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AnHoTauus. [TokazaHo W TPOWIUIIOCTPUPOBAHO, UTO, B3SB OCHOBHOM
KapKac TOBEPXHOCTH, COCTOSAMIMHA M3 TPeX IUIOCKUX KPHUBBIX, PACIIONO-
JKEHHBIX B TpeX KOOPAWHATHBIX IUIOCKOCTSX, MOXXHO CIIPOSKTHPOBATH

TPH pa3iiMuHble anreOpanyeckue MOBEPXHOCTH C OJHUM U TEM K€ JKECT-
KUM KapkacoMm. PaccMoTpeHa ojiHa TpoWKa HOBBIX JIMHEWYATBhIX MMOBEPX-
HOCTEH B ceMeicTBe M3 IATH TPOCK JHMHEHYATHIX MOBEPXHOCTEH, cdop-
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1. Introduction

The geometry and shaping of surfaces, design, calculation and application of thin-walled structures
based on different types of surfaces have been the subject of many scientific works. At the same time, there
are always questions to be considered and new results to be obtained. The purpose of this research is to
investigate the possibility of shaping surfaces with a framework of three plan curves in the superellipse type
and to investigate the stress-strain state of these shells.
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It was proved that taking the main frame of the surface, consisting of three plane curves placed in
three coordinate planes (Figure 1), it is possible to design three different algebraic surfaces with the same
rigid frame [1-3]. In Figure 1, the plane curve in section with yOz plane coincides with midsection, in
section with xOz plane coincides with main buttock section and in section with xOy plane the plane curve
coincides with waterline. These three plane curves lie in mutually perpendicular cross-sections of the ship’s
hull. The geometric parameters of the hull (see Figure 1) are defined as follows: 7"— hull draft, 2% — hull
width, 2L — hull length. The surfaces constructed in this way are used for forming hulls of river and sea
ships (Figure 2) and underwater vehicles [1; 3]. It was first offered in [4; 5] to use these surfaces as middle

surfaces of building shells (Figures 3, 4).

waterline

midsection

Figure 1. Hydrodynamic surface skeleton consisting of three plane curves [2]
S our ce: made by S.N. Krivoshapko

Figure 2. A surface of ship hull formed
by a family of midship sections [2]
S our c e: made by S.N. Krivoshapko

Figure 4. The surface with a main frame from three
superellipses formed by plane lines at vertical plane [5]
S ource: made by O.0. Aleshina
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Figure 3. The surface with a main frame from three
superellipses formed by plane lines at horizontal planes [4]
S ource: made by O.0. Aleshina
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Figure 5. Lame curves at different values of parameters
n=m=0,5;0,7;1; 1,5;2,5; 5 [6]
S o ur c e: https://mathworld.wolfram.com/Superellipse.html
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In [3] three plane curves (see Figure 1) were taken as Lamé curves, also known as superellipses [6]. In
[3] the waterline, the main buttock and the midsection were accepted in the form of superellipses.
Parameters 7, ¢, n, m, s, k are positive degrees of superellipse equations. The application of superellipses as
plane curves gave the opportunity to simplify the visualization process of studied surfaces.

Assume that plane curves of the main frame of studied surfaces represent superellipses [6] and are
given in the form:
the first curve is placed in the plane z = 0:

b = (1= ), 0
the second curve is placed in the plane x = 0:

" =7 (1= o™ ), @)
the third curve is placed in the plane y = 0:

2l =T (= |x [ /25), 3)
where r =t n = m, s = k, for convex curves r, t, n, m, s, k > 1; for concave curves r, t, n, m, s, k < 1.
Iftotake r =¢t=1,n = m =1 (see Figure 5), s = k = 1, then curves (1)—(3) degenerate into straight lines,
and superellipses degenerate into thombs. Arbitrary parameters n, m, 7, ¢, s, kK make it possible to obtain a
large number of different surface shapes.

