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Avrticle history Abstract. Solving of calculation problems for building structures is currently based
Received: March 30, 2023 on the principle of minimum total energy of structures deformation. However,
Revised: May 12, 2023 it is not possible to determine the remaining bearing capacity of the structure
Accepted: May 21, 2023 using this principle. In the study it is proposed to use the criterion of critical levels

of deformation energy to solve this problem. As a result, the ultimate state condi-
tions of a design are formulated on the basis of extreme values of generalized
parameters of designing over the whole area of their admissible values, including
the boundary. The task is solved as a problem of eigenvalues for the stiffness
matrix of the system. The extreme values of design parameters that correspond
to critical energy levels are found, which are used to find the maximum possible
value of the energy of deformation for the considered structure. The residual
bearing capacity is calculated by the value of residual potential energy, which,
in turn, is equal to the difference between the maximum possible value of

the deformation energy of the structure and the work of external forces. A gradu-
al methodology for investigating the progressive ultimate limit state is proposed,
which is based on the sequential exclusion of those elements where the onset of
the ultimate limit state is expected firstly. An example of the practical use of
the proposed methods is given on the example of calculating a simple but visual
design — a statically indeterminate truss.

For citation

Stupishin L.Yu., Nikitin K.E., Moshke-
vich M.L. Methodology for determining pro-
gressing ultimate states based on the displace-
ment method. Structural Mechanics of Engi-
neering Constructions and Buildings. 2023;
19(3):276-284. http://doi.org/10.22363/1815- Keywords: rod systems, matrix methods of calculation, self-stress, deformation
5235-2023-19-3-276-284 energy, ultimate state, critical levels

Leonid Yu. Stupishin, Doctor of Technical Sciences, Professor, Department of Structural and Theoretical Mechanics, Institute of Industrial and Civil En-
gineering, National Research Moscow State University of Civil Engineering, Moscow, Russian Federation; ORCID: 0000-0002-1794-867X; lusgsh@ya.ru
Konstantin E. Nikitin, PhD, Associate Professor, of the Department of Structural and Theoretical Mechanics, Institute of Industrial and Civil Engineering,
National Research Moscow State University of Civil Engineering, Moscow, Russian Federation; ORCID: 0000-0002-8003-4299; nikshox@yandex.ru
Maria L. Moshkevich, PhD in Economics, Associate Professor, Department of Industrial and Civil Engineering, Faculty of Construction and Architecture,
Southwest State University, Kursk, Russian Federation; ORCID: 0000-0001-8749-2252; mmoshkevich@mail.ru

© Stupishin L.Yu., Nikitin K.E., Moshkevich M.L., 2023
This work is licensed under a Creative Commons Attribution 4.0 International License
- https://creativecommons.org/licenses/by-nc/4.0/legalcode

276 ANALYSIS AND DESIGN OF BUILDING STRUCTURES


https://orcid.org/0000-0002-1794-867X
https://orcid.org/0000-0002-8003-4299
https://orcid.org/0000-0001-8749-2252

Cmynuwut J1.10., Hukumun K.E., Mowxkesuy M.JT. CTpouTenbHas MexaHuka UHXEHEPHBIX KOHCTPYKLUMiA 1 coopyxeHuit. 2023. T. 19. Ne 3. C. 276-284

MeToauka onpeneaeHusi NPOrPecCUPYIOLIMX NpeaeJbHbIX COCTOSTHUMI
HA OCHOBE METO/JA NepeMeleHu

1

JLIO. Crynummun ™, K.E. Hukutuu'®" ' MLJI. MomkeBuy?

