
СТРОИТЕЛЬНАЯ МЕХАНИКА ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ И СООРУЖЕНИЙ 

STRUCTURAL MECHANICS OF ENGINEERING CONSTRUCTIONS AND BUILDINGS 

2025. 21(5). 389–398 

ISSN 1815-5235 (Print), 2587-8700 (Online) 

HTTP://JOURNALS.RUDN.RU/STRUCTURAL-MECHANICS

РАСЧЕТ ТОНКИХ УПРУГИХ ОБОЛОЧЕК 389 

DOI: 10.22363/1815-5235-2025-21-5-389-398 
EDN: DQUGGN 

1 Научная статья / Research article 

Математическая модель деформирования ортотропной оболочки 
при действии взрывной нагрузки 

А.А. Семенов

Санкт-Петербургский государственный архитектурно-строительный университет, Санкт-Петербург, Российская Федерация 
 sw.semenov@gmail.com 

Поступила в редакцию: 6 августа 2025 г. 
Доработана: 22 сентября 2025 г. 
Принята к публикации: 5 октября 2025 г. 

Аннотация. Предложена математическая модель деформирования тонкостенной оболочечной конструкции при динами-
ческом воздействии, в частности — взрывной нагрузки. Для учета затухания возникающих колебаний была модифициро-
вана предложенная автором ранее модель путем добавления в уравнения Эйлера — Лагранжа функции диссипации Рэлея. 
Также математическая модель учитывает геометрическую нелинейность, поперечные сдвиги и ортотропию материала. 
Программная реализация выполнена в ПО Maple. Для демонстрации применимости разработанной модели приведены 
примеры расчетов пологих оболочек двоякой кривизны при действии взрывной нагрузки разной интенсивности и при 
выборе разного коэффициента демпфирования в функции диссипации Рэлея. 
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Abstract. This paper proposes a mathematical model of the deformation of a thin-walled shell structure under dynamic loading, 
specifically, blast loading. To account for the damping of the resulting vibrations, the author’s previously proposed model was 
modified by adding a Rayleigh dissipation function to the Euler — Lagrange equations. The mathematical model also accounts for 
geometric nonlinearity, transverse shear, and material orthotropy. The software implementation performed in Maple. To demon-
strate the applicability of the developed model, examples of calculations of shallow doubly curved shells under blast loading of 
varying intensities and with different damping coefficients in the Rayleigh dissipation function are provided. 
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1. Введение 

Тонкостенные оболочки деформируются существенно нелинейно, и для их расчета приходится 
разрабатывать специальные методы и алгоритмы [1–5]. Одной из важных задач исследования тонко-
стенных конструкций является анализ их деформирования под действием динамических нагрузок. 

При динамических воздействиях на оболочки возникают колебания, и одним из важных факто-
ров при выполнении расчетов становится учет демпфирования [6; 7]. Особенно важно учитывать 
демпфирование, когда нагрузка прикладывается кратковременно, как при взрывном воздействии, и 
дальнейшее поведение конструкции можно достоверно описать только учитывая затухание колеба-
ний. Применительно к расчету оболочечных конструкций взрывная нагрузка рассматривалась в [8–
13]. Так, например, Godoy и Ameijeiras [12] исследуют деформирование стальных вертикальных ре-
зервуаров для хранения нефти с плоской крышей при взрыве, близком к конструкции. Анализиру-
ются значения энергии при увеличении пикового давления и формы потери устойчивости. В [9] вы-
полнены расчеты сферических оболочек из FGM, представлен расчетный алгоритм и результаты в 
виде динамических откликов, фазовых портретов и значений собственных частот. 

В механике используются вариационные принципы Лагранжа и Гамильтона, которые решают 
задачи, зависящие от времени, но основанные на законе сохранения энергии и, следовательно, не-
применимые к диссипативным системам [14]. В литературе можно найти ряд попыток преодолеть 
эту проблему. Одна из первых работ, посвященных учету диссипации в лагранжевой формулировке, 
была опубликована Личем [15] в 1958 г. Функция Лагранжа была расширена функцией диссипации 
Рэлея (1877). Такая формулировка была названа модифицированным принципом Гамильтона [15] 
(или расширенным [16]). Фактически такой подход позволяет расширять «классические» уравнения 
Лагранжа на неконсервативные (то есть диссипативные) системы [14; 17; 18]. 

Подход, основанный на добавлении в уравнения Эйлера – Лагранжа функции диссипации Рэлея 
[14; 19–23], применялся также в работах [25–27]. 

Так, в [24] исследуются вынужденные нелинейные колебания оболочек двоякой кривизны в со-
ответствии с теорией Койтера. Анализируются различные типы бифуркаций. 