Using the method set forth in [1; 2], we can derive explicit equations of three algebraic surfaces with

the same main frame (1)—(3):
» with generatrix family of the section x = const:

L s . . mir 1/n
el = (1=} 1 2*) [1—|y/W| (1=l 2f) } ; @)

» with generatrix family of the section y = const:

. Un . . kit /s
[=7(1-] /) [1—|x/L| /(1—|y/W|) } ; ()

» with generatrix family of the section z = const:

p o \Um , T
|y|:W(1—|z| /T ) [1—|x/L| /(1—|z/T|) } ; (6)

where L <x <L, -W<y<W,0<z<T.
The explicit equations of surfaces (4)—(6) can be transformed into parametrical equations:

; 1/r
x=x(u)=%ul, y=y(u,v)=vW[l—uJ ;

z:z(u,v):T[l—uk}l/S [1 —|V|m}lm; (4a)
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1/t
x=x(u,v)=vL[1—urJ , y=y(u)=iuW;

z=z(u,v)= T[l —u"™ T/n [1— v T/S ; (5a)
x=x(u,v) =vL[l —~ us}l/k;

" 1/m ; 1/r

y=yu,v)= J_rW[l—u } [1—|v|:| , z=x(u)=uT,

(6a)
where 0 <u <1, -1 <v <1, u, v are dimensionless parameters and are the curvilinear coordinates lines of
the surfaces.

I.A. Mamieva in [7] proposed to introduce ruled surfaces given by equations (4)—(6) or (4a)—(6a). It is
established that due to the equations presented above, it is possible to construct five groups of ruled
surfaces, and each group contains three surfaces.

The aim of the investigation is to study the geometry and carry out a static analysis of shells with two
types of new ruled middle surfaces, first presented in [7]. This research will help to choose the optimal
shapes of ruled shells and extend the opportunities of their form-building for architects within the modern
architectural styles [8].

2. Method

2.1. Geometry of ruled surfaces based on algebraic surfaces
with the main frame of three superellipses (1)—(3)

Let the superellipse placed in the xOy plane be given by formula (1), and let the other two
superellipses of the main frame degenerate in straight lines, i.e. n = m = s = k = 1, then we shall have three
surfaces on the oval plane:

z=T(1—|x|/L){l—|y/W|/(l—|x/L|I)W}; (7)

2=T (1= |y /W) 1—|x/L|/(1—|y/W|’) ]; (8)
r W

| y[EW(1-2/T) 1—|x/L|t/(l—z/T)} , 9)

where L <x<L,-W<y<W,0<z<T.

The explicit equations of the surfaces (7)—(9) can be transformed into parametric equations:
x=x(u) =tul, y= y(u,v) = VW[I —ut:| l/r;

Z:Z(M’V)ZT[l —u][l —|v|], (Figure 6, a); (7a)

x=x(u,v)= vL[l—urJ 1/[, yzy(u) =tul,

z=z(u,v)=T[1 —u][l —|v|], (Figure 6, b); (8a)
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1r
x=x(u,v)=vL[l-u], y=y(u,v)=2W]1 —u][l —|v|t} ;

z=x(u)=uT, (Figure 6,c). (%a)

Three surfaces with » = ¢ = 4, but with the same main frame are shown in Figure 6, where u, v are the
curvilinear coordinates lines of the surfaces.

/"’l‘l .ﬁ- \
4
/%elﬂ,d
~ﬂ/ﬂfﬁ‘,\'h|‘ i
\ "ﬂﬂfJ I

il
i

Figure 6. The ruled surfaces on a plane oval base with the same main frame
S ource: made by G.L. Gbaguidi Aisse, O.0O. Aleshina, I.A. Mamieva

It is obviously that the first two surfaces (7) and (8) are the cylindroids [9].
Rewrite equations (7)—(9) in the detailed form:

(== (1-fslr )] (1ol s 2 )= [Tl L) 1] (7b)
(== (1ol )] (1ol o7 =[] w) 2] (8b)
[ /W + 1/ -[1-z/T] =0. (9b)

So, the ruled surfaces (7), (8) are algebraic surfaces of the 27 order. The ruled surface (9) is the » order
algebraic surface.

Taking into account that only the shells shown in Figure 6, i.e. with » = 4, will be considered below,
let us determine the coefficients of the basic quadratic forms [9] (Gaussian quantities of the first and second
orders in theory of surfaces) for their middle surfaces. The coefficients of the first quadratic form E, G, F

characterize the internal geometry of the shell, the coefficients of the second quadratic form L, M, N
characterize the curvature of the surface in space.

