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1. Introduction

The calculation of natural frequencies of structures in practice is carried out by the finite element method
[1-3]. In this way, it is possible to calculate the entire spectrum of natural frequencies of rather complex,
including statically indeterminate, structures, taking into account various types of fastening, material inhomo-
geneities, errors in mounting and manufacturing of structural elements, etc. For simple statically determinate
constructions, analytical solutions for the lower and upper bounds of the first frequency are also possible. Such
solutions are of particular value for regular constructions with a periodic structure. This is achieved by using the
induction method [4—6]. Solutions to deformation problems for planar regular trusses with an arbitrary number
of panels using the Maple computer mathematics system were obtained in [7; 8]. Formulas for deflections of
some spatial rod systems are derived in [9; 10]. For the first time, the question of the existence of schemes of bar
statically determinate structures was raised by Hutchinson R.G. and Fleck N.A. [11; 12], Zok F.W., Latture R.M.,
and Begley M.R. [13]. The optimization and classification of regular trusses was carried out by Kaveh A. [14;
15]. Analytical methods for calculating elements of building structures using the Maple system are considered in
[16; 17]. The handbook [18] contains diagrams of various planar regular trusses and formulas for calculating
their deflections, displacements of movable supports, and forces in characteristic rods. An analytical calculation
of the deflection of a planar externally statically indeterminate truss with an arbitrary number of panels was
performed using the computer mathematics system in [19]. The formula for the dependence of the deflection of a
planar truss on the number of panels was derived by induction in [20]. In [21], a lower bound for the first natural
oscillation frequency of a flat truss was obtained using the Dunkerley method. The frequency spectrum of a
family of regular trusses is also numerically analyzed here. A simplified Dunkerley method for estimating the
first natural frequency of a planar truss was proposed in [22]. When simplifying the desired calculation formula
for the first frequency, it is proposed here to calculate the sum of the members of the sequence by the average
value of its element. The analytical dependence of the deflection of the spatial console of a triangular profile on
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the number of panels was derived in [23]. The formula for the deflection of a cantilever truss with a cruciform
lattice, depending on the redistribution of the cross-sectional areas of the rods and the number of panels, was
obtained by induction in [24]. In [25], some exact solutions were found for the problems of deflection of arch-
type planar trusses.

The number of schemes of rod statically determinate regular constructions that are attractive from the point
of view of the possibility of obtaining analytical solutions is very limited. In [11], the problem of finding such
constructions was even called “hunting”. There are especially few schemes of regular statically determinate
spatial trusses. In this paper, we propose a scheme of a spatial truss and derive a formula for the lower limit of its
first natural frequency.

2. Construction

The truss consists of n panels of length 2a and height / (Fig. 1) of six rods each. The sides of the panel are
isosceles rod triangles connected at the bottom by a horizontal rod of length 2b. The side supports of the
structure are racks with a height d on one side and buildings with additional horizontal connections on the other.
The construction is asymmetrical. In hinge 4, it is fixed on a spherical support.

XXXXX

a

>

Figure 1. Truss scheme, n=>5

A truss of n panels 7=9r+3 contains rods, of which # rods of length 2a in the upper chord, 4n inclined

side rods of length c¢=+/a’+b> +h*> , 2n support posts of height d, n horizontal external support braces, n

horizontal braces of length 2b, and three rods simulating the spherical hinge A in upper belt. The number of
internal nodes endowed with masses is equal to K = 3n+1. The inertial properties of the structure are modeled by
concentrated masses in the nodes, oscillating along the vertical z axis.

3. Methods

To calculate the forces in the elements, the coordinates of the truss hinges are entered into the Maple
system program:

x,=x,,=a2i-1), y, ==y, ==b,z, =z, =d,i=1,.,n.

1 1

The coordinates of the hinges of the supports on the base:

xi+3n+1 = xi+4n+1 = xi+5n+1 = xi’
Vivsast = Vivans1 = 05 Zizns = Zinan =0,
Yitsns1 =78 Zivspn = d.

Here s is the length of the lateral horizontal support links. This value will not be included in the
calculation, since for the selected type of mass oscillations in the nodes (vertically), the force in these rods will
be zero. The structure of the lattice, determined by the order of connection of the rods into nodes (hinges), is
programmed by lists of the numbers of the ends of the rods:
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N, =[i,i+2n], N, =[i,i+2n+1],

1

N, =[i+n,i+2n], N, =[i+n,i+2n+1],

+3n

Ny =li+2n,i+2n+1,N, 5, =[i,i+n],
N, =li,i+3n+1], N,,,, =[i+n,i+4n+1],
N, =li,i+5n+1], i=1,..,n.

