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Abstract. The subject of the study is the contact interaction of deformable elements of 
building structures. Variational formulations are usually used to solve the problem of 
modeling of unilateral interaction taking into account friction in the contact zone. An 
alternative to the popular formulations of discretized problems and iterative methods for 
their solution is proposed. The problem of contact with friction is expanded in the form of a 
linear complementarity problem (LCP). To solve the linear complementarity problem, the 
Lemke method with the introduction of an increasing parameter of external loading is used. 
The proposed approach solves the degenerated matrix in a finite number of steps, while the 
dimensionality of the problem is limited to the area of contact. To solve the problem, the 
initial table of the Lemke method is generated using the contact matrix of stiffness and the 
contact load vector. The unknowns in the problem are mutual displacements and interaction 
forces of contacting pairs of points of deformable solids. The proposed approach makes it 
possible to evaluate the change in working schemes as the parameter of external load 
increases. The features of the proposed formulation of the problem are shown, the criteria 
for stopping the stepwise process of solving such problems are considered. Model examples 
for the proposed algorithm are given. The algorithm has shown its efficiency in application, 
including for complex model problems. Recommendations on the use of the proposed 
approach are given. 
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Аннотация. Предметом исследования является контактное взаимодей-
ствие деформируемых элементов строительных конструкций. Для реше-
ния задачи моделирования одностороннего взаимодействия с учетом тре-
ния в зоне контакта чаще всего используются вариационные постановки. 
Предлагается альтернатива популярным постановкам дискретизованных 
задач и итерационным методам их решения. Задача контакта с трением 
расширяется в виде линейной задачи дополнительности. Для решения 
линейной задачи дополнительности применяется метод Лемке с введени-
ем нарастающего параметра внешнего нагружения. В предлагаемом под-
ходе решается вырожденная матрица за конечное число шагов, при этом 
размерность задачи ограничена областью контакта. Для решения задачи 
формируется начальная таблица метода Лемке с использованием контакт-
ной матрицы жесткости и контактного грузового вектора. В качестве не-
известных в задаче выступают взаимные перемещения и усилия взаимо-
действия контактирующих пар точек, деформируемых тел. Предлагаемый 
подход позволяет оценить смену рабочих схем по мере роста параметра 
внешнего воздействия. Показаны особенности предлагаемой постановки 
задачи, рассмотрены критерии остановки шагового процесса решения 
таковых задач. Приведены модельные примеры для предлагаемого алго-
ритма. Алгоритм показал свою эффективность в применении, в том числе 
и на сложных модельных задачах. Даны рекомендации по использованию 
предлагаемого подхода. 

Ключевые слова: строительные конструкции, конструктивная нелиней-
ность, односторонние связи, линейная задача дополнительности, числен-
ные модели, метод конечных элементов, нарастающая нагрузка 
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1. Introduction 

One of the important tasks of the strength calculation of building structures is the task of determining the 
parameters of the stress-strain state (SSS) while changing the parameters of external loading [1]. The object of 
this study is the contact interaction of deformable building structures under increscent external load. 

Constructively nonlinear problems have been popular since 1970s in works of Kravchuk, Bathe, Kikuchi, 
Glowinski [2–6]. Klarbring, Hlaváček and Cottle considered variational formulations [7–10]. A step-by-step 
algorithm is used in the most popular software systems in case of force incrimination problems for non-linear 
calculation of building structures. According to this algorithm the loading process is divided by the user into 
several stages (the method of successive loadings). Iterative methods are used at each stage of loading to 
determine the increments of the structure’s SSS parameters. It is necessary to solve the problem of contact 
interaction in these problems at each stage. Such tasks have been popular since the 1980s [11–15] and have 
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Figure 1. Unilateral constraints. 
The signs’ rule for interaction forces x and mutual displacements z 

maintained their popularity until the present [16–20]. These problems are stated in the form of variational 
inequalities [21–24], and the following numerical methods were used to solve them: Lagrange multipliers [25–
27], penalty functions [28; 29] and their combinations [30–32]. And other methods using contact finite elements 
[32–33]; quadratic programming approach [34–36]; finite element methods (Spigot-algorithms) [37–39]; and 
other [40–46]. 