M. Amabili [25] исследуются высокоамплитудные (геометрически нелинейные) колебания кру-
говых цилиндрических оболочек. Уравнения движения получены с помощью энергетического под-
хода, учитывающего демпфирование посредством диссипативной функции Рэлея. Сравниваются ре-
зультаты для четырех различных нелинейных теорий тонких оболочек. 

Следует отметить также работу Е.П. Детина [6], в которой модифицирована диссипативная функ-
ция Рэлея, названная диссипативной функцией Кельвина — Фойгта. Предложенная функция про-
порциональна квадрату скоростей деформаций материала, в отличие от диссипативной функции 
Рэлея, которая пропорциональна квадрату скоростей перемещений. 

Существует также подход, который учитывает диссипацию энергии за счет добавления в функ-
ционал отношения энергии демпфирования, рассеиваемой за цикл колебаний, к максимальной энер-
гии деформации [27–31]. Однако реализация такого подхода вычислительно сложнее. 

Цель исследования — расширение разработанных автором ранее математической модели и ал-
горитма [32; 33] на задачи расчета оболочечных конструкций с учетом демпфирования при действии 
взрывной нагрузки. 

2. Теория и методы 

Для получения основных соотношений математической модели используется функционал пол-
ной энергии (диссипация на данном этапе пока не учитывается): 
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Геометрические соотношения с учетом нелинейности будут выглядеть следующим образом: 

2
1

2
2

1 1 1
;

2

1 1 1
;

2

x x

y y

U A
V k W

A x AB y

V B
U k W

B y AB x

∂ ∂ε = + − + θ
∂ ∂
∂ ∂ε = + − + θ
∂ ∂

 

1 2
1 1 1 1

;xy
V U A B

U V
A x B y AB y AB x

∂ ∂ ∂ ∂γ = + − − + θ θ
∂ ∂ ∂ ∂

  (3) 

1 2
1 2

1 1 1 1
, , , .x y x y

W W
k U k V k k

A x B y R R

 ∂ ∂ θ = − + θ = − + = =  ∂ ∂   
 

А функции изменения кривизн 1χ , 2χ  и кручения 12χ  для принятой модели принимают вид 
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Геометрия оболочечной конструкции задается через параметры Ляме и значения радиусов глав-
ных кривизн.  

Также для использования в функционале (2) потребуются выражения для усилий и моментов, 
приведенных к срединной поверхности оболочки и приходящихся на единицу длины сечения: 
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где , , ,x y xy yxN N N N  — нормальные усилия в направлении осей x, y и сдвиговые усилия в плоско-

сти x yΟ ; , , ,x y xy yx M M M M  — изгибающие и крутящие моменты; ,x yQ Q  — поперечные силы в 

плоскостях x zΟ  и y zΟ ; 1 2,E E  — модули упругости; 12 13 23, ,G G G  — модули сдвига; 12 21,μ μ  —

коэффициенты Пуассона.  
Предлагаемая математическая модель строится на основе гипотез модели Тимошенко (Мин-

длина – Рейсснера, FSDT) и позволяет учитывать инерцию вращения и поперечные сдвиги. Тогда 
кинетическая энергия [32; 33] 
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Вычислив в (6) интеграл по переменной z, получим 

1

222 2 2 3

0

.
2 12

a b
yx

k
a

U V W h
E h ABdxdy

t t t t t

    ∂Ψ ∂Ψρ ∂ ∂ ∂         = + + + +              ∂ ∂ ∂ ∂ ∂             
    (7) 

Подставим аппроксимирующие функции (в соответствии с методом Л.В. Канторовича) в функ-
ционал (1). После вычисления интегралов по переменным x и y от известных функций функционал I 
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ний и углов поворота нормали представляются в следующем виде [33]: 
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где kl yklU − Ψ  — неизвестные функции переменной t; 1 5 1 5,..., , ,...,k k l lX X Y Y  — известные аппрокси-

мирующие функции. 
Дополним уравнения Эйлера — Лагранжа (8) слагаемым, учитывающим демпфирование на ос-

нове функции диссипации Рэлея. В известных работах функция диссипации Рэлея записана для мо-
дели деформирования конструкции без учета поперечных сдвигов (модель Кирхгофа — Лява, Кой-
тера, CSDT), а также не учитывается толщина обшивки 
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В то же время от учета толщины обшивки зависит то, как именно определять коэффициент c, 
какую он будет иметь размерность и порядок. 