The numbering order of the nodes and the choice of the beginning of the bar and its end does not affect
either the force or its sign.

Figure 2. Numbering of knots and elements, n =4

Based on the data on the coordinates and structure of the lattice, a matrix of a system of linear equations is
compiled to determine the forces in the rods by cutting out nodes.

The system of linear equations for the equilibrium of nodes in projections onto the coordinate axes x, y, z
is written in matrix form GS =B. Here G — is the matrix of direction cosines in the projection equations, S —
is the force vector in the rods, including the support reactions, B is the load vector. The projections of the
conditional vectors of the rods look like I  =x, -x, ,l =y, —yy .., =2, —z, . Since the forces are

Nij Nip? "y

applied to one end of the rod and the other in opposite directions, the direction cosines have different signs:

GSN,_l—Z,i = lx,i /1, G3N,_,—1,i = ly,i /1, GsN,., i lz,i /L,
G}N,_Z—Z,i = _lx,i /liaGw,fl,i = _Zy,i /1, G31v,‘2,i = _l:,i /1.

where [, = I} +17 +12, — is the length of the rod. Rows of the matrix G with numbers 32, j = 1,..,K contain

the coefficients of the projection equation on the horizontal x axis, rows with numbers 3j— 1 correspond to the
projection equation on the y axis, and those with numbers 3; correspond to the projection equation on the vertical
z axis.

The solution of the system of equations — the forces in the elements, is searched for in symbolic form
using the Maple system.

Calculation of the natural vibration frequencies of the structure is carried out according to a simplified, but
widespread truss model, in which the mass is evenly distributed over all internal nodes. If we assume only
vertical motions of masses along the z axis, then the number of degrees of freedom of the considered structure is
equal to K. In an analytical form for such a system, one can obtain a lower estimate of the first frequency using
the Donkerley method. The Donkerley formula [26; 27] for the lower frequency limit has the form
K
W, =) 0 (1)

p

where @, — are partial frequencies. Here, in fact, the problem of the eigenvalues of a matrix is replaced by the

calculation of its trace. The equation of vertical oscillations of a separate mass m, has the form

mz, +Dpzp =0,p=1,.,K, )
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where D, — is stiffness, the reciprocal of compliance o = 1/ Dp . Compliance (linear displacement along the

z-axis) is determined by the Maxwell-Mohr formula. Assuming that the stiffnesses of all rods EF are the same,
we have the expression:

Ui 2
— — (»)
5p—1/Dp—Z;(Sj ) 1,1 (EF), 3)
]:
where S;p ) _is the force in the rod with number j from the action of a vertical unit force applied to the node p,
in which the mass is located. The value of the stiffness coefficient and the partial frequency are affected by the
location of the mass. For harmonic oscillations: z, =U , sin(w? + @), formula @), = Dp /m follows from (2).

Substitution of this expression in (1) gives a formula for calculating the partial frequency:

K
wy = mz 6, =mA(n). 4)
p=1

4. Results and discussion

4.1. The Dunkerley’s method. Calculations of the frequencies of trusses with a different number of panels
show that the coefficient A(n) in (4) has the form

Ca’ +Cyb* + Cyc® + Cyh*d

A(n) =
() EFh?

)

Only the coefficients in the numerator depend on the order of the truss # in this expression. Sequential
calculation of trusses with a different number of panels gives the following expressions:

AQ)=(a’ +2b° + ¢ +6h*d) | (EFh?),

AQ2) = (64 +6b° +3¢” +13h*d) | (EFh?),

AB) = (124> +12b° +6¢° +22h*d) | (EFh?),
A(4) = (20a® +20b° +10¢> +33h%d) / (EFh?), ...

To identify patterns in the formation of coefficients in these expressions, the sequence should be extended
to eight. In this case, the operators of the Maple system can derive formulas for the common members:

C,=Cy=n(n+1), C;=n(n+1)/2, C,=n* +4n+1.
Thus, the dependence of the lower limit of the first frequency on the number of panels in the truss has the
form:

wp, =h EF . (6)
m(n(1+n)a’ +b° + 1 2)+(n* +4n+1)dh*)

The solution can be checked against a numerical one in the Maple system using the Eigenvalues operator
from the Linear Algebra package of linear algebra. In this case, the same program is used, according to which
formula (6) was derived.