The user should specify the following parameters at the stage of a problem modeling: 
1. The final value of the external load.
2. The number of loading stages (the value of load increment).
3. Method for solving the contact problem and its parameters.
The purpose of this work is to create an algorithm that allows tracking the change of working schemes at the 

parametric increment in external load. The problem expansion parameter, whose physical meaning was the 
“tightening weight” in contact pairs, was used in [47] in the algorithm for solving the linear complementarity 
problem (LPC). In this paper, it was proposed to take the external load growth parameter as the parameter of the 
problem expansion. This approach enables automating the process of load splitting into stages, within each of 
them a linear problem can be solved. The following tasks arising from this: 

1. Program implementation of the algorithm for solving similar problems.
2. Description of the solution peculiarities.
3. Testing the algorithm.

2. Methods

The formulation of the calculation of frictional contact problems proposed below considers a node-to-node 
contact (contact pair). Let m denote the number of contact pairs. It is assumed that the points in each contact pair 
are connected by unilateral constraints. The constraint that is normal to the contact zone works only on 
compression and is enabled when these points are in contact and disabled otherwise. Tangential connection to 
the contact zone is enabled if the interaction forces are less than the ultimate friction forces and disabled if the 
interaction forces are equal to the ultimate friction forces. This means that slippage of the contact pair points is 
not possible when the connection is on, whereas it is possible when the connection is off. 

The following rule for the use of signs has 
been adopted: 

 for forces and displacements normal to
the contact surface: compressive force of inter- 
action of points of the contact pair 0>xni ; 

mutual displacement of points of the contact pair 
0>zni  (Figure 1, a); 

 for forces and displacements tangential to
the contact surface: if the points of the contact pair 
are conditionally separated normally to the contact zone, then the interaction forces 0>x τi  will create a pair of 

forces with a clockwise moment; mutual displacement 0>z τi , if it coincides in direction with 0>x τi  

(Figure 1, b, c). 
Papers [47] and [48] proposed a LCP formulation for frictional contact considering initial gaps: 
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where: nn zx , are vectors [m×1] of interaction forces and mutual displacements of contact pairs along the normal 

to the contact zone; 2/)( −+ −= τττ xxx  is the vector [m×1] of interaction forces of contact pairs along the 

tangent to the contact zone; 2/)( −+ −= τττ zzz  is the vector [m×1] of mutual displacements of contact pairs 

tangentially to the contact zone; nnR  is the contact stiffness matrix (CSM) [m×m] for the constraints in the 
contact pairs along the normal to the assumed contact zone from a single dislocation of nodes of contact pairs 
along the normal to the specified contact zone; ττR  is the CSM [m×m] for the links introduced in the contact 

pairs tangential to the contact zone from the unit dislocation of the contact pairs nodes tangentially to the contact 

zone; f is a coefficient of friction between the nodes of the contact pair; FnR  is a contact load vector (CLV) 

[m×1] for the links which are normal to the contact zone; FτR  is a CLV for the links which are tangential to the 

contact zone; η  is  a vector of mutual initial gaps in the contact zone. Thus, three non-negative variables are 

required to determine the parameters of the stress-strain state (SSS) in the contact pair: one is responsible for the 
interaction along the normal and two are responsible for the interaction along the tangent. 

The system of equations and inequalities (1) can be written in the following reduced form:  
 

.0 0; 0;

;+=
T =⋅≥≥

⋅

xzxz

RzRx F
 (2)

 
 

It was assumed that the external influences are: force influence fR , kinematic influence ΔR and 

temperature influence tR . The external influence was divided as follows: 

 

vctΔf RRRRR ⋅+=++ p , 

 

where: p is the vector increment parameter; cv RR ,  are vectors of contact loads from any combination of 
external influences. 

Therefore, assuming that fv RR = and 0=+= tΔc RRR , the parametric incrimination of the force load is 

modeled. It is proposed to extend the formulation (2) by introducing the parameter p  of force load increment: 

 

.0;0 0; 0;

;+=

T ≥=⋅≥≥
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To solve the problem, we use the Lemke method [49], [50]. Then, the initial table of the Lemke method 

takes the form: 

[ ] 0=
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p

z

x

RRE v , 

where  is a diagonal identity matrix ]33[ mm × . 

