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Abstract. This study investigated influence of varying waviness characteristics of fiber,
represented by path amplitude A and different numbers of half sine waves k, on the
elastic-plastic dynamic behaviour of laminated composite plates with variable fiber
spacing. The analysis was based on the equations for action of constant axial dynamic
loading and two-dimensional layered approach with classical first order shear
deformation theory with five degrees of freedom per node, and it was performed with
FORTRAN 94 programming language. Von-Karman’s assumptions were used for the
discretization of the laminated plates to include geometric nonlinearity for nine-node
Lagrangian isoperimetric quadrilateral elements. Complete bond between the layers was
assumed with no delamination, which was based on first-order shear deformation theory.
The Newmark implicit time integration method and Newton-Raphson iteration were
simultaneously used to solve the nonlinear governing equation in conjunction. It was
proven in the research that the nonlinear performance of the laminated composite plate
was affected by the studied waviness parameters A and k, and also by the variable
distribution pattern selected for this study.
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Hctopus cratbn AHHoTanusl. Hccienyercst BIMsSHUE Pa3INYHBIX XapaKTEPUCTUK CHHYCO-
TMocTynuia B pexakuuio: 17 supaps 2024 r. UAAIBHONW (OPMBI BOJIOKOH, B TOM {HCIIC aMIUTHTY/B! M KONMHMECTBA M10-
JlopaGorana: 13 mapra 2024 . C/Ie/I0BATENBHOCTEH, Ha YNPYrOMIACTHYECKHE AMHAMUYMECKHE CBOHCTBA
Ipunsra k my6mukaumn: 22 Mapra 2024 1. MHOTOCTIOMHBIX KOMIIO3UTHBIX IUIACTMH C IEPEMEHHBIM PAacCTOSHHEM

MEXIY BOJOKHaMM. MeToauka MCCIEOBaHUS OCHOBaHA Ha HEKOTOPBIX
ypaBHeHuUsX Jlelicca — MapTtena 11 NOCTOSIHHOM 0CeBOM AMHAMUYECKON
Harpy3Kd U JByMEPHOM MHOTOCJIOIHOM HOJXOJE C KJIACCHUECKOH TeOopu-
ABTODBI 3a5BIIAIOT 00 OTCYTCTBUH el cIBUTOBBIX JleOpMalMii TIEPBOTO IMOPS/IKA C MSATHIO CTEHNEHSMH CBO-
KOH(JIMKTa HHTEPECOB. 00/1bI Ha y3el W pealn30BaHa C IOMOIIBIO SI3bIKA MPOTPAMMHUPOBAHMS
FORTRAN 94. T'unore3sl ¢oH Kapmana ncnonp3yroTcs Ui ydeTa Teo-
METPUYECKON HEMTMHEWHOCTH B JEBATUY3JIOBBIX H30NEPUMETPHUUECKUX
BkJ1aJ aBTOpOB YETBIPEXYTONIBHBIX dJeMeHTax JlarpaHxka, KOTOpBIE NPUMEHSAIOTCS UL
JUCKPETU3allMd MHOTOCIIOMHBIX IUIACTHH. IIpennonaraercs mojgHoe cuen-
JICHUE MEXIy CI0sSMH 0€3 paccliOeHHsI HA OCHOBAHUH TEOPHH CIABUIOBBIX
nedopmanuii epBoro mopsaka. [is pemieHus HEJIMHEHHOTO pa3peliaro-
IIETO YpaBHEHHUS OJHOBPEMEHHO HCIIONB3YIOTCS HESIBHBIM METOJ MHTE-
rpupoBanus Heiomapka u utepauuoHssiii Mmeron Herorona — Padcona.
Pe3ynbraTsl uccnenoBaHMs MOKa3blBalM, YTO HETUHEWHBIE XapaKTepH-
CTUKH CJIOMCTOM KOMITO3UTHOM IIACTHHBI 3aBUCST OT UCCIEAYEMBIX Ia-
paMeTpoB BOJIHUCTOCTH A ¥ k BOJIOKOH, a TaKKe OT BBIOpaHHOW yIsl aH-
HOT'O UCCJIEZIOBAHMSI CXEMBI UX PaclpeleICHUsL.
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1. Introduction

