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Аннотация. Проведен анализ ряда опубликованных материалов по четырем типам торсовых поверхностей с двумя 
направляющими (опорными) алгебраическими кривыми второго порядка, лежащими в параллельных или пересекающих-
ся плоскостях. Три типа торсов описаны кратко со ссылками на источники и приведены графические иллюстрации для 
каждого типа торсов, а для торсовых поверхностей с двумя опорными кривыми с пересекающимися осями в пересекаю-
щихся плоскостях представлен порядок построения этой поверхности и методика получения параметрических уравнений. 
Методика проиллюстрирована на трех примерах. Установлено, что до настоящего времени нет ни одного исследования 
напряженно-деформированного состояния предложенных тонких торсовых оболочек, заданных в криволинейных неорто-
гональных сопряженных координатах, которые совпадают с внешним контуром торсовых оболочек. Показано, что есть 
предложения по применению предложенных поверхностей в архитектуре, судостроении и сельскохозяйственном машино-
строении. 

Ключевые слова: параллельность векторов, компланарность векторов, алгебраические кривые второго порядка, торс с дву-
мя направляющими кривыми, моделирование поверхностей, компьютерная графика 
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Abstract. An analysis of a number of published materials regarding four types of developable surfaces with two director 
(supporting) algebraic curves of the second order lying in parallel or in intersecting planes has been conducted. Three types of 
developable surfaces are shortly described with references to sources, and visualizations of each type of developable surface are 
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presented. For the developable surfaces with two supporting curves with intersecting axes in intersecting planes, the construction 
technique and the method of obtaining parametric equations are given. This method is illustrated with three examples. It is 
established that to date, there are no studies on the strength of thin shells in the form of the presented developable surfaces defined 
in curvilinear conjugate non-orthogonal coordinates that coincide with the external contour of the shells. It is shown that there are 
suggestions of application of the studied surfaces in architecture, shipbuilding, and agricultural machine engineering.  

Keywords: parallel vectors, vector coplanarity, second-order algebraic curves, developable surface with two director curves, 
surface modelling, computer graphics 
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1. Введение 

За последние пять лет автором были опубликованы статьи по построению торсовых поверхно-
стей, содержащих две заранее заданные плоские алгебраические кривые на противоположных сто-
ронах прямоугольного [1], трапециевидного [2] и произвольного четырехугольного [3] планов. При-
чем прямые образующие получаемых торсов совпадают с противоположными боковыми сторонами 
прямоугольного и трапециевидного планов. В случае произвольного четырехугольного плана прямые 
образующие не совпадают с боковыми сторонами, но только проектируются на них. 

При построении рассматриваемых торсов использованы работы Г. Монжа, Г.Е. Павленко [4], 
Ж.Н. Горбатович [5], Б. Бхаттачарии [6], В.Г. Рекача и Н.Н. Рыжова [7], В.Н. Иванова [8], М.Е. Ершова, 
Е.М. Тупиковой [9], Fr. Perez-Arribas и L. Fernandez-Jambrina [10]. 

Несмотря на то, что разработкой методик построения торсовых поверхностей с двумя заданны-
ми заранее плоскими кривыми занималось много геометров и инженеров графических иллюстраций, 
конкретных торсов встречается очень мало, буквально единицы. 

Цель исследования — привлечь внимание специалистов к возможности получения параметриче-
ских уравнений торсовых поверхностей, построенных на двух заранее заданных опорных плоских 
кривых, лежащих в параллельных или в пересекающихся плоскостях. До настоящего времени для 
построения эти поверхности использовались в основном графические методы [11; 12]. И лишь для 
5–6 торсовых поверхностей получены их неявные или параметрические уравнения [13]. Инженеры и 
проектировщики машиностроительной и текстильной отраслей заинтересованы в расширении спис-
ка торсовых поверхностей, заданных аналитическими формулами, что также является целью пред-
ложенного исследования [14; 15]. 

2. Алгебраические кривые в качестве направляющих 
кривых проектируемых торсов 

Во всех публикациях [1; 2; 3] использовались в качестве направляющих кривых алгебраические 
кривые второго и четвертого порядков. Эти кривые можно задать в виде следующих элементов: 

 парабола 

( )2 ( ) 1 –( ), ,x x u au y y u h u= = = =  (1) 

 фрагмент эллипса 

( ) ( ) ( )2 2 2 2 2
1 1 1,  1 / 1 / ,x x u au y y u h u a a a a= = = = − − −   (2) 

где a1 и h1 размеры полуосей полного эллипса, a1 ≥ a. Если задаться значением a1, можно определить 
величину другой полуоси полного эллипса h1: 
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Рис. 1. Постоянные геометрические параметры кривых 
И с т о ч н и к: выполнено С.Н. Кривошапко. 