В данной работе, по аналогии с выражением для кинетической энергии, запишем для модели 
Тимошенко — Рейсснера функцию диссипации Рэлея: 
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После интегрирования (11) по переменной z, получим 
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Итак, добавим слагаемое, содержащее функцию диссипации Рэлея (с учетом предложенных 
уточнений) в уравнение Эйлера — Лагранжа, как это делается, например, в работах [19; 24; 26]: 
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Дополним систему уравнений (13) начальными условиями при t = 0: 

0,ij ij ij xij yijU V W= = = Ψ = Ψ =  0, , 1, 2,..., ,ij ij ij xij yijU V W i j N= = = Ψ = Ψ = =       (14) 

или  

0, 0, 1, 2,..., 5 .j jX X j N= = =  

Система дифференциальных уравнений (13), (14) далее решается одним из численных методов, 
в данной работе для этой задачи применяется метод Розенброка. 
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3. Расчеты 

В качестве демонстрации применимости изложенного выше подхода выполним исследование 
тонкостенной пологой оболочки двоякой кривизны с толщиной h = 0,09 м, линейными размерами 
a = b = 10,8 м и радиусами главных кривизн R1 = R2 = 40,05 м. Параметры материала соответствуют 
стеклопластику Т10/УПЭ22-27 (модули упругости E1 = 0,294×105 МПа, E2 = 0,178×105 МПа, модули 
сдвига G12 = G13 = G23 = 0,0301·105 МПа, коэффициент Пуассона μ = 0,123, плотность ρ = 1800 кг/м3), 
края конструкции закреплены шарнирно-неподвижно. Нагрузка прикладывается взрывная, направ-

лена по нормали к поверхности и зависит от времени следующим образом: 0
0

exp sv

t
q q q

t

 
= − + 

 
, 

q0 = 1 МПа, t0 = 0,01 с. 
Также учитывается собственный вес. Расчеты выполняются при N = 4 в методе Л.В. Канторо- 

вича. Используя программу, разработанную автором в ПО Maple, покажем динамический отклик 
системы при выборе разных коэффициентов: c = 100 Н⋅с/м3 = 0,0001 МПа⋅с/м, c = 0,001 МПа⋅с/м, 
c = 0,002 МПа⋅с/м. Для сравнения приведем еще результаты без учета диссипации, когда 
c = 0 Н⋅с/м3 (рис. 1). Здесь и далее на рисунках показано, что кривая с большей амплитудой соот-
ветствует центральной части конструкции (x = a / 2, y = b / 2), а с меньшей амплитудой — четверти 
(x = a / 4, y = b / 4). На рис. 2 показаны аналогичные данные при значении q0 = 10 МПа. 
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Рис. 1. Динамический отклик при воздействии взрывной нагрузки (q0 = 1 МПа): 

а — c = 0 МПа⋅с / м; б — c = 0,0001 МПа⋅с / м; в  c = 0,001 МПа⋅с / м; г — c = 0,002 МПа⋅с / м 
И с т о ч н и к: выполнено А.А. Семеновым. 
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Рис. 2. Динамический отклик при воздействии взрывной нагрузки (q0 = 10 МПа): 
a — c = 0 МПа⋅с / м; б — c = 0,0001 МПа⋅с / м; в — c = 0,001 МПа⋅с / м; г — c = 0,002 МПа⋅с / м 

И с т о ч н и к: выполнено А.А. Семеновым. 

 
Очевидно, что при большем значении коэффициента c затухание колебаний происходит быст-

рее. Поиск и анализ его возможных значений, близких к реальным данным рассматриваемых мате-
риалов, будут являться предметом дальнейших исследований. 

Чтобы оценить, насколько разрушительным является воздействие взрывной нагрузки, построим 
также графики нормальных напряжений при q0 = 1 МПа и c = 0,001 МПа⋅с/м (рис. 3), и далее — при 
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q0 = 10 МПа и c = 0,001 МПа⋅с/м (рис. 4). Из графиков видно, что при q0 = 10 МПа значения напря-
жений в несколько раз превышают предельно допустимые для данного материала, а при q0 = 1 МПа 
близки к предельным и в отдельные моменты времени их превышают.  

 
а 

б 
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, МПаxσ

, секt
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Рис. 3. Значения нормальных напряжений при воздействии взрывной нагрузки (q0 = 1 МПа),  
c = 0,001 МПа⋅с / м 

И с т о ч н и к: выполнено А.А. Семеновым. 
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Рис. 4. Значения нормальных напряжений при воздействии взрывной нагрузки (q0 = 10 МПа),  
c = 0,001 МПа⋅с / м 

И с т о ч н и к: выполнено А.А. Семеновым. 
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4. Заключение 

Технологии компьютерного моделирования позволяют исследовать тонкостенные конструкции 
с учетом нелинейных эффектов. Предложенная математическая модель с использованием функции 
диссипации Рэлея дает возможность расширить применимость разработанных ранее автором моде-
лей и алгоритмов расчета на более широкий класс задач, в том числе моделировать динамический 
отклик конструкции на действие взрывной нагрузки, когда время приложения нагрузки малое, а ко-
лебательный процесс предполагает затухание. Также интерес представляют полученные данные 
о значениях напряжений во время колебаний, поскольку они могут превышать допустимые.  

Таким образом, получена новая математическая модель деформирования ортотропной оболочки 
при действии взрывной нагрузки. 
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