To initialize the solution process (selection of the leading row), an artificial compression (tightening weight) 
 of all unilateral links is introduced, and the initial table takes the form: 

[ ] ez

x

RRE v ⋅=















⋅− pc

p

, (3) 

where: ]1,...,1,1[=e  is a vector with dimension ]13[ ×m . 
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EA = 1 N
EI = 1 N⋅m2 

Fv=1 N

1 m 0.5 m 0.5 m

Figure 2. Scheme of the beam 
with unilateral supports 

There are peculiarities of the solution by the Lemke algorithm with an increasing parameter of the external 
influence. First, it is necessary to select vR  as the leading column. The leading row is chosen by the rule of 
minimum ratio. Then the standard steps of Lemke algorithm are performed. There are two criteria for stopping 
the stepped process of the solution: 

Criterion 1. Suppose that at step k the parameter became more than one: p > 1. The criterion is used if it is 
necessary to obtain a solution for a given load value (the load at which the contact load vector vR  was formed). 
In order to get a solution to the linear complementarity problem (LCP) it is necessary to return to the previous 
step; take p out of the basis and determine the values of basis variables by the formula vR⋅− p , where 1=p . 

Criterion 2. Suppose that at step k a ray solution is obtained (including the first step of the algorithm) for 
any non-negative value of kp . In this case, in order to get a solution to LCP it is necessary to take the parameter 
p out of the basis by choosing the corresponding leading line. 

 If the leading element is not equal to zero, then p should be removed from the basisб and the values of 
the basis variables should be determined by formula vR⋅− p , where kpp > . From physical point of view, the 
result obtained should be interpreted as impossibility to change the working scheme at further load increment. 
If the ray solution is obtained at 1<kp , and the solution is to be obtained for a given load value, then the 

parameter 1=p . 
 If the leading element is equal to zero, then removing the parameter p from the basis leads to the 

undefined basis variables. In this case, at the current step, the values of the basic variables should be obtained 
as: vR⋅− p . From physical point of view, obtained result is interpreted as the transformation of the system into 
a mechanism in case of a further increment of the load. We obtain the ultimate value of the load parameter 
corresponding to the transition of the system into a mechanism. 

3. Results and discussions 

Many test problems have been solved to verify the algo- 
rithm’s operation. Some of the problems with the description of 
the algorithm operation are given below. 

Example 1. The scheme of the problem is a beam on three 
unilateral supports (Figure 2). The load is a vertical concentrated 
force in the middle of the right span. The algorithm with an 
increment external influence parameter is implemented within 2 
steps. To initialize the stepped process, an artificial compression 
is introduced in each assumed contact pair 1=cF . 

Leading rows and columns are highlighted in gray in all the tables below, the initial table of the problem is 
shown in Table 1. 

At the first step (Figure 3, a), the parameter increases to )6.(10=p  (Table 2). At this value of the parameter 

of the external load, the moment of detachment of the left support occurs ( 1nx  is eliminated from the basis), 

which indicates that the interaction force 1nx  is equal to zero. 

At the second step, 1nz  should be introduced into the basis. The components of the leading column are neg-
ative with the exception of two small positive values. These values are the result of round-off errors, so they are 
assumed to be equal to zero. Thus, there are no positive components in the leading column, so it means that a ray 
solution is obtained. In this case, the ray solution can be represented as the impossibility of changing the working 
scheme with further increase of the load parameter (Figure 3, b). To obtain the solution, the parameter p should 
be taken out of the basis, and only the variable part of the external influence should be considered: vFp ⋅ ; 0=cF . 

The final table is shown in Table 3. 
For this example, it is possible to obtain the solution of the problem for any value of parameter p. For 

example: for load 1=⋅ vFp , after removing the parameter p from the basis, it is possible to take 1=p  and obtain 

the basis variables respectively 11 =⋅− vR  (Figure 3, c). As can be seen from Table 2, round-off errors can lead to 

values that are close to zero. In order to stop the algorithm in time, a user-defined parameter of the problem 
accuracy [47] is introduced. 



