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Hcropus craTbn AHHoTanus. PaccMoTpeHa Mozenb IJIOCKOM CTaTUYeCKU onpeaenuMoil depmbl
TocTymnuia B peaakuuio: 16 mions 2023 r. pelieTyaToro Tuma 0e3 HIKHEro 1osica ¢ JIBOMHOM perieTkol. M3BecTHbIe aHao-
Jlopa6oTana: 24 centsiops 2023 T. ¥ Takod koHCcTpykuuu — ¢epma Ounka u Gepma bonbmana. JIByms mMeronamu
Ipunsita K my6mukauun: 7 okTsiGpst 2023 . BBIBOAUTCS aHAIUTHYECKAs 3aBHCHMOCTh HIDKHEH T'DaHUIIBI OCHOBHOHW COOCTBEH-

HOM 4aCTOTBI PEryJIsApHOM KOHCTPYKIMH OT 4Mcia na”ened. Ilpenmonaraercs,

4T0 €ro mMacca pepMbl CKOHIIEHTPHPOBAHA B €€ y3JIaX. Y3JIbl COBEPIIAIOT Kojeha-
3asiB/ieHHe 0 KOH(IHKTe HHTEPECOB TEeNbHBIC JIBUKCHHUS [0 BEPTUKAJHM, YHCIIO CTEIEHEH CBOOOBI COBIANACT C YHC-
ABTOp 3asBJIAET 00 OTCYTCTBHH JIOM y35I0B. Pacuer ecTKoCTH ()epMbl NPOM3BOIMTCS € MOMOILBI0 HHTErpaga
KOH()JIMKTa HHTEPECOB. Makcgemia — Mopa. Ycunus B ynpyrux CTEPKHSAX U PEAKIUH TOIBKHON U
HETIOIBHKHON OIIOP BBIYHMCIISIOTCS METOIOM BBIPE3AHHS Y3II0B B 3aBHCHMOCTH OT
pa3mMepoB Qepmbl U ee mopsaka peryiasipHocTd. CucteMa JMHEHHBIX ypaBHEHUH
pEIIaeTcs ¢ IOMOIIBI0 METOAA 0OPaTHOM MaTpHIEL [l pacdeTa HIKHEH IpaHH-
bl OCHOBHOM YaCTOTHI MCIOJB3YETCS METOJ MapIHMAIbHBIX 4acTOT J[OHKepIes.
Jlns cepMy pElICHHMH, MOMYYEHHBIX IS (epM ¢ pa3IMYHBIM YHCIOM IIaHEIEH,
METOJOM MHAYKIUM B CHCTEME CHMBOJBHOM MaTeMaTuku Maple Haxomutcs 06-
Wi WIEH II0CNIEI0BATENBHOCTH pacueTHIX (Gopmyn. KospdumuenTs: popMyIisl
UMEIOT BUI TIOJIMHOMOB M0 YHCITy TIAHENEN MOps/AKa He BhILIE MATOro. Penienue
CPAaBHHBAETCA C INPHOIMKCHHBIM BapMaHTOM MeTona JIoHKepies, B KOTOPOM
CyMMa CIIaraeMbIX, COOTBETCTBYIOIIUX TAPIUAIBHBIX 9aCTOTAM, BHIYUCIISETCS 110
TeopeMe O cpegHeM. Ha KOHKPETHBIX NMpHMepax IIOKa3aHa ONM30CTh YacTOTEL,
MOJIYYEHHON IBYMs aHAJTUTHYECKAMU METOJAMH, YUCIEHHOMY PEIICHHIO 3a1a4u
0 cmektpe 4acToT. [IpHOIMKeHHBI BapHaHT MeToAa JIOHKeples MMeeT Goiee
IpocTyr0 GOPMY U TOUHOCTH, COTIOCTABUMYIO C HCXOIHBIM METOA0M JIOHKepIIes.