Рис. 2. Цилиндрическая поверхность с параболами на торцах
И с т о ч н и к: выполнено В.Н. Ивановым и др. [16]. 

 фрагмент окружности 

( ) ( ) 2 2 2 2 2
1 1,  ,x x u au y y u R a u R a= = = = − − −   (3) 

 гипербола 

( ) ( )2 2,  2 ,x x u au y c h c hu c h= = = + − + +    (4) 

постоянный параметр с выбирается произвольно, но c ≠ 0. 

 биквадратная парабола: 

( )4,( ) 1 –( ) ,x x u au y y u h u= = = =   (5) 

 суперэллипс: 

( ) ( ),  1  .
trx x u au y y u h u= = = = −   (6) 

Тангенс угла наклона φ касательной к кри-
вым определяется по формуле 

tgφ ,
dy

dx
=  (7) 

–1 ≤ u ≤ 1. 

Остальные геометрические параметры по-
казаны на рис. 1. Более подробные сведения о 
кривых (1)–(6) можно взять в любом справоч-
нике по аналитической геометрии или в рабо-
тах [1–3]. 

2.1. Примеры торсов на прямоугольных, трапециевидных 
и произвольных четырехугольных планах с двумя направляющими кривыми 

на противоположных торцах 

2.1.1. Цилиндрические поверхности на прямоугольном плане (рис. 2) 

Все алгебраические цилиндрические поверх-
ности 2-го порядка рассмотрены в статье [16]. 
Цилиндрическая поверхность является вырож-
денным торсом, в котором ребро возврата уда-
лено на бесконечность. Задать цилиндрическую 
поверхность, перекрывающую прямоугольный 
план, в параметрической форме очень легко. 
Например, если одинаковые направляющие па-
раболы задать в виде y = ax2, где a = h/c2, то 
параметрические уравнения цилиндрической 
поверхности будут: x = x, y = ax2, z = z. 

2.1.2. Торсовые поверхности с двумя заданными плоскими 
кривыми в параллельных плоскостях 

Для построения торсовой поверхности, которая содержит плоские кривые в параллельных 
плоскостях xOy, то есть при z = 0, и в плоскости z = l, и у которой противоположные прямые обра-
зующие лежат в горизонтальной плоскости xOz параллельно координатной плоскости yOz, необхо-
димо принять, что углы φ0 у обеих направляющих кривых равны (рис. 1). 



Krivoshapko S.N. Structural Mechanics of Engineering Constructions and Buildings. 2025;21(5):377–388 
 

 

380 ANALYSIS OF THIN ELASTIC SHELLS 

Если дана пара любых направляющих кривых, заданных уравнениями (1)–(6), то их векторные 
уравнения можно представить в виде 

)(11 urr =  и  )(22 vrr =   (8) 

относительно полюса О, где u, v — соответствующие параметры, тогда уравнение торса можно пред-
ставить в виде [6] 

1 2 1( ,λ) ( ) λ[ ( ) ( )],u u v u= + −r r r r   (9) 

где λ — безразмерный параметр, 0 λ 1.≤ ≤  
При задании торса в виде (9) координатные линии λ = 0 и λ = 1 совпадают с направляющими 

кривыми. Между параметрами u и v должно существовать соотношение [4] 

( )
( )

( )
( )

' '
1 2
' '
1 2

.
y u y v

x u x v
=    (10) 

Геометрический смысл уравнения (10) состоит в том, что прямолинейная образующая торса 
проходит через две соответствующие точки плоских кривых, для которых угловые коэффициенты 
касательных φ0 равны, т. е. касательные, проведенные через соответствующие точки двух кривых, 
должны быть параллельны. 

Векторное уравнение (9) можно представить в параметрической форме 

( ) ( )( ) ( )1 2,  1– ,x x u x u x v u= λ = + λ   λ  

( ) ( )( ) ( )1 2,  1– ,y y u y u y v u= λ = + λ   λ  

.( ) z z l= λ = λ   (11) 

Описанная выше методика определения параметрических уравнений (11) торсовых поверхно-
стей в работе [1] апробирована на примерах пяти вариантов двоек плоских кривых в качестве направ-
ляющих кривых: эллипс (2) + парабола (1), фрагмент окружности (3) + парабола (1), гипербола (4) + 
парабола (1) (рис. 3), парабола (1) + биквадратная парабола (5) (рис. 4), суперэллипс (6) с r = t = 2 + 
суперэллипс (6) с r = t = 3. 

