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Abstract. This paper proposes a mathematical model of the deformation of a thin-walled shell structure under dynamic loading, 
specifically, blast loading. To account for the damping of the resulting vibrations, the author’s previously proposed model was 
modified by adding a Rayleigh dissipation function to the Euler — Lagrange equations. The mathematical model also accounts for 
geometric nonlinearity, transverse shear, and material orthotropy. The software implementation performed in Maple. To demon-
strate the applicability of the developed model, examples of calculations of shallow doubly curved shells under blast loading of 
varying intensities and with different damping coefficients in the Rayleigh dissipation function are provided. 
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Аннотация. Предложена математическая модель деформирования тонкостенной оболочечной конструкции при динами-
ческом воздействии, в частности — взрывной нагрузки. Для учета затухания возникающих колебаний была модифициро-
вана предложенная автором ранее модель путем добавления в уравнения Эйлера — Лагранжа функции диссипации Рэлея. 
Также математическая модель учитывает геометрическую нелинейность, поперечные сдвиги и ортотропию материала. 
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1. Introduction 

Thin-walled shells deform in a significantly nonlinear manner, and special methods and algorithms 
must be developed to calculate them [1–5]. One important task in the study of thin-walled structures is the 
analysis of their deformation under dynamic loads. 

Dynamic impacts on shells cause vibrations, and one of the important factors in performing 
calculations is taking damping into account [6; 7]. It is especially important to consider damping when the 
load is applied for a short time, as in the case of explosive impacts, and further behavior of the structure can 
only be accurately described by taking into account the attenuation of vibrations. In relation to the 
calculation of shell structures, explosive loads were considered in [8–13]. For example, Godoy and 
Ameijeiras [12] investigate the deformation of vertical steel oil storage tanks with flat roofs during an 
explosion close to the structure. The energy values are analyzed at changing peak pressure and buckling 
shape. In [9], calculations of spherical shells made of FGM are performed, and the calculation algorithm 
and results are presented in the form of dynamic responses, phase portraits, and natural frequency values. 

Mechanics uses the variational principles of Lagrange and Hamilton, which solve time-dependent 
problems based on the law of conservation of energy and are therefore not applicable to dissipative systems 
[14]. A number of attempts to overcome this problem can be found in literature. One of the first papers 
devoted to accounting for dissipation in the Lagrangian formulation was published by Leech [14] in 1958. 
The Lagrangian function was extended by the Rayleigh dissipation function (1877). This formulation was 
called the modified Hamilton principle [15] (or extended [16]). Effectively, this approach allows the 
“classical” Lagrange equations to be extended to non-conservative (i.e., dissipative) systems [14; 17; 18]. 

The approach based on adding Rayleigh dissipation function to the Euler — Lagrange equations [14; 
19–23] was also used in [25–27]. 

Thus, [24] investigates forced nonlinear vibration of double-curved shells in accordance with Koiter's 
theory. Various types of bifurcations are analyzed. 

M. Amabili [26] investigates high-amplitude (geometrically nonlinear) vibration of circular cylindrical 
shells. The equations of motion are obtained using the energy approach that takes into account damping via 
the Rayleigh dissipative function. The results for four different nonlinear theories of thin shells are compared. 

The study of E.P. Detina [6] is also worth noting, in which the Rayleigh dissipative function is 
modified, called the Kelvin — Voigt dissipative function. The proposed function is proportional to the 
square of the material strain rate, in contrast to the Rayleigh dissipative function, which is proportional to 
the square of the displacement velocity. 

There is also an approach that takes into account energy dissipation by adding to the functional the 
ratio of damping energy, dissipated per vibration cycle, to the maximum deformation energy [27–31]. 
However, implementing this approach is computationally more complex. 

The aim of this study is to extend the mathematical model and the algorithm previously developed by 
the author [32; 33] to the problems of calculating shell structures under blast load taking into account 
damping. 

2. Theory and Methods 

To obtain the principal relations of the mathematical model, the total energy functional is used 
(dissipation is not taken into account at this stage): 

http://doi.org/10.22363/1815-5235-2025-21-5-389-398
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where Ek is the kinetic energy; t is time; s pE E= − Α  is the difference between the potential energy of 
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Geometric relations taking into account nonlinearity will take the following form: 
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The geometry of the shell structure is defined by the Lamé parameters and the values of the principal 
radii of curvature. 

Also, expressions for the forces and moments reduced to the mid-surface of the shell and per unit 
length of the cross-section are required for the use in functional (2): 
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where , , ,x y xy yxN N N N  are the normal forces along axes x, y and membrane shear forces in the x yΟ  

plane; , , ,x y xy yx M M M M  are the bending and twisting moments; ,x yQ Q  are the shear forces in the 

x zΟ  and y zΟ  planes; 1 2,E E  are the elasticity moduli; 12 13 23, ,G G G  are the shear moduli; 12 21,μ μ  are 

the Poisson’s ratios. 
The proposed mathematical model is based on the hypotheses of the Timoshenko model (Reissner–