KiioueBble cioBa: npocTpaHcTBeHHas (depma, MeTos JloHkeprnes, OCHOBHAs Ya-
CTOTa, AHAIUTHYECKOE pELIEHUE, COOCTBEHHbIE KOJIEOaHMs, PETYJApHas KOH-
CTPYKIUS, CHEKTp, CTIeKTpanbHas KOHCTAHTa, METOJ MHIyKuuH, Gopmymna Makc-
Beyia — Mopa
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1. Introduction

The first (fundamental) natural frequency of vibration is one of the main dynamic characteristics of a struc-
ture. To calculate this frequency in practice, the finite element method [1-3], which is implemented in standard
engineering software, is used most often. Thus, it is possible to calculate the spectrum of all natural frequencies
of a structure. A wide range of trusses can be calculated with numerical methods: statically indeterminate struc-
tures, structures with various types of fastenings, material inhomogeneities, errors in manufacture and installa-
tion of their elements. Analytical solutions for the lower and upper bounds of the fundamental frequency exist
for simple statically determined trusses. Such solutions are especially valuable for periodic structures. One of the
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c216@ya.ru

552 ANALYSIS AND DESIGN OF BUILDING STRUCTURES


https://orcid.org/0000-0002-8588-3871

KupcaHos M.H. CtpouTenbHast MexaHuka MHXEHEepHbIX KOHCTPYKLMA 1 coopyxeHnit. 2023. T.19. Ne 6. C. 551-559

methods for obtaining analytical solutions is the method of induction [4—6]. Calculations of deflections and dis-
placements of roller supports of plane periodic trusses with an arbitrary number of panels were performed using
Maple software in [7; 8]. Deflections of space trusses depending on the order of periodicity (number of panels)
are calculated in [9; 10]. R.G. Hutchinson and N.A. Fleck were the first who raised the question of the existence
of statically determinate truss structures [11; 12]. The same issues were explored by F.W. Zok, R.M. Latture, and
M.R. Begley [13]. A. Kaveh [14; 15] solved the problems of optimization and classification of various plane and
space periodic trusses. The Maple mathematical system was used in [16; 17] for calculating elements of building
structures in analytical form. Handbooks [18; 19] contain formulas for calculating deflections of various statical-
ly determinate plane trusses with an arbitrary number of panels. The formula for the lower estimate of natural
vibrations of a planar periodic trussed beam with a rectilinear upper chord was derived in [20]. The method of
induction was applied in [21] to obtain the equation for relationship between the deflection of a plane truss and
the order of periodicity. A version of the Dunkerley method for estimating the fundamental frequency of a plane
truss as applied to periodic structures was proposed in [22]. Simplification of the solution formula for the fun-
damental frequency is achieved here by calculating the sum of partial frequencies using the mean value theorem.

In this paper, a design of a statically determinate lattice truss is proposed, and an analytical relationship of
the fundamental frequency with the dimensions, weight, and number of panels of the truss is derived. The nu-
merical solution and the solution according to the simplified Dunkerley method [22] are compared.

2. Structure

A planar statically determinate truss consists of 2n panels of length a and height 2/ (Figure 1). Four diago-

nal elements connected to nodes 8 and 16 are c¢=+/a’ + 4> long, the other diagonal elements are 2¢ long. An

important feature of the truss is the absence of the lower chord. The Bollman [23] and Fink [24] plane trusses
have a similar structure without a lower chord.

4 5
a a a a a a

Figure 1. Truss structure, n =3
Source: made by the author

The truss model consists of 7=9n+3 elements, including three elements corresponding to the roller and

pin supports. The number of nodes in which the entire mass of the truss is concentrated is K =4(n + 1). It is
assumed that the masses vibrate along the vertical y-axis. The number of degrees of freedom of the truss,
according to this assumption, is equal to K. The truss hinges are ideal and the material of the elements is elastic.