 

 

Table 1 
Initial table of Lemke algorithm 

Basis xn1 xn2 xn3 xτ1
+ xτ2

+ xτ3
+ xτ1

- xτ2
- xτ3

- zn1 zn2 zn3 zτ1
+ zτ2

+ zτ3
+ zτ1

- zτ2
- zτ3

- pRv Rc Min ratio 

0 1 0 0 0 0 0 0 0 0 –0.1875 0.375 -0.1875 0 0 0 0 0 0 0.09375 1 10.6666 

1 0 1 0 0 0 0 0 0 0 0.375 –0.75 0.375 0 0 0 0 0 0 –0.688 1  

2 0 0 1 0 0 0 0 0 0 –0.1875 0.375 –0.1875 0 0 0 0 0 0 –0.4063 1  

3 0 0 0 1 0 0 0 0 0 –0.1125 0.225 –0.1125 –0.5 0.5 0 0.5 –0.5 0 0.05625 1 17.7777 

4 0 0 0 0 1 0 0 0 0 0.225 –0.45 0.225 0.5 –1 0.5 –0.5 1 –0.5 –0.413 1  

5 0 0 0 0 0 1 0 0 0 –0.1125 0.225 –0.1125 0 0.5 –0.5 0 –0.5 0.5 –0.2438 1  

6 0 0 0 0 0 0 1 0 0 –0.1125 0.225 –0.1125 0.5 –0.5 0 -0.5 0.5 0 0.05625 1 17.7777 