 

Рис. 3. Торс с параболой и гиперболой на торцах 
И с т о ч н и к: выполнено С.Н. Кривошапко. 

Рис. 4. Торс с параболами второго и четвертого порядков на торцах 
И с т о ч н и к: выполнено С.Н. Кривошапко.

 
Торсовая поверхность с окружностью и параболой в параллельных плоскостях привлекла также 

внимание Ж.Н. Горбатовича [5]. Поверхность с эллипсом и параболой в параллельных плоскостях 
изучалась в статье [17]. Торс с параболами использовался для иллюстрации способа построения его 
развертки на плоскость [9]. Есть пример аппроксимации торсовой поверхности с параболами 2-го и 
4-го порядков в параллельных плоскостях складчатой структурой [18]. Указанные разработки можно 
использовать применительно к рассматриваемым торсам на прямоугольных планах, но в указанных 
статьях [5; 9; 18] контурные прямые образующие не лежат в горизонтальной плоскости. 
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В [2] рассмотрены торсовые поверхности с двумя заданными плоскими кривыми (1)–(6) в па-
раллельных плоскостях, но перекрывающие трапециевидный план. В этом случае для первой кривой 
(см. рис. 1) 1 1,u− ≤ ≤ то есть ,a x a− ≤ ≤  а для второй кривой	 1 1,v− ≤ ≤  то есть .b v b− ≤ ≤  Если плос-
кие направляющие кривые (8) лежат в параллельных плоскостях, то между параметрами u и v долж-
но существовать соотношение (10). 

При построении торсовой поверхности, которая будет иметь плоские направляющие кривые с 
одинаковыми стрелами подъема h на оси Oz и с двумя прямолинейными образующими, совпадаю-
щими с боковыми сторонами трапециевидного плана на плоскости xOz, необходимо выполнить до-
полнительное условие (см. рис. 1): 

tgφо одной кривой при x = ±a должен быть равен tgφо другой кривой при x = ±b.  

После выполнения условий (10) можно записать параметрические уравнения (11) искомой тор-
совой поверхности. В [2] методика построения апробирована на примерах шести вариантов двоек 
плоских кривых в качестве направляющих кривых: эллипс (2) + парабола (1) (рис. 5), фрагмент 
окружности (3) + парабола (1) (рис. 6), гипербола (4) + парабола (1), парабола (1) + биквадратная па-
рабола (5), суперэллипс (6) с r = t = 2 + суперэллипс (6) с r = t = 3, гипербола (4) + биквадратная па-
рабола (5). 

 

 

Общий вид 

 

General view 

 

План в осях xOz 

 

План в осях yOz 

 

План в осях yOz 

Рис. 5. Торсовая поверхность с фрагментом 
эллипса и параболой на параллельных торцах 
И с т о ч н и к: выполнено С.Н. Кривошапко.

Рис. 6. Торсовая поверхность с фрагментом 
окружности  и параболой на параллельных торцах 

И с т о ч н и к: выполнено С.Н. Кривошапко.

 
Торсовые поверхности на трапециевидном плане с двумя плоскими заданными кривыми на двух 

параллельных краях и с опирающимися на боковые стороны прямыми образующими рассматрива-
лись только в [7] с архитектурной точки зрения. 
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Figure 9. Two director curves with intersecting 
axes in intersecting planes 

S o u r c e: compiled by S.N. Krivoshapko. 

 

2.1.3. Торсовые поверхности с двумя заданными плоскими 
кривыми в пересекающихся плоскостях 

При этих условиях возможны два случая, приемлемых для практического применения: когда оси 
направляющих кривых параллельны (случай 1) и когда оси направляющих кривых пересекаются 
(случай 2). Первый случай подробно рассмотрен в статье [3]. В качестве направляющих кривых взя-
ты кривые (1)–(6) попарно и построены шесть торсовых поверхностей. Две из них представлены на 
рис. 7 и 8. 

 

 
 

 

 

а b  а b 

Рис. 7. Торс с биквадратной и квадратной 
параболами в пересекающихся плоскостях: 

а — общий вид; b — вид на торс в плоскости xOz 
И с т о ч н и к: выполнено С.Н. Кривошапко. 