Frequently employed methodologies for the design of composite laminates entail the organization of
the matrix and fibers in a pattern characterized by equidistant intervals and linear trajectories that are
oriented parallel and perpendicular to the axis of the laminate. Therefore, it can be deduced that both the
angle of the fibers and the percentage of fiber volume remain fixed in relation to the plane of the lamina.
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Consequently, previous formulations of the stress-strain state have solely considered fibers that are linear.
The objective of this study is to produce composite materials that exhibit optimal forms of inhomogeneity
through the modification of reinforcing fiber shapes. The intended outcome is to enhance the buckling
strength of thin-walled laminates [1; 2]. The tensile response of laminates having a sinusoidal fiber pattern
was investigated in [3]. In [4] examined the effect of curved fibers on the tensile and compressive response
of a plate with a circular hole. The influence of sinusoidal fibers on the buckling behavior of a composite
laminate was investigated by P. Phani Prasanthi, K. Sivaji babu, and A. Eswar Kumar [1]. There are three
important relationships between the fibers and wave properties, which are:

1. The secondary significance of fibers in the transmission of dynamic and thermal waves in the
overall composition of composite materials [5—7].

2. The utilization of fluctuating regular geometric phase functions, such as sine or cosine, as a means
of variable distribution of fibers within the matrix [8—10].

3. Sawing the fibers form regular geometric waves in the matrix, which is a method adopted recently
in the manufacture of composite panels [10], improving the non-linear dynamic performance of the panel
under plane load.

The principal aim of the study by Ali 1. Al-Mosawi [11] was to investigate whether variable fiber
spacing can enhance the structural efficiency of plates. This study presents numerical findings on the impact
of in-plane loading on boron/epoxy fiber reinforced laminates. Various properties of the composite plate are
examined. The findings of this investigation indicate that the post-buckling response of composite plates is
highly influenced by the fiber distribution type. Specifically, the seventh distribution equation yields the
highest buckling load and the lowest amount of deformation.

The study by A.V. Duran [6] offers an analysis of thermal buckling in square composite laminates that
exhibit varying stiffness properties. The spatial variability of fiber angles gives rise to position-dependent
material properties. This study examines the thermal responses of symmetric balanced laminates subjected
to constant thermal loading using a particular methodology. The objective is to identify the optimal fiber
orientations that can effectively resist thermal buckling for various material models.

In the book [chapter 2] of Susmita Mondal and L.S. Ramachandr [12], imperfections in laminated
composite plates in the form of openings were considered. Based on this new concept, the nonlinear
dynamic pulse buckling of imperfect composite plate with embedded delamination was numerically
analyzed and showed the influence of type of pulse loading (sinusoidal, exponential and rectangular) and
plate boundary condition on the shock spectrum. The response of delaminated plates was also computed for
various delamination percentages at different layer interfaces by using Tsai-Wu quadratic interaction
criterion. This study was selected to compare its results to verify the accuracy of the current results and the
reliability of the program.

M. Cetkovic [13] studied the influence of initial geometrical imperfections on thermal stability of
laminated composite plates using the layerwise plate model. The effects of imperfection mode and
amplitude, temperature distribution, side to thickness ratio b/h, aspect ratio b/a, boundary conditions and
lamination scheme on critical buckling temperature were analysed. The mathematical model assumes
layerwise variation of in-plane displacements, non-linear strain-displacement relations (in von Karman
sense) and linear thermo-mechanical material properties by adopting the Koiter’s model for initial
geometrical imperfections. Principle of virtual displacements (PVD) is used to derive Euler — Lagrange
differential equations of linearized buckling problem.