7 0 0 0 0 0 0 0 1 0 0.225 –0.45 0.225 –0.5 1 –0.5 0.5 –1 0.5 –0.413 1  

8 0 0 0 0 0 0 0 0 1 –0.1125 0.225 –0.1125 0 –0.5 0.5 0 0.5 –0.5 –0.2438 1  

Table 2 
Table for Step 1 of Lemke algorithm 

Basis xn1 xn2 xn3 xτ1
+ xτ2

+ xτ3
+ xτ1

- xτ2
- xτ3

- zn1 zn2 zn3 zτ1
+ zτ2

+ zτ3
+ zτ1

- zτ2
- zτ3

- pRv Rc Min ratio 

19 10.667 0 0 0 0 0 0 0 0 –2 4 –2 0 0 0 0 0 0 1 10.667  

1 7.3333 1 0 0 0 0 0 0 0 –1 2 –1 0 0 0 0 0 0 0 8.3333  

2 4.3333 0 1 0 0 0 0 0 0 –1 2 –1 0 0 0 0 0 0 0 5.3333  

3 –0.6 0 0 1 0 0 0 0 0 1E–17 0 0 –0.5 0.5 0 0.5 –0.5 0 0 0.4  

4 4.4 0 0 0 1 0 0 0 0 –0.6 1.2 –0.6 0.5 –1 0.5 –0.5 1 –0.5 0 5.4  

5 2.6 0 0 0 0 1 0 0 0 –1 1.2 –1 0 0.5 –1 0 –1 0.5 0 3.6  

6 –0.6 0 0 0 0 0 1 0 0 1.4E–17 0 0 0.5 –0.5 0 –0.5 0.5 0 0 0.4  

7 4.4 0 0 0 0 0 0 1 0 –0.6 1.2 –0.6 –0.5 1 –0.5 0.5 –1 0.5 0 5.4  

8 2.6 0 0 0 0 0 0 0 1 –1 1.2 –1 0 –1 0.5 0 0.5 –1 0 3.6  

Table 3 
Table for Step 2 of Lemke algorithm 

Basis xn1 xn2 xn3 xτ1
+ xτ2

+ xτ3
+ xτ1

- xτ2
- xτ3

- zn1 zn2 zn3 zτ1
+ zτ2

+ zτ3
+ zτ1

- zτ2
- zτ3

- pRv Rc Min ratio 

9 –5.33333 0 0 0 0 0 0 0 0 1 –2 1 0 0 0 0 0 0 –0.5 –5.33333   

1 2 1 0 0 0 0 0 0 0 0 4E-15 –7E–16 0 0 0 0 0 0 –0.5 3   

2 –1 0 1 0 0 0 0 0 0 0 –3.1E–15 1.33E–15 0 0 0 0 0 0 –0.5 –1.8E–15   

3 –0.6 0 0 1 0 0 0 0 0 0 3E–17 –1E–17 –0.5 0.5 0 0.5 –0.5 0 7E-18 0.4   

4 1.2 0 0 0 1 0 0 0 0 0 3E–15 –3E–16 0.5 –1 0.5 –0.5 1 –0.5 –0.3 2.2   

5 –0.6 0 0 0 0 1 0 0 0 0 –2E–15 8E–16 0 0.5 –0.5 0 –0.5 0.5 –0.3 0.4   

6 –0.6 0 0 0 0 0 1 0 0 0 3E–17 –0 0.5 –0.5 0 –0.5 0.5 0 7E-18 0.4   

7 1.2 0 0 0 0 0 0 1 0 0 3E–15 –0 –0.5 1 –0.5 0.5 –1 0.5 –0.3 2.2   

8 –0.6 0 0 0 0 0 0 0 1 0 –2E–15 8E–16 0 –0.5 0.5 0 0.5 –0.5 –0.3 0.4   
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Example 2. An analytical solution of the following 
frictional contact problem at known friction limit forces 
was obtained in [1]. A cantilevered beam of length 
L=260 m was considered, which was placed on a rigid 
base (Figure 4, a). The load is a constant pressing 
vertical uniformly distributed load mNq /3975= , the 

longitudinal force at the right end NFv 243750= was 

considered as a load with increasing parameter. 
The analytical solution is compared with the 

numerical solution obtained by the proposed method. 
The foundation is modeled by a set of discrete rigid 
supports. A plane frame finite element (FE) with three 
degrees of freedom at a node is used to model the 
console. The cantilevered beam is divided into 10=n  
elements. The FE nodes contact the supports according 
to the Coulomb friction scheme. The concentrated 
vertical pressing force in the node is 

N
n

L
qFc 33.114833=⋅= . 

The friction coefficient is assumed to be 3.0=f . 

The results for the longitudinal displacements of the 
beam are shown in Figure 4, b. 

The dependence of the error on the number of 
accepted elements is shown in Table 4. The error is 
calculated by the formula: 

analyticalnumericalanalyticalabsuerr /)( −= .  

Due to round-off errors, there is no clear correlation. 
 

Table 4 
Error calculation 

n 5 10 20 40 80 160 

U, error, % 0.016 0.085 0.036 0.91 0.021 0.84 

Example 3. The problem of plane deformation of a 
sheet pile wall in soil with an underlying layer of rocky 
soil is considered (Figure 5). The sheet pile wall 
interacts with the soil on its two sides according to the 
Coulomb friction scheme. The sheet pile wall and the 
soil are conventionally separated in Figure 5. A hori-
zontal concentrated force at the top of the sheet pile wall 
is taken as a variable load, which is affected by the 
increasing external load parameter; the dead weight of 
the soil is not considered. Horizontal displacements for 
the soil are forbidden on the sides, vertical and 
horizontal displacements are forbidden at the base, and 
the pile has a hinge immobile support at the base. 

A frame element of plane problem with 3 degrees 
of freedom at a node is used to model the sheet pile 
wall, and a 4 node element of plane problem of elasticity 
theory is used for soil. The coefficient of friction 
between steel and soil is assumed to be 4.0=f . 
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 Figure 3. Mutual displacements (z) 
and forces of interaction (x) in a beam 
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The area of cross section of one meter of sheet pile is 2210831.1 mAp −⋅= , modulus of elasticity is 

PaEp 11102 ⋅= , moment of inertia 4510016.1 mI x
−⋅= . For soil modulus of elasticity is PaE 7105.4 ⋅= , 

Poisson's ratio is 27.0=μ , soil thickness is mt 1= . 

In this example, the external load parameter increases until a ray solution is obtained at NFp v 213518=⋅ . 
The zones of sheet pile detachment from soil appear at the top of the sheet to the left and at the bottom of the 
sheet pile to the right. Zones of contact appear at the top of the sheet pile to the right and at the bottom of the 
sheet pile to the left. In this case, the adhesion zone occurs only on the left side in two nodes. On the right, the 
soil slides along the sheet pile (Figure 6). 
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M1000:1

xn[N], zn[m] xt[N], zt[m]

950.202

843.283
366.082

88.026

1.081e-5
4.161e-6

1.711e-5
2.230e-5

2.604e-5

2.826e-5

2.903e-5
2.851e-5

2.689e-5

2.439e-5

2.128e-5

1.782e-5

1.423e-5
1.068e-5

7.249e-6

3.996e-6

2.236e-4

1.862e-4

1.518e-4
1.215e-4

9.546e-5

7.332e-5
5.480e-5

3.958e-5
2.736e-5

1.781e-5

1.064e-5
5.526e-6

2.186e-6
3.35e-7

18.231

25.612

22.706
16.920
11.478

6.670

Mutual displacements, mInteraction forces, N

xn[N], zn[m]xt[N], zt[m]