 Рис. 8. Торс с гиперболой и параболой 
в пересекающихся плоскостях: 

а — общий вид; b — вид на торс в плоскости yOz 
И с т о ч н и к: выполнено С.Н. Кривошапко. 

 
Второй случай рассмотрим более подробно. Пусть две кривые лежат в пересекающихся плоско-

стях, а их оси пересекаются (рис. 9), тогда их параметрические уравнения можно представить в виде 

кривая  1:       1 1 1 1, , 0; ( )x x u y u z= = =  

кривая  2:     2 2 2 2 2,( ),  tg .x x v y v z x= = = ϕ  (12) 

Условие компланарности трех векторов записы-
вается в виде 

( )/ /
2 1 1 2– , , 0,=r r r r  

или 

1

2

2 1   2

/

/
2

tgφ

1 0 0,

1 tgφ

x x v u x

x

x x

− −

=  

или в развернутом виде: 

( )/ / / /
2 1 1 2 2 1 0,x x v u x x x x− + − =   (13) 

если принять 

/ / / /
1 2 2 2 2 доп( ) ( ) (1, 1, tg , co) s ,y u y v z x x z v= = = ϕ = ϕ  

φ — угол между пересекающимися плоскостями. 
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Векторное уравнение (9) для рассматриваемого случая задания направляющих кривых (12) 
можно перевести в параметрическую форму задания искомой торсовой поверхности: 

( ) ( )( ) ( )1 2  ,   1– ;  x x u x u x v u= λ = λ +   λ  

( ) ( )( ) ( ) ( )1 2,  1– 1–  ;y y u y u y v u u v= λ = λ + λ  λ + λ =  

( ) ( )2, tg .z z u x v u λ = = λ ϕ   (14) 

Пример  1.  Пусть заданы две квадратные параболы, лежащие в пересекающихся под углом φ 
плоскостях (рис. 9): 

( ) ( )2 2
1 1 1 1 1  1 –  / ,   ,  0;x x u h u a y y u u z = = == =  

( ) ( ) ( )2 2 2 2
2 2 2 2 2 2  1–  / cos ,   ,    1–  / sin .x x v H v b y y v v z z v H v b     = = ϕ = = = = ϕ  (15) 

 

 

 

 

а  b 

Рис. 10. Торсовая поверхность, задаваемая уравнениями (17): 
а — общий вид; b — вид на торс в плоскости xOz 

И с т о ч н и к: выполнено С.Н. Кривошапко.

 
Соотношение между параметрами u и v находят по формуле (13): 

22 2
2

1,2
1 1

4 .               
2 2

a a
v u u b

u u

   
= + ± + −      

   
 (16) 

Если принять a = b, то получим v1 = u и v2 = a2/u. 
Принимая в дальнейшем v = v1 = u и a = b, параметрические уравнения (14) искомой торсовой 

поверхности запишутся как 

( ) ( )
2

2
,λ 1 1 λ λ cosφ ;

u
x x u h H

a

 
= = −  − +     

 
 

( ) ;y y u u= =  

( )
2

2
, λ 1 sinφ.                 

u
z z u H

a

 
= λ = −  

 
 (17) 

На рис. 10 представлена поверхность, задаваемая параметрическими уравнениями (17), где 

h = 6 m, H = 5 m, a = 2 m, φ = 60o, െa ≤ u ≤ a, 0 ≤ λ ≤ 1. 
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Рис. 11. Параболический торс 
И с т о ч н и к: выполнено С.Н. Кривошапко. 

Пример  2. Если принять, что параболы (15) лежат во взаимно перпендикулярных плоскостях, 
то φ = 90o, а параметрические уравнения (17) примут вид 

( ) ( )
2

2
,λ 1 1 λ ,

u
x x u h

a

 
= = −  −     

 
 

( ) ,y y u u= =  

( )
2

2
, λ 1 .

u
z z u H

a

 
= λ = −  

 
 (18) 

Параметрические уравнения (18) можно преобразовать в неявную форму задания: 
2

2
1 0.

z y x

H ha
+ + − =  

Очевидно, что это неявное уравнение описывает параболи-
ческий цилиндр. 

В энциклопедии [13] описаны две торсовые поверхности: 
одна с параболами, оси которых пересекаются, но параметриче-
ские уравнения парабол имеют вид, отличный от уравнений (15), 
другая торсовая поверхность содержит два эллипса во взаимно 
перпендикулярных плоскостях. 