Mindlin, FSDT) and allows for the consideration of rotational inertia and transverse shear. Then the kinetic 
energy [32; 33] 
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The approximating functions (in accordance with the L.V. Kantorovich’s method) are substituted into 
functional (1). After evaluating the integrals with respect to variables x and y in terms of known functions, 
functional I represents a one-dimensional functional in terms of functions ( ) ( )ij yijU t t− Ψ . Next, the well-

known Euler — Lagrange equation [32; 33] is used: 
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Next, the Kantorovich method and the Rosenbrock method (for numerical solution of rigid ODE 

systems) are used to perform the calculations. The Kantorovich method is used to reduce a multidimensional 
functional to a one-dimensional one. For this, the unknown displacement functions and deflection angles are 
represented as follows [33]: 
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where kl yklU − Ψ  are the unknown functions of t; 1 5 1 5,..., , ,...,k k l lX X Y Y  are the known approximation 

functions. 
The Euler — Lagrange equations (8) are supplemented with a term that takes into account damping 

based on the Rayleigh dissipation function. In well-known studies, the Rayleigh dissipation function written 
for the model of structural deformation does not take into account transverse shear (Kirchhoff — Love, 
Koiter, CSDT models) and the membrane thickness 
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At the same time, how exactly coefficient c is defined, as well as its dimension and order, depends on 
accounting for the membrane thickness. 

In this study, similar to the expression for kinetic energy, the Rayleigh dissipation function for the 
Timoshenko — Reissner model is written: 
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After integrating (11) with respect to variable z, one obtains 
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Now, a term containing the Rayleigh dissipation function (taking into account the proposed 
refinements) is added to the Euler — Lagrange equation, as it is done, for example, in [19; 24; 26] 
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System of equations (13) is complemented with initial conditions at t = 0 
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The system of differential equations (13), (14) is further solved using one of the numerical methods; in 
this study, the Rosenbrock method is applied to the problem. 



Semenov A.A. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):389–398 
 

 

394 ANALYSIS OF THIN ELASTIC SHELLS 

 

3. Analysis 

To demonstrate the applicability of the above approach, a thin-walled shallow shell of double curvature 
with thickness h = 0.09 m, linear dimensions a = b = 10.8 m and principal curvature radii R1 = R2 = 40.05 m 
is analyzed. The material parameters correspond to fiberglass T10/UPE22-27 (elasticity moduli 
E1 = 0.294×105 MPa, E2 = 0.178·105 MPa, shear moduli G12 = G13 = G23 = 0.0301×105 MPa, Poisson’s 
ratio μ = 0.123, density ρ = 1800 kg/m3), the edges of the structure are simply supported. The load is 

explosive, directed perpendicular to the surface, and depends on time as follows: 0
0

exp sv
tq q q
t

 
= − + 

 
, 

q0 = 1 MPa, t0 = 0.01 s. 
Self-weight is also taken into account. The analysis is performed with N = 4 in the Kantorovich 

method. Using a program developed by the author in Maple software, the dynamic response of the system at 
different coefficients c = 100 N⋅s/m3 = 0.0001 MPa⋅s/m, c = 0.001 MPa⋅s/m, c = 0.002 MPa⋅s/m is shown. 
For comparison, the results without considering damping, when c = 0 N⋅s/m3, are presented (Figure 1). 
Hereinafter in the figures it is shown that the curve with a larger amplitude corresponds to the central part 
of the structure (x = a / 2, y = b / 2), while the one with a smaller amplitude corresponds to the quarter 
(x = a / 4, y = b / 4). Figure 2 shows the same data for q0 = 10 MPa. 
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, mW
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, sect

, секt
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, mW
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Figure 1. Dynamic response under blast loading (q0 = 1 MPa): 

a — c = 0 MPa⋅s / m; b — c = 0.0001 MPa⋅s / m; c — c = 0.001 MPa⋅s / m; d — c = 0.002 MPa⋅s / m 
S o u r c e: made by A.A. Semenov. 
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Figure 2. Dynamic response under blast loading (q0 = 10 MPa): 
a — c = 0 MPa⋅s / m; b — c = 0.0001 MPa⋅s / m; c — c = 0.001 MPa⋅s / m; d — c = 0.002 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 

 
It is evident that with a higher value of coefficient c, the damping of vibration occurs more rapidly. The 

search and analysis of its possible values close to the real data for the materials under consideration will be 
the subject of further research.  
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To assess how destructive the impact of an explosive load is, the graphs of normal stresses are also 
constructed for q0 = 1 MPa and c = 0.001 MPa⋅s/m (Figure 3), and further — for q0 = 10 MPa and 
c = 0.001 MPa⋅s/m (Figure 4). It can be seen from the graphs that at q0 = 10 MPa the values of stress exceed 
the ultimate stress values for this material by several times, and at q0 = 1 MPa they are close to the ultimate 
stress values, and at certain moments they surpass them. 
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b 

 

, sect

, МPаxσ

, sect

, МPаyσ

 

Figure 3. Normal stress values under blast loading (q0 = 1 MPa), 
c = 0.001 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 
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Figure 4. Normal stress values under blast loading (q0 = 10 MPa), 
c = 0.001 MPa⋅s / m 

S o u r c e: made by A.A. Semenov. 
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4. Conclusion 

Computer modeling technologies allow to study thin-walled structures taking into account nonlinear 
effects. The proposed mathematical model using the Rayleigh dissipation function allows to extend the 
applicability of the models and calculation algorithms previously developed by the author to a wider class 
of problems. This includes simulating the dynamic response of a structure to an explosive load when the 
load application time is short and the vibration process involves damping. The data obtained on the stress 
values during vibrations are also of interest, as they may exceed the ultimate values. 

Thus, a new mathematical model of the deformation of an orthotropic shell under the action of an 
explosive load has been obtained. 
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