3. Method

3.1. Analysis of Forces. The analysis of forces in the truss elements is performed in symbolic form with
Maple software [8]. The algorithm of this program is used in [3—7; 9-10; 20-24]. The hinge coordinates are
entered in loops with a parametrically defined length. The coordinate origin is located at the left roller support:

Xi = Xypiori = a(l - 1)3 Yi= 0, Yonsori = 2h3
Xoner =05 Voo =0y Xy =200, ¥y, =h, i=1,.2n+1.

The lattice structure is determined by the order in which the elements are connected to nodes (hinges). The
order is given by lists containing the indices of the ends of the corresponding elements ®,,i = 1,...,n Ascend-

ing diagonal elements, for example, are defined by the following lists: @, =[i,i+2n+4], i=1,., 2n—1.
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The equilibrium equations for all nodes, including the support ones, are written in matrix form: GS=T,
where G is the matrix of directional cosines of the internal forces in the elements, S is the vector of unknown
forces and reactions of the supports, T is the load vector. The directional cosines of the forces are calculated
from the coordinates of the nodes and values @®;,i = 1,..,m, which provide the order of connection of the
elements to nodes. Horizontal and vertical nodal loads applied to node i are written, respectively, into odd 7, ,

and even 7,, coefficients of this vector. The matrix equation is solved in symbolic form in Maple using the

inverse matrix method:S=G™'T .

3.2. Dunkerley Method for Estimating Fundamental Frequency. In cases where only the first (funda-
mental) frequency is required to analyze the structure, the Dunkerley lower estimate or the Rayleigh upper
estimate can be used to calculate it. The latter estimate is more accurate, however, its analytical expression is
very cumbersome.

The approximate lower estimate of the fundamental frequency according to Dunkerley is:

K
0 = Z ®;’, (1)
i=1
where o, are the partial frequencies calculated for each mass separately.
The equation of mass vibration at node i:
my, +d,y, =0, i=12,..,K. )

Stiffness coefficient d, is the reciprocal of the flexibility coefficient, which is determined using the

Maxwell — Mohr method formula. The summation in this formula is performed over all truss elements,
including three elements that substitute supports:

5,=1/d = Z":(S;” )1,/ (EF). 3)
=

From (1) it follows that o, =\/d, / m . From this, the formula for the Dunkerley frequency is obtained:

K
o, = mZSi =mA,. “4)
i=1

4. Results and Discussion

Variable 9, included in the final formula for frequency (4) is in fact the vertical displacement of node i due
to a unit vertical force applied to this node. Factor A is the sum of all such displacements for a truss of order #.
To derive the relationship of A, with the number of panels, the method of induction is used. The calculations
give the following sequence:

A, =(c’ +30/°)/ QW EF),

A, =(8a’ +9¢* +50h°) / (2h°EF),

A, = (4484 +329¢° +894h*) / (18h°EF),

A, =(168a’ +105¢° +2204°) / (2h°EF),

A, =3(704a” +407¢* +7861°) / (10h* EF), ...

When finding a common term in this sequence, it was necessary to calculate ten trusses. Maple operators for
a sequence of smaller lengths do not find a pattern. As a result, the following solution is obtained:

A, =(Cd’ +C,c* +C’) | (WEF), (5)
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where the coefficients have the following form:

C,=4(n* —1)(4n’ —1)/ 45,
C, =(4n’ =1)(4n’ +11)/90, (6)
C, =(16n" —80n’ +480n> +199n + 60) / (45n).

As a result, the lower estimate of the fundamental frequency according to Dunkerley has the form:

EF
0, =h 3 5 - @)
m(Ca” +C,c” +C,h)

The considered algorithm includes the summation operation in (4), which is easily computed numerically.
On the contrary, the summation of symbolic expressions is usually complex and does not always yield a compact
result. In the obtained solution, for example, it was particularly difficult to calculate coefficient C,, which
contains parameter z in the denominator. Maple operators successfully generalize sequences of polynomials, but
do not work with fractional values in symbolic form. Therefore, in [22], a simplified formula was proposed using
the mean value theorem, which excludes summation:

. =Kmd__ /2=mA,_ .