В.С. Обухова и Р.И. Воробкевич [19] предложили взять за 
направляющие кривые две параболы во взаимно перпендику-
лярных координатных плоскостях, касающихся своими верши-
нами одной из координатных осей, а оси парабол перпендику-
лярны к этой оси (рис. 11). 

 
Пример  3.  За направляющие кривые приняты полуэллипс (кривая 1) и парабола (кривая 2): 

( )
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1 1 1 12
1 ,       ,  0;

u
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Соотношение между параметрами u и v находят по формуле (13): 

2

2 2

2
.

va
u

b v
=

+
 (19) 

Параметрические уравнения (14) искомой торсовой поверхности запишутся как 
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a                               b 

Рис. 12. Торсовая поверхность, задаваемая уравнениями (20):
а — общий вид; б — вид на торс в плоскости yOz 

И с т о ч н и к: выполнено С.Н. Кривошапко. 

На рис. 12 представлена поверхность, зада-
ваемая параметрическими уравнениями (20), где 

h = 4 м, H = 5 м, a = 1,2 м, b = 1,8 м; 
o 60 , , 0  1.b v bϕ = − ≤ ≤ ≤ λ ≤  

В дальнейших предложениях торсовых по-
верхностей, заданных параметрическими урав-
нениями (14), для практического применения 
можно повернуть полученный торс вокруг оси y 
так, чтобы крайние прямые образующие торса 
стали опираться на заданное основание. В этом 
случае пресекающиеся плоскости с направляю-
щими кривыми будут наклонены к основанию 
под соответствующими углами (см. рис. 10, а). 

3. Обзор исследований по определению напряженно- 
деформированного состояния четырех типов торсовых оболочек 

с предложенными срединными поверхностями 

Начало геометрическим исследованиям невырожденных торсовых поверхностей положил Г. Монж 
в 1805 г. С тех пор появились сотни научных работ, посвященных геометрии и применению этих по-
верхностей. Изучению напряженно-деформированного состояния тонких невырожденных торсовых 
оболочек, за исключением торсов-геликоидов [20] и оболочек одинакового ската [21], посвящено 
меньше двух десятков работ. Все известные торсовые оболочки имеют срединные поверхности, 
заданные в неортогональной сопряженной системе криволинейных координат, что значительно за-
трудняет аналитический расчет этих оболочек. 

Система 20 расчетных уравнений для определения 19 двумерных параметров, представленная 
А.Л. Гольденвейзером, при условии задания срединной поверхности в произвольной системе криво-
линейных координат содержит внутренние «псевдоусилия» и «псевдомоменты» в отличие от внут-
ренних усилий и моментов, принятых в системе 20 расчетных уравнений, содержащих 19 неизвест-
ных величин, полученных автором [22]. Эти две системы расчетных уравнений использовались в 
упрощенном варианте только для безмоментного расчета торсовых оболочек двух видов. Г.Ч. Баджо- 
рия [23] применил уравнения равновесия А.Л. Гольденвейзера для безмоментного расчета торсовой 
оболочки, заданной в виде 

( ) ( ) ( ),   u v v u v= = +ρr r l ,   (21) 

где ρ(v) — текущий радиус-вектор ребра возврата; l(v) — единичный касательный вектор к ребру 
возврата. Б. Бхаттачария [24] также применил уравнения равновесия А.Л. Гольденвейзера, но при 
условии задания срединной поверхности торсовой оболочки в виде (9). 

По безмоментной теории рассчитана торсовая оболочка, перекрывающая произвольный четы-
рехугольный план с двумя плоскими параболами, лежащими в пересекающихся плоскостях с парал-
лельными осями [25]. Результаты расчета торсовой оболочки с окружностью и эллипсом в парал-
лельных плоскостях, нагруженной линейной нагрузкой на круговом торце, представлены в работе 
[26]. Та же оболочка, но нагруженная собственным весом, рассмотрена в [27]. 

4. Результаты 

1. При построении торсовой поверхности с двумя направляющими алгебраическими кривыми 
n-го порядка в параллельных плоскостях (рис. 3, 4), проходящих через противоположные стороны 
прямоугольного плана 2a × l, можно взять за направляющие кривые любые алгебраические кривые, 
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причем стрела подъема h (рис. 1) одной из двух кривых принимается произвольной, а стрела подъ-
ема второй кривой вычисляется в зависимости от геометрических параметров двух принятых кри-
вых из условия равенства углов φ0. Расстояние l между плоскостями с кривыми на величину стрел 
подъема кривых не влияет. 

2. Величины стрел подъема двух суперэллипсов (6) на параллельных плоскостях можно прини-
мать любыми. 