Each surface defined by parametric equations can be given by the vector equation
r=r(u,v)=x(u,v)i+y(u,v)j+z(uv)k
In this case, the coefficients of the basic quadratic forms [9] of the surface (7a) are expressed as
2.2 _ 2.2 642 a2 2 2
E=d? =2 =12y w2/ (1] 7412 (1-v)%;
2202 "2 2 2_ 2
G=B2=r2 =W (1-u*) "+ T2 (1-u)= B2 (u);

F=rry = (14) 7 o1 (1)1 v): (10)
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SLTWwu?(1-u)
T 4\4"’
JA2B2_F (l—u )

3
LTW(l—u )
Asz—Fz(l—u4)

where A4 and B are the Lame parameters of the surface.

The curvature coefficient N = 0 of the undeformed middle surface shows that the coordinate lines v
coincide with straight generatrixes of the surface (7a). The metric coefficient F # 0 shows that the
curvilinear coordinates u, v are non-orthogonal, and the curvature coefficient M # 0 of the undeformed
middle surface shows that the coordinate lattice u, v is non-conjugate.

The coefficients of the basic quadratic forms [9] of the surface (8a) are expressed as

M=t

374>

3/2
E=d? =2 =22 12/ (1-u*) 7+ 72 (1-v)%;
1/2
G=B2=r? =12(1-u*) "+ 72 (1-u) = B2 (u);
1/2
F:rurvz—vu3L2/(1—u4) +T2(1—u)(1—v); (12)
3 3LTWvu2(l—u) )
= 7/4 °
Ja?B?-F? (1-u*)
LTW(I—u3)
=+ 304
\/AZBZ—FZ(I—M4)
N =o0. (13)

The replacement of constant geometrical parameters W « L in formulas (12), (13) permits to obtain
formulas (10), (11). Comments to formulas (12), (13) will be analogous to comments to formulas (10) and
(11).

The two ruled surfaces shown in Figure 6, @ and Figure 6, b are surfaces of negative Gaussian
curvature because

K=(LN-m?)/ (4?82 =F?)=-m?/(47B?-F?)<0. (14)

The differentials of the corresponding arcs of coordinate lines # and v can be calculated using the
formulas ds, = Adu and ds,, = Bdv.

The coefficients of the basic quadratic forms [9] of the surface (9a) are expressed as

1/2
E=d? =52 =W2(1-v*) 70212472 = 42 (v);

3/2

F=r,r, = —v(l—u)[Lz +v2w? /(1 —v4)1/2} (15)
5
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w2 2
E=a?— 7(L2+T2v6)+L2T2 =(1-u)’ [ (V)]
(1-v)
N s 3TLWV? (1-u)
=F

VA2B? - F2 (1—\/4)7/4 ,
L=0,M = 0. (16)

The coefticients of the basic quadratic forms (15), (16) of the surfaces (9a) show that the coordinate
lines u are straight lines, and the surface in question is a surface of zero Gaussian curvature

1<=(yv—1\42)/(/1232 —F2) = 0. (17)

The curvilinear coordinate lines u are principal curvature lines of the surface (9a).

The curvature coefficient M =0 (16), therefore, curvilinear coordinate lines u, v are conjugate, and
this is naturally, as every family of lines intersecting a family of straight coordinate lines on surfaces forms
conjugate nets on them.

2.2. Preconditions for choosing a method for determining the parameters
of the stress-strain state of the ruled shells

The article [10] presents four stages of creation and development of the theory of plates and shells,
which gave rise to the mechanism of analysis of spatial roof structures of large-span buildings and
structures at the modern level. The beginning of the fourth stage in the development of the shell theory,
design and construction of large-span structures has been laid since the very beginning of the 21* century.

At present, there is a great variety of analytical, semi-analytical, and numerical methods for analyzing
shells and shell structures. In the previous part, it is shown that middle surfaces of the shell in question are
given in Cartesian coordinates using algebraic equations (4)—(6) or parametric equations (4a)—(6a). The
curvilinear coordinate lines u, v on these surfaces are non-orthogonal (F # 0) and non-conjugate (M # 0)
coordinate lines. One family of coordinate lines coincides with the rectilinear generatrixes of the surfaces
(L=00orN=0).

