 (46) 
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( )
( ) ( )( )

24 2 4

2 22 2 2 2 2

1
0.

1 1

R T u v
K

A B F u v

−
= >

− − −
 (47) 

By comparing equations (34)–(40) and (41)–(47), it can be observed that the surfaces presented in 
Figures 2, b and 2, c have the same values of the coefficients of the second fundamental form (L, M, N), 
only with the opposite signs, and the same positive Gaussian curvature (K > 0). 

The geometry of the remaining two groups of three surfaces (Figures 3 and 4) can be investigated in 
a similar manner. 

3.2. Static Analysis 

The shells with the middle surfaces shown in Figure 1 are subjected to a uniformly distributed load 
q = 1 kN/m2. The load acts in the opposite direction to the fixed axis Оz. 

It is assumed that T = R = 5 m, constant shell thickness h = 7 cm, elastic modulus of the shell material 
Еb = 32500 MPa and Poisson’s ratio ν = 0.17. The shell is fixed at the base along the contour z = 0. 

It was previously established that the surfaces in Figure 1, a and 1b are identical, despite being 
constructed differently by the process of moving the straight generators within the geometric frame. Thus, 
the static analysis is performed for two cases of the middle surface: cylindroid (Figure 1, a) and cone 
(Figure 1, c). The finite element models are developed in SCAD v21 software for the two cases of shells 
and are depicted in Figure 5, including the directions of curvilinear coordinates u and v. The geometry of 
the models is defined by parametric equations (10) and (12) respectively. The meshes of FE-models consist 
of plane shell elements. 

Figure 6 shows the exaggerated deformed shapes of the analyzed shells under the applied vertical load. 

 

a b 

Figure 5. Finite element model: 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

 
a b 

Figure 6. Deformed shape: 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 
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The left-hand sides (a) of Figures 7–12 demonstrate the computed strength parameters of the shell with 
the middle surface shown in Figure 1, a. Correspondingly, the right-hand sides (b) of Figures 7–12 show the 
computed stress-strain state parameters of the shell with the middle surface shown in Figure 1, c. Vertical 
displacements (Figure 7) are positive in the upwards direction. Normal stresses Nu and Nv (Figures 8–9) 
are directed along coordinate lines u and v respectively; positive values of normal stress indicate tension. 
Mu and Mv (Figures 10–11) represent bending moments, which act in the sections orthogonal to coordinate 
lines u and v respectively and are calculated as moment per unit length of these lines. Equivalent 
compressive stress (Figure 12) is computed as von Mises stress. 

 

 
 

a b 
Figure 7. Distribution of displacements along z-axis (mm): 

а — shell with cylindroidal middle surface; b — shell with conical middle surface 
S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 8. Distribution of normal stresses Nu (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 9. Distribution of normal stresses Nv (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 
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a  b 
Figure 10. Distribution of bending moments Mu (kN·m/m): 

а — shell with cylindroidal middle surface; b — shell with conical middle surface 
S o u r c e: compiled by Valery Karnevich. 

 

 
a  b 

Figure 11. Distribution of bending moments Mv (kN·m/m): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

 

  
a  b 

Figure 12. Distribution of equivalent von Mises compressive stress at the middle surface (kN/m2): 
а — shell with cylindroidal middle surface; b — shell with conical middle surface 

S o u r c e: compiled by Valery Karnevich. 

4. Discussion 

This paper shows the construction of 4 groups of three surfaces, based on the previously obtained 
analytical and parametric equations of surfaces with the geometric frame of three superellipses. All 12 
surfaces contain a circle as one of the plane curves of the frame. The presented surfaces are visualized 
graphically (see Figures 1–4) for better perception by architects and engineers. Using the methods of 
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differential geometry, the detailed analysis of 6 algebraic middle surfaces of shells was performed for the 
first time. As a result of the geometric analysis, two surfaces in one group of three surfaces (see Figure 1) 
came out identical, and in the case of the other group (see Figure 2) all three surfaces are geometrically 
different. In the opinion of the authors, these surfaces can be taken as a basis for the shapes of civil and 
mechanical engineering structures. At least, these surfaces can be in the reserve of surfaces waiting for their 
implementation [26] within the framework of one of the modern architectural styles. The number of new 
forms of thin shells can be significantly expanded by taking fragments of different superellipses as the plane 
curves of the geometric frame [27]. 