Haider K. Ammash [10] conducted a study on the effect of fiber waviness on the analysis of laminated
composite plates with large displacement elastic-plastic behaviour. The study utilized a square plate with six
layers and a simply supported boundary condition. The hypothesis posits that fibers exhibit sinusoidal
morphology. Chapter 6 discusses the impact of this particular type on various factors such as the number of
semiwavelengths (k), the amplitude of the wave (A), and the orientation of the fiber. The variability of the
sine wave fiber semiwavelengths (k) was established within the amplitude range of the sine wave fiber,
spanning from 0.05 to 0.5.
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T. Piyatuchsananon et al. [14] performed a study to elucidate the correlation between quantified fiber
waviness parameters and the tensile strength of a composite material. The orientation angles of the fibers in
a composite material reinforced with flax slivers were initially determined. Subsequently, the distribution of
angles was assessed through the utilization of the Local Moran’s I and Local Geary’s ¢ techniques for spatial
autocorrelation analysis. Ultimately, the results showed correlation between the resultant tensile strength and
the measured parameters.

2. Theoretical formulation of geometric waviness of fibers

The present study aims to assess the feasibility of improving the buckling capacity of composite plates
through the modification of the reinforcing fibers’ shape within the plate. The subsequent paragraphs feature
figures that illustrate the impact of fiber waviness on dynamic buckling curves:

¥() :asm(@) ()

a

In a manner that induces fluctuations in the orientation angle of fibers along the longitudinal x-axis,
the following occurs:

tan(e)=%=%'cos(%j=Akmcos(kﬁ), ()

where a = plate length; £ = number of half sine waves; and o = wave amplitude. Two normalized variables,
A=o/a andXx = x/a, are introduced.

The initial objective of this research is to examine the impact of fiber waviness, represented by
parameters k and A, on the static and dynamic buckling properties of composite laminates. In order to obtain
fiber rotation in any direction around the x-axis, as depicted in Figure 1, one can employ the following
equation:

x, =xcos(B)+ ysin(B), 3)

where P is the angle of waviness for the fiber and x, stands for the x-coordinate of a rotating fiber.
The angle of fiber orientation is variable with respect to the x-coordinate:
0o 0o
S 2wy, )
ox oy
this angle, rather than the constant angle that is utilized for straight fibers, is employed in Equation 1.
Figure 2 demonstrates how the main material directions are angled to be parallel to the lamina axes (B).

Lamin Fibers

a

/\/ Sinusoidal
T fiber

]
il

a b
p=0 4 7 p#0
Figure 1. Sinusoidal fiber rotation around the x-axis:
a — Lamina with variable fiber orientation; Figure 2. Laminate plate with sine wave
b — Geometry of sinusoidal fiber path fibers aligned with x-axis
Source: M.D. Pandey [15] S ource: made by W.H. Mohammed
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3. Materials and Methods

The present study aims to investigate the impact of fibers’ geometric regular waviness on the large
displacement elastic-plastic dynamic behaviour of laminated composite plates (1x1x0.01 m). formed from
four layers of thin steel plates bonded by the epoxy matrix reinforced with carbon fibers (Er= 413.68 [GPa],
E. =43 [GPa], Gr=172.36 [GPa], G = 1.277 [GPa], v/= 0.2, and v,,= 0.35). They were subjected to 800
kN uniform in-plane compressive load in the X-axis direction with a time step (A#) of 0.0001[sec]. To
achieve this, a four-layer square symmetric cross-ply laminated plate with variable distribution of carbon
fiber was analysed based on [2-2] and [3-3] from Leissa and Martin's equation (Table 1). The dynamic
response of the plate was evaluated using the FENSDAAP computer program, which is coded in
FORTRAN 94 language. The study considered different values of fiber path amplitude A ranging from 0.05
to 0.5 and different numbers of semiwavelengths & ranging from 4 to 12 (Table 2). The current investigation
utilized a (2x2) element mesh featuring a nine-node isoparametric approach to model the complete laminate
plate. Each node of Lagrangian elements possesses five degrees of freedom per node (w, 0x, 6y, 0x*, 6y*).
A consistent mass matrix and Newmark integration method with a = 1/2, and p = 1/4 were used in the
present study.