For example, the following parameters of a steel structure with masses m = 200 kg at the nodes were
chosen: modulus of elasticity E=2.1-10"MPa, cross-sectional area of the rods 9cm?, dimensions @ = 3m, & =
4m, b = 8m, d = 0.5m. Figure 3 shows the dependence curves of the first frequency on the number of panels,
obtained numerically and analytically by formula (6).
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lD_I T III\I—_-In
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Figure 3. Dependence of the fundamental oscillation frequency on the number of panels:
I — solution (6); II — numerical solution

The frequency values obtained by the Dunkerley method, as expected, are less than the first frequency of
the entire spectrum of natural frequencies calculated numerically.

The error of the proposed solution (6) can be refined by introducing the value of the relative error
e=(w,—w,)/® (Figure4). For trusses with a higher height %, the accuracy of the approximate analytical
solution is less. With an increase in the number of panels, the error slightly increases, asymptotically
approaching an acceptable value of 10% for the chosen dimensions.

&
0.104

0.094

0.084

0.074

0.06+

0.054

0.044

0.03+

0.024

0.014 n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4. Dependence of the relative error on the number of panels:
I—h=4m;Il—h=8m
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4.2. Natural frequency spectrum of a family of regular trusses. If the frequency spectra of a series of
trusses with a different number of panels are placed in the same coordinate axes, then certain regularities are
found in the resulting picture. In Figure 5, dots indicate frequencies. Spectra of trusses of different orders are
conditionally united by curves of the same color. Curve 1 corresponds to all four truss frequencies with one
panel. The abscissa shows the numbers of frequencies in the ordered spectra. A characteristic feature is obvious:
a frequency jump in all spectra after a frequency with a number equal to the truss order. Another feature is the
presence of the upper boundary of the spectra. Regardless of the construction order, the highest frequency
remains the same. This is the spectral constant of the construction. Another spectral constant is a straight line
approached by frequencies with numbers n in the spectrum, where n is the order of the truss (Figure 6). The
corresponding points lie on a curve of almost hyperbolic shape (spectral isoline), the asymptote of which, for the
chosen dimensions of the truss, the rigidity of the rods, and the magnitude of the masses at the nodes, is equal

to 143s7".

.1/
1100 =

1000 =
900
800 =
T00 =

n=1
G00 -
500 <
400
300 1
200 4

100 =

Figure 5. Spectra of Regular Trusses
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1104
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20
10

Figure 6. Spectra of Regular Trusses. First n frequencies

The frequency jump from frequency @, to frequency @,,,, where n is the order of the truss, is large

+1 2
enough. The frequency interval [@,,®,,,] forms a certain resonant safety zone in the sense of ensuring the

absence of resonance in the event of external periodic disturbances. In particular, if an engine with a natural
frequency from this interval is installed on the truss, then, regardless of the number of panels, resonance
phenomena in the truss-engine system can be avoided.

When changing the geometric parameters of the structure, the constants change in different ways,
depending on the variable size. So, if you change the longitudinal dimension a from 3m to 16m, the upper
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frequency limit decreases by only 0.5%. Similarly, changing the size of » within the same limits changes this
frequency by 3.8%. When the truss height is changed from 4m to 17m, the highest frequency increases by 2%.

Only two spectral constants and one clearly defined spectral isoline are found here. For comparison, in
[28], up to eight isolines were found in the spectrum of a family of planar regular trusses of the same type. A
distinctive feature of the dependence of the first frequency on the number of panels found here is that the
accuracy of the analytical estimate does not increase with increasing construction order, but decreases. However,
a positive factor is the limited growth of the error and the relatively high accuracy, which is not typical for the
known solutions [29; 30] according to Dunkerley. In the Dunkerley frequency calculation of a spatial L-shaped
truss [31], where an analytical solution was also obtained, the accuracy varies from 28% for a small number of
panels to several percent for a large number. In the resulting solution, on the contrary — from 1% to 10% with a
large number of panels.

5. Conclusion

A model of a spatial regular truss is constructed and a formula for the dependence of the first frequency on
the number of panels is derived. The statement of the problem of dynamics is simplified to one degree of freedom
for each mass in the node. Accounting for the remaining degrees of freedom practically does not change the
algorithm used, nor does it change the qualitative side of the results, but somewhat complicates the form of the
solution and is not presented here. Compared with the known similar solutions, the resulting formula is much
simpler and noticeably more accurate when compared with the numerical solution obtained without simplification
by the Dunkerley method. The spectrum of a family of regular trusses is also simpler than in other problems.

The main results of the work:

1. A model of a spatial regular truss is proposed and, using well-known algorithms, a formula for the
dependence of the first frequency on the number of panels is derived.

2. In the frequency spectrum of the truss family, two clearly defined spectral constants are found, one of
which is the upper boundary of the spectrum.

3. Resonant safety zone of a family of regular trusses is found.
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