Taking these conditions into consideration, one can use the system of 20 governing equations of
Goldenveiser [11] of thin shell theory for arbitrary curvilinear coordinates containing internal “pseudo-
forces” and “pseudo-moments” or the system of governing equations suggested by Krivoshapko [12]
containing internal forces and moment recalculated per unit length of curvilinear coordinates or the
governing equations of Grigorenko and Timonin [13] written in tensor form. The governing equations
offered by these scientists contain the coefficients of the basic quadratic forms of surfaces, which for the
considered ruled shells are presented in this paper for the first time.

The analysis of published works has shown that these three groups of governing equations of the
linear theory of thin shells have been used only for simplified momentless theory of shells or for the
analysis of ruled shells with assumption of some simplifications in the geometry or in the governing
equations of the shell theory [14].

2.3. The momentless theory of analysis of the conical shell presented in Figure 6, ¢

The equilibrium equations of the approximate momentless thin shell theory for an arbitrary coordinate
system are obtained from the equilibrium equations of the moment theory. Eliminating the bending and
twisting moments and retaining the normal and tangent internal forces, we can write (Figure 7) [12]:
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Figure 7. Internal forces in a momentless shell [12]
S o urce: made by S.N. Krivoshapko

0 N,—-N,(0B 04 04 oS 0

— (A4S, )+ —4L—Y| ———¢ +—8, +B—%cosy + B—% siny + ABXsiny =0;

=, (45y) -~ [Gu = xj = Su+ B—t-cosy X X (18)

0 S +S,(0B 04 04 oS 0

— (AN, )+ H+—Y| — ——cosy |-—— N, + B—%siny — B— cosy =0;

o (AN siny, (614 oy Xj v T T ST Py O (19)
Y — Zsiny =0; 20

R, siny 20

(S, =S, )siny+(N, —N, )cosy = 0. (21)

Thus, equations (19), (20) contain the resultant forces N,, Ny and S,, # S, which are the forces per unit
length. X and Z represent the external forces per unit area applied to the surface.

The equations (18)—(21) were written with allowance for //R, =Y =0 for the problem in question.
The full version of the equations (18)—(21) is presented in [12].

In addition, cosy = F/(AB), siny, dB/du are functions of the dimensionless parameter v only.
From the equation (20) we get the normal force N,:

(A232 —F2)

A2N

Zsinz)(B2

=7 >0. (22)

N, = Zsinz)(]i‘V =

From the equation (21) we get the normal force N,:

N, =(8, -8y )tex - (23)
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The external surface load X, Z is defined as X = —gcos, Z = gsing, Y =0, where ¢ is the angle of the
external load direction ¢ with the direction opposite to the coordinate line direction u, there

1/2
cosp= T/ A4, sin(p=[A2—T2J / 4 (24)

are functions of the dimensionless parameter v only.

The coefficient of the first fundamental form 4 = 4(v) is equal to the length of the straight coordinate
line u from the vertex of the cone to the plane z = 0.

Taking into consideration that

A*B% - F?
F=—A(1—u)%4, a—B—a—Acosx:——( )

(25)
we substitute these expressions and the quantity of the normal force N,, given by a formula (23), into
equation (19). The result obtained is integrated into the following expression

S, = 4 j(l—u)(aNV +£6ijdu+(Vl(v) (26)

C(-uW 2B - F? ov A ou 1-u)®

where V1(v) is an arbitrary function of integration only over the parameter v.
Substituting expressions (25) and the difference (N,—Ny) defined by formulae (21) into equation (18)
and integrating the results, we can find

(4287-F%) 5
Su = o) SV — 3 .[_
A°B AB* OV

e () et}

A28 (1—u)aB?\ 2 AB? 27)

(A4S, )du -

where V>(v) is an arbitrary integration function. The unknown functions Vi1(v) and V>(v) are found from the
boundary conditions acceptable for the momentless shell theory.

Thus, the momentless shell theory makes it possible to obtain approximate values of internal normal
forces N, and N, using formulas (23) and (22), and values of membrane shearing forces S, and S, using
formulas (27) and (26). Formulas (25), (26) can be easily integrated and can be written in the detailed form.

The derived analytical formulas can be applied to the approximate calculation of only one type of
studied shells, shown in Figure 6, c¢. The other two ruled shells presented in Figure 6, a and Figure 6, b can
only be analyzed using numerical methods.