Table 1
Equations of fibers distribution based on Leissa and Martine’s equations
Equation (n — p). Volume fraction of fiber, %
n: equation’s number Vr(x)
p: equation’s exponent V max Viav
. 4 4 2
Equation 1-1 _ZX_FX } 100 66.67
4 4 LT
Equation 2-2 Zx-=x? 100 53.34
L 12
4 4 LT
Equation 3-3 Zx-=x? 100 45.7
L 2
. 1 1 0% 1 X2
Equation 4-1 5 + 77 L_2 75 66.67
2
. 1 1 | )
Equation 5-2 —+| =X -—X 75 63.34
2 | L 12
Source: made by A.W. Leissa and A.F. Martin [16]
Table 2
Parameters of the analysis
Fiber distribution Values of fibers path amplitude A Numbers of semiwavelengths (k)
with number of semiwavelengths, k = 4 with value of fiber path amplitude, A = 0.4
0.1 4
Unified 0.2 6
Equation 2-2 0.3 p
Equation 3-3 0.4
0.5 10
’ 12

S o urce: made by W.H. Mohammed
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4. Results and discussion

4.1. Effect of variable fiber distribution on the dynamic nonlinear
behaviour of a wavy fiber laminated composite plate

Figure 3, @ aims to compare two plates with a consistent fiber distribution. The first plate had fibers
arranged in a straight pattern, while the second plate had fibers arranged in a wavy pattern with values of
fiber path amplitude A = (0.3) and numbers of semiwavelengths & = 4.

8,00

6,00

4,00 straight
2,00

0,00
_2’000,00 0,02 0,04 0,06 0,08 0,10 0,12
-4,00 Sin wave

Deflection [mm)]

-6,00

-8,00
Time [sec]

straight

0,02 0,04 0,06 0,08 0,10 0,12

Sin wave

Deflection [mm)]
=
(=4
S

time [sec]

b

straight

0,00 0,02 0,04 0,06 0,08 0,10 0,12
-2,00
Sin wave

Deflection [mm]

-4,00

-6,00
time [sec]

c

Figure 3. Comparison of straight carbon fiber versus sine wave fiber with different distributions:
a — unified fiber distribution; » — variable fiber distribution based on equation [2-2];
¢ — variable fiber distribution based on equation [3-3]

S ource: made by W.H. Mohammed

This contrast reaffirmed the concept of enhancing the composite panels’ dynamic response by
providing novel shapes and distributions to the fibers that contribute to energy dissipation as a result of the
dynamic loads applied on them.

Figures 3, b and 3, ¢ demonstrate the improvement of the dynamic performance of wavy fiber
composite panels after changing their distribution.

It can be established that the distribution based on equation 2-2 is the best.
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4.2. Effect of path amplitude A on non-linear dynamic performance
of the laminated composite plates with variable fiber spacing

Figure 4 shows the effect of the path amplitude A in composites with variable fiber spacing based on
Leissa — Marten’s equations [2—2] and [3—3] on the nonlinear dynamic behaviour represented by the values
of deflection of the samples. Five values A (0.1, 0.2, 0.3, 0.4 and 0.5) of this effect were studied with
numbers of semiwavelengths & =4. It is proven that the influence of this parameter on the stability and

oscillations of the plate is significant, as well as on reducing the response.

10,00
g 5,00
B
‘: 0,00 4-,_.,:__.4:——"_ -
S 0,00 0,02 0,04 0,0 08
53 -5,00
=
A
10,00 Time [sec]
a
10,00
g 5,00
Bl
& 0,00 #*—/\W
g 0,00 0,02 0,04 08 0,10
£ 500
L5}
B
A -10,00 Time [sec]
b
s 100 0,02 0,04 06 0,08
3
%
&} -6,00 Time [sec]
c
- = BN
ERREUY™ 0,02 x 06 0,08 0,10
53
b
[a -6,00 Time [sec]
d
10,00
g 5,00
g (Y — /\ O<
2 0,00 0,02 0,04 : 0,08
2 -5,00
jo3
[a)
-10,00 Time [sec]
e