Finding the value of maximum deflection 6 _, among all the deflections due to nodal forces is usually

intuitive and reduces to a fairly simple task of identifying the most flexible node. For trussed beams, this is
usually the node at the mid-span. In the considered truss, such node can be the one with index 3n + 3 on the
upper chord. The analysis of trusses with a successively increasing number of panels gives the following
expressions:

Ay =(C* +607)/ (2R EF),

Arus =3(2a° +26° +7h°) [ (R EF),
Apucs =2(16a° +11¢° +26h7) / (h*EF),
A s =5(20a” +12¢° +27h%) / (W*EF),
A, s =3(80a’ +45¢° +94h*) / (h*EF),...

General form of the solution:
A, =(Da +D,c’ + D))/ (WEF).

The coefficients in this expression are obtained by induction:

C,=n(n-1)(n+1)*/3,
C, =n(n+1)(n* +2)/6,
C,=(n+1)(2n’ +4n+3(=1)" +15)/6.

The result is the following formula:

- 6EF (8)
’ m(n+1D)2n(n* =1)a* +n(n® +2)c +(2n’ +4n+3(=1)" +15)8%)
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Other versions of the Dunkerley method were considered in [25; 26].

Solution (7) with coefficients (6) and solution (8) can be compared with the numerical one obtained in the
Maple system using the Eigenvalues operator from the LinearAlgebra package, designed to calculate the matrix
eigenvalues. The algorithm for calculating forces, entering the coordinates of nodes and the order of connections
is the same as in the analytical methods.

As an example, a truss with the following characteristics is analyzed: nodal masses m =200 kg ; modulus of

elasticity £ =2.1-10°MPa ; cross-sectional area of the elements 16 cm’; dimensions a= 5m, h=1m. Figure 2

shows the curves of the fundamental frequency versus the number of panels obtained numerically and
analytically using the two discussed methods. In the figure, ®, denotes the fundamental frequency computed
numerically. The highest error of the analytical solutions is observed for lower number of panels. Starting at
approximately n = 13, the three methods yield nearly identical frequencies. It is possible to estimate the errors of
the methods more accurately and compare them by introducing relative values & =, —o.|/®, and

€, =|o, —o, | /o, (Figure 3). The figure shows that for n >15 the accuracy of the simplified version of the

Dunkerley method (8) is greater than that of the original one (7). The error of the Dunkerley method (when
compared with the numerical one) decreases with the increase in the number of panels and reaches a horizontal
asymptote of 13 %, which is quite acceptable for using this solution in practice.

w51 |
20

Figure 2. Relationship between the fundamental frequency and the number of panels
Source: made by the author using the Mapl program

|m n

r~r—r-r—,rrTrTrTrTr7 T
2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3. Relationship between the relative error and the number of panels
Source: made by the author using the Mapl program
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5. Conclusion

The model of a plane truss with elastic elements and concentrated nodal masses allows to find an analytical
solution for the fundamental natural frequency for an arbitrary number of panels. The solution by the Dunkerley
method and its simplified version are comparable in complexity, although the latter solution is still somewhat
more compact and in some cases gives a more accurate (under the adopted assumptions) solution. Both methods
can be used for a preliminary evaluation of the frequency of natural vibrations of the designed structure. The
analytical form of the solutions makes it possible to optimize the structure in terms of choosing the appropriate
natural frequency.

The main results:

1. A structure of a statically determinate periodic truss has been developed.

2. Analytical estimates of the fundamental natural frequency are derived as a function of the number of
panels.

3. Comparison of the analytical estimates with the numerical solution shows good agreement. The accuracy
of estimates increases with the number of panels.

4. For a large number of panels, the simplified Dunkerley method is more accurate than the original method.
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