380.081

337.313

146.432
35.210

-2.668

2.679e-5

2.720e-5

3.277e-5

3.607e-5

3.619e-5

3.459e-5

3.265e-5
3.067e-5

2.870e-5

2.675e-5

2.482e-5
2.288e-5

2.091e-5

1.889e-5

1.681e-5
1.462e-5

1.230e-5

9.822e-6
7.119e-6

4.019 e-6

friction forces 
are ultimate

-4.5914

-6.7681

-4.7164

1.500
 7.292

2.28e-7

1.94e-7

6.6e-8

5.2e-8

2.87e-7

3.63e-7
4.04e-7

4.42e-7
4.81e-7

5.22e-7

5.66e-7
6.13e-7

6.62e-7
7.14e-7

7.69e-7
8.25e-7

8.73e-7

8.98e-7

slippage

adhesion

 

Figure 6. Results for Problem 3. Interaction forces x, mutual displacements z  

 
It should be noted that according to the results of solving the testing problems, the following feature of the 

algorithm was revealed. During the step-by-step process of the Lemke algorithm, the problem of comparison 
with zero arises. The occurrence of small values is due either to the “physics” of the problem (small load incre-
ment leading to a change in the working scheme of the structure) or to round-off errors. This leads to the prob-
lem of finding a criterion for the difference of these small values from zero. For this purpose, a single artificial 
parameter for the accuracy of stopping the step-by-step process was introduced. It determines how much the ob-

tained value of the ultimate desired external load vFp ⋅  will differ from the exact value within the framework of 
the discretized problem. 

The necessity of comparison with zero appears, as a rule: 1) at the last stage if several variables, including 
the parameter p, tend to leave the basis simultaneously; 2)  in the case if the values are close to zero in the lead-
ing column or close to zero and negative in the load column. In the first case, one should act according to Crite-
rion 2 for stopping the step-by-step process. In the second case, small values are interpreted as the result of 
round-off errors and should be assumed to be zero. It has been experimentally determined that the optimum 

range for the value of the parameter is from 1410−  to 410−  in the most difficult cases. This describes an absolute 
error in external load increment parameter. 

The examples presented in the paper have been selected, among other reasons, to show the effect of 
round-off errors on the interpretation of the algorithm’s solution results. Thus, in Example 1 (Table 2) small 
values appeared in the leading column, and in Example 2 (Table 4) the tendency of the numerical solution to the 
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analytical one is not monotonous. due to rounding errors. The value of the external load that gives the ray 
solution in Example 3 due to the accumulation of round-off errors, it was necessary to decrease the parameter for 

stopping the step process to 410− , which did not affect the accuracy of the solution. 

4. Conclusions 

An algorithm for tracking the change of working schemes at parametric increment of external load for 
structurally nonlinear contact problems with friction has been developed. The algorithm has shown its 
effectiveness in solving problems with large contact interaction forces. The physical meaning of the algorithm is 
a sequential change of working schemes (differing one from another by switching of unilateral constraints) at 
parametric increment of force load. This enables to automate the process of load dividing into stages, within each 
of which a linear problem is solved. The use of the proposed approach makes it possible to fulfill strictly the 
condition of mutual non-penetration of contacting bodies. However, if there is a frequent change of working 
schemes with a small increase in the parameter of external influence, then this leads to the accumulation of 
round-off errors and to the complication of determining of the criterion for stopping the step process. The 
algorithm shows good results for problems with a small contact area and large interaction forces in the assumed 
contact area. The accuracy of calculating the results remains high enough even in difficult conditions for the 
algorithm.  

In the process of the work the following tasks have been fulfilled: 
1. A Python program has been written that implements the Lemke algorithm with an increment parameter of 

external influence. 
2. A number of features of the algorithm solution have been described, i.e., the beginning of the step process 

of the solution, its completion and interpretation. 
3. The process of solution has been shown and described for a number of testing problems. The peculiarities 

of the algorithm operation have been identified and shown in examples.  
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