3. Для построения торсов с двумя направляющими алгебраическими кривыми n-го порядка в
параллельных плоскостях (рис. 3, 4), проходящих через противоположные стороны прямоугольного 
плана 2a × l и торсов с двумя заданными плоскими кривыми (1)–(6) в параллельных плоскостях, 
но перекрывающих трапециевидный план с противоположными основаниями, равными 2a и 2b, 
можно использовать одни и те же параметрические уравнения (11). 

4. Величины стрел подъема h и H двух направляющих кривых, лежащих в пересекающихся
плоскостях, и величина угла φ между этими плоскостями не влияют на соотношение между пара-
метрами u и v (см., например, формулы (16) и (19)). 

5. Показано, что до настоящего времени исследованы 6 торсов с направляющими кривыми в па-
раллельных плоскостях и с заданными граничными условиями на контурах прямоугольных пла-
нов [1], 8 торсов с направляющими кривыми в параллельных плоскостях и с заданными граничными 
условиями на контурах трапециевидных планов [2], 5 торсов с направляющими кривыми с парал-
лельными осями в пересекающихся плоскостях [3], и только 3 торса с направляющими кривыми 
с пересекающимися осями в пересекающихся плоскостях. В представленной статье предложено к 
рассмотрению еще 3 торса с направляющими кривыми с пересекающимися осями в пересекающихся 
плоскостях. 

6. Обзор опубликованных работ показал, что в настоящее время нет исследований напряженно-
деформированного состояния тонких оболочек с рассмотренными срединными торсовыми поверх-
ностями, заданными в криволинейных неортогональных сопряженных координатах u, λ в виде (11) 
или (14) с применением моментной теории оболочек. Исследователи из инженерной академии Рос-
сийского университета дружбы народов (ИА РУДН), Москва, опубликовали большое число работ по 
геометрии, применению, аппроксимации торсов складками, построению разверток торсов на плос-
кость и параболическому изгибанию торсовых поверхностей, по определению параметров напря-
женно-деформированного состояния некоторых частных случаев торсовых оболочек. Помимо их ра-
бот, часть из которых указана в разделе «Использованная литература», большинство опубликованных 
научных статей за последние 25 лет посвящены реализации методов построения разверток торсов с 
двумя заданными направляющими кривыми на плоскость с максимальным привлечением ЭВМ [14; 
28; 29] и применению торсов на практике [30] в авангардной архитектуре, в сельскохозяйственном 
машиностроении, в судостроении [10], в индустрии моды [15], а также решению математических 
задач, связанных с торсовыми поверхностями [31]. 

7. Установлено, что единственной работой по нахождению оптимальной цилиндрической обо-
лочки с двумя искомыми опорными кривыми на торцах является статья В.Н. Иванова, О.О. Алёши- 
ной, Е.А. Ларионова [16]. Цилиндрические поверхности являются вырожденными торсовыми по-
верхностями, у которых ребро возврата удаляется на бесконечность. 

5. Заключение 

В научно-технической литературе предложено 10 методов конструирования торсовых поверхно-
стей. Наиболее известные из них это — конструирование торсов по двум заданным направляющим 
кривым, конструирование по заданному ребру возврата и кинематический метод наматывания плос-
кости с прямой линией на цилиндр и конус. Первый метод из перечисленных выше рекомендуется в 
основном для проектирования покрытий больших площадей в строительстве, второй — широко ис-
пользуется для создания винтовых и винтообразных изделий в машиностроении, а третий метод 
применяется при исследовании траектории движения прямой линии в пространстве и при изучении 
резной линейчатой поверхности Монжа. 
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Несмотря на то, что имеются эскизы архитектурных объектов в форме торсов с заданными 
опорными плоскими кривыми, наибольшее применение они нашли при проектировании корпусов 
речных и морских судов. Практически во всех публикациях по изготовлению корпусов судов исполь-
зуется графическое воплощение идей конструирования этих торсовых поверхностей. 

В статье предложены аналитические решения поставленных задач. Для удобства изучения тор-
совых поверхностей с двумя заданными кривыми они разделены на четыре типа, для каждого из 
которых показан порядок получения явных или параметрических уравнений, по которым с помощью 
компьютерной графики построены соответствующие торсовые поверхности с заданными геометри-
ческими параметрами. 

Представленные материалы могут привлечь архитекторов и инженеров-практиков к расширен-
ному использованию предложенных развертывающихся поверхностей в формах реальных изделий, 
конструкций и сооружений. 
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