Figure 4. The effect of path amplitude A on non-linear dynamic performance
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0,12 —Eq.3-3
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of laminated composite plates with variable fiber spacing and number of semiwavelengths k = 4:

a — path amplitude = 0.1; b — path amplitude A = 0.2; ¢ — path amplitude A =0.3;
d — path amplitude A = 0.4; e — path amplitude A = 0.5
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4.3. Comparison of path amplitude values A in plates
with variable fiber spacing based on [2-2]

By examining the behaviour of the plate with a variable distribution in Figure 4 it was noted that the
panels reinforced with carbon fibers with distributions based on equations [2-2] and [3-3] are the most
effective in improving the response. Therefore, they were selected to study the effect of the path amplitude
A between 0.1 and 0.5 with the number of semiwavelengths k=4, to find out which path is the most
efficient.

The path amplitude A of 0.3 is the best, the least offset, and the most stable (Figure 5).

A=0.1
4,00
-E' 200 ////'\ N A=02
g, e S
= 0,00 . A=03
2 0,00 0,02 0,04 0506 08 0,10 0,12
S 2,00 \ A=0.4
5 >
-4,00
A A=05
-6,00
time [sec]
a
6,00
A=0.1
4,00
g \ A=0.2
£ 2,00 ‘
g 0,00 === A=0.3
£ , 000,00 0,02 0,04 0,06 0,08 0,10 0,12
% » A=0.4
4,00
[ A=0.5
-6,00 .
Time [sec]
b

Figure 5. The effect of path amplitude A on plates with variable fiber spacing based on equations [2-2] and [3-3]:
a — variable fiber spacing based on [2-2]; b — variable fiber spacing based on [3-3]

S ource: made by W.H. Mohammed

4.4. The effect of number of semiwavelengths k
on the non-linear dynamic performance of the laminated composite plates
with variable fiber spacing

This section investigates the impact of varying fiber spacing on the nonlinear dynamic behaviour of
samples, as represented by the values of deflection over time. Specifically, the investigation focuses on the
effect of the number of semiwavelengths k using Leissa — Marten’s equations [2-2] and [3-3]. Figure 6
shows the impact of five values of the numbers of semiwavelengths & (4, 6, 8, 10, and 12) on the stability,
oscillations, and response reduction of the plate, using a path amplitude A of 0.4. The results show that this
value has a significant effect on these factors.

Upon comparing the displacements resulting from the variation of k& with the set of distribution
equations, it has been ascertained that equation 3—3 exhibits superior behaviour, greater stability, and lesser
distortion than its counterparts.

Also, the numbers of semiwavelengths K is best with a value of 8 with equation 3-3 and the path
amplitude A of 0.4.
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Figure 6. The effect of the number of semiwavelengths k on non-linear dynamic
performance of laminated composite plates with variable fiber spacing
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In Figure 7 the outcomes of equations [2-2] and [3-3] are compared against the five & values to
validate that equation 3-3 is the most optimal and consistent option for all k£ values, particularly for the
number of semiwavelengths k= 8. Through a comparative analysis of the displacements resulting from
variations in the value of £ with the set of distribution equations, it has been ascertained that equation 3—3
exhibits superior behaviour, greater stability, and lesser distortion in comparison to the other equations.
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Figure 7. The effect of the number of semiwavelengths & on plates with variable fiber spacing based on 2-2 and 3-3:
a — variable fiber spacing based on [2-2]; b — variable fiber spacing based on [3-3]
S ource: made by W.H. Mohammed

5. Conclusion

1. The oscillatory behaviour of a symmetric cross-ply laminated composite plate, featuring sine wave
fiber with parameters k£ = 12 and A = 0.4, exhibits lower amplitude compared to other plates.

2. The laminated plate with symmetric cross-ply lamination and sine wave fiber (k = 4 and k = 12)
exhibits a better dynamic performance compared to the laminated plate with symmetric cross-ply
lamination and sine wave fiber (k = 8).

3. The laminated plate with sine wave fiber (k = 8, A = 0.4) exhibits a higher dynamic performance
compared to the other plates. Similarly, the symmetric cross-ply plate with sine wave fiber (k =8, A= 0.2)
demonstrates a greater performance than the remaining plates.
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