The comparative static analysis of two thin shells (see Figure 5), the middle surfaces of which belong 
to one group of three surfaces with identical frames, was undertaken to provide insight into the structural 
differences. It is clear from the deformed shapes (Figure 6), displacement distributions (Figure 7), stress and 
moment distributions (Figures 8–12) that the behavior of the two shells with the same dimensions, material 
and applied static load differs drastically. All distributions of the strength factors in the circular cone are 
rotationally symmetric. In the cylindroid, these distributions are symmetric about the radial edges of the 
shell, which lie along the x and y axes. The maximum vertical displacement of the cylindroid is about 
8 times higher than that of the cone (see Figure 7). The maximum stresses and moments (see Figures 8–12) 
are about 3–4 times greater in the cylindroid. The greatest normal stresses along curvilinear coordinates u, v 
in the cylindroid concentrate at the bottom of the radial edges (see Figure 8). The normal stresses in the 
circular cone are more linearly distributed and are larger near the circular base (see Figure 9). Moreover, the 
cylindroid shell has areas of tensile stress, whereas the cone exhibits pure compression. The maximum 
bending moments in the cylindroid concentrate along the radial edges (Figure 10). The bending moments in 
the circular cone are slightly greater near the base (see Figure 11), but are very small overall. It should be 
noted that the values of the strength factors along curvilinear coordinates u, v cannot be compared directly 
for the two shells, since their curvilinear coordinate grids are different (Figure 5). Hence, the distributions 
of von Mises compressive stress were obtained for the two shells (see Figure 12). These equivalent stress 
distributions roughly locate the dangerous areas of the shells. 

5. Conclusion 

Developments in mechanical and civil engineering require new more efficient solutions. One possible 
method of improving the load-bearing capacity of shell structures is modification of their geometry. This 
paper examines thin shells, the middle surfaces of which are defined by three plane curves of the geometric 
frame: a circle in the horizontal plane and two superellipses in the two vertical planes. It is shown that by 
varying the values of the exponents of the superellipses, it is possible to obtain a variety of outstanding 
shapes. 

1. The method of defining the geometry of surfaces by using the curves of their frames allows to obtain 
a group of three surfaces — one for each curve of the frame. Further geometric analysis is required to 
determine the differences within the group. Some surfaces within a group may be identical, and in the other 
group some may share particular geometric characteristics, but be different overall, as confirmed by the 
findings in this paper. 

2. It is shown that shells with geometrically different middle surfaces, but defined by the same frame, 
exhibit completely dissimilar behavior under static load. The presented static analysis of the two shells 
formed by the same main frame shows advantage of the circular cone over the cylindroid. However, a more 
detailed analysis is required for selecting the optimal shell, by testing for different dimensions, material 
properties and constraints. In some cases, material consumption, the simplest method of shell fabrication, or 
enclosed volume may be taken as the optimality criterion, which can be potentially satisfied by particular 
shell shapes demonstrated in this paper. 

The analysis of available sources allowed to conclude that in the beginning of the 21st century the 
period of decline of interest for shell structures and thin-walled shells was over. This happened owing to the 
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appearance of new structural materials, expansion of the inventory of analytical, point, spline and frame 
surfaces suitable for use as middle surfaces of shells, the development of more accurate calculation methods 
and computer software on their basis, and most importantly there was an increased demand for the creation 
of curvilinear large-span shell structures. These conclusions are confirmed by appearance of new 
architectural styles, directions, and style flows in the recent decades. Most architects and designers believe 
that curvilinear structures can become an alternative to traditional forms of buildings, while others, on the 
contrary, believe that the curvilinearity of buildings will quickly bore the inhabitants. 
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