2.4. Geometry of ruled surfaces constructed on the basis of algebraic surfaces
with main frame of three degenerate superellipses

The simplest ruled surface is obtained if all three degenerated superellipses are rhombuses. In this
case, it is necessary to take » = ¢t =n =m = s = k=1 in formulas (1)—(3). Then the surfaces (4)—(6) become
identical:

z=T(1=|x|/ L=|y|/W). (28)
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The parametrical equations (4a)—(6a) become

x=x(u)= tul, y=y(u,v)=vW[1— u];
z=z(u,v)=T[l - u][l - |v|], (Figure 8, a); (29)

x=x(u)= tul, y=y(u,v)=vW[l - ul;
zzz(u,v)zT[l — u][l — |V|], (Figure 8, b); (30)

x=x(u,v)=VL[l - u];
y=y(u,v)=2W[1 - u][l - |v|}, z=x(u)= ul, (Figure 8,c). 31)

Three identical surfaces with different curvilinear coordinates u, v are presented in Figures 8.
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Figure 8. The polyhedrons with four triangular fragments of plane and on the rhombic base [12]
S o urce: made by S.N. Krivoshapko

It is obviously from Figures 8 that the derived identical surfaces (polyhedrons [15]) consist of the
same four fragments of planes with different position of surface coordinates.

3. Results and Discussion

In this paper the geometry of six new ruled surfaces belonging to two subgroups are studied. All of
them are constructed on the basis of general translation surfaces of the velaroidal types. For the first time,
the coefficients of the first and second fundamental forms in the theory of surfaces were obtained for these
new ruled surfaces. These geometric results will help architects and designers to widen the possibilities of
applications of the presented construction and engineering shells.

Analytical formulas for the determination of the force resultants using of the approximate momentless
theory of shells of zero Gaussian curvature, given by non-orthogonal conjugate curvilinear coordinates,
have been obtained. These formulas are presented for the first time.

The research in the article shows the complexity of studying the stress-strain state by an analytical
method using the general moment theory of shells. In this regard, one of the numerical calculation methods
can be used to further study the subclass of shells presented in the article. The finite element method [16]
has proven itself as an effective method for studying the stress-strain state of various shell shapes [17; 18].
Moreover, at present time, there is only one work [19] devoted to the determination of the stress-strain state
of super ellipsoidal shells of revolution.

The complexity of contemporary free-form architecture has been a driving force for the development
of new digital design process over the last years [20]. An interesting class of ruled surfaces, generated by a
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continuously moving straight line, opens a wide range of advantageous options for support structures,
mould production or facade elements [21]. Geometricians present many non-traditional methods for
defining ruled surfaces not only with the classical means, but first of all with the help of a computer [22].

4. Conclusion

The introduction into practice of new geometric shapes of shells and shell structures gives an
opportunity to expand the search for the most optimal forms that correspond to the selected criteria of
optimality. The distinguished Spanish engineer E. Torroja supposed that it is very prospective direction for
investigations carried out by experienced mechanical scientists, architects and young research. These
conclusions are confirmed by the appearance of new architectural styles, directions and style flows in the
21% century.

The main results:

1. The parametric equations of new ruled surfaces on a plane oval base with the same main frame are
obtained in the article (Figure 6). It is shown that, the ruled surfaces in Figure 6, a and Figure 6, b are
algebraic surfaces of the 2r order. The ruled surface Figure 6, ¢ is the r order algebraic surface.

2. The coefficients of the basic quadratic forms of the surfaces in Figure 6 are obtained in the article
for the first time. The two ruled surfaces shown in Figure 6, a and Figure 6, b are surfaces of negative
Gaussian curvature. The surface shown in Figure 6, c is a surface of zero Gaussian curvature.

3. The momentless shell theory makes it possible to obtain approximate values of internal normal
forces N, and N, using formulas (23) and (22), and values of membrane shearing forces S, and S, using
formulas (27) and (26).

4. The parametric equations of ruled algebraic surfaces with main frame of three degenerate
superellipses are obtained in the article for the first time (Figure 8). The simplest ruled surface is obtained if
all three degenerated superellipses are rhombuses. In this case, it is necessary to take r =t =n=m =5 =
= k=1 in formulas (1)—(3).
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