Hayuonanvuwiii uccnedosamenvckuti Mockoeckutl 20cyoapcmeenuulii cmpoumensvuslii yuueepcumem, Mockea, Poccutickas ®edepayust
2J020-3anadnwiii 20cydapcmeennviii yuueepcumem, Kypex, Poccutickas Dedepayus
nikshox@yandex.ru

Hcropus ctatbu AnHoTauus. Pelenue 3amad pacyera CTPOUTENBHBIX KOHCTPYKIMII B HAcTOsIEe
IMoctynuna B pegakiuio: 30 mapra 2023 1. BpeMsI OCHOBBIBAE€TCsSl Ha MPUHIIMIIE MUHMMYyMa IOJHOH »3Hepruu aehopManuu
Jopaborana: 12 mas 2023 r. KOHCTpYKUuil. OIHAKO OINpeNeNuTh OCTATOYHYIO HECYIIYI0 CIIOCOOHOCTH KOH-
IMpunsra k myonukanuu: 21 mas 2023 r. CTPYKIMHU, UCIOJb3YSl ITOT IPHUHIMI, HE IPEACTaBIAETCS BO3MOXHBIM. B mc-

CJICIOBAaHMU IIPEUIaraeTcsl UCIOIb30BaTh AN PELICHHs 3TOW 3alaud KpUTepuil
KPUTHYECKUX YPOBHEH 3Hepruu nedopManuu. ¥YCiaoBUs MPENeIbHOIO COCTOSHHUS
KOHCTPYKIUU B pe3yJbTaTe GOPMYIUPYIOTCS HA OCHOBE SKCTPEMAJbHBIX 3HaUe-
HU 0000IIEHHBIX [TAPaMeTPOB NPOESKTUPOBAHUS Ha Beel 001acTU UX JIOITYCTUMBIX
3HA4YEHUI, BKIIFOYas FPaHHUIly. 3a1aua petaeTcs Kak Ipoonema coOCTBEHHBIX 3Haue-
HUH 1711 MaTPUIIbI JKECTKOCTH CUCTEMBbL. OTBICKUBAIOTCS 3KCTPEMAsbHbIE 3HAUCHMS
IapaMeTpoB MPOEKTUPOBAHUS, COOTBETCTBYIOIINE KPUTUUECKUM YPOBHIM SHEPIUH,
10 KOTOPbIM HAXOJUTCSI MAKCUMAJILHO BO3MOXKHAS BEJIMUMHA SHEpruu JehopManuu
paccMaTpuBaeMoil KOHCTpyKiuu. OcTaTouHasl Hecyllasi ClloCOOHOCTh BBIYHCIISA-
eTcs [0 3Ha4E€HHUIO OCTATOUHOH HMOTEHIMAIbHOM 3HEpruy, KoTopas B CBOIO Oue-
pelb paBHA pa3HUIE MAKCHUMallbHO BO3MOXHOM BEIMYMHBI SHEpruu aedopma-

ﬂ.]'lﬂ LHTHPOBAHHUSI MU KOHCTPYKIINU U pa6OTI>I BHCIIHUX CHIIL. Hpezmoxceﬂa noiaroBas METOAMUKaA
StUpiShin L.YU., Nikitin KE, Moshkevich M.L. HCCICA0BaHUA TIPOrPECCUPYIOLICTO TIPEACIIBHOIO COCTOSIHUSA, OCHOBAaHHAsI Ha IOCIIC-
JO0BAaTCJIbHOM HUCKIIFOUCHUU TEX 3JIEMCHTOB, B KOTOPLIX B IEPBYIO OUCPCAb OXKH-
JAa€TCs HACTYIUICHUE NPEACIIBHOIO COCTOSTHUS. HpI/IBOZ[I/ITCSI npuMep npaKkTuic-
CKOT'0 HCITIOJIb30BaHHs IIpeuraracMblX METOAUK Ha IMPUMEPE pacyeTa HpOCTOﬁ,
HO HaFJ'ISIZ[HOﬁ KOHCTPYKIHUHN — CTATUYCCKU HeOHpe}leJ’IHMOﬁ Q)epMI)I.

Methodology for determining progressing ulti-
mate states based on the displacement method //
CrpounTenpHas MEXaHUKa HH)KEHEPHBIX KOH-
cTpyKumit 1 coopyxenuit. 2023. T. 19. Ne 3.
C. 276-284. http://doi.org/10.22363/1815- KnoueBble CJI0OBa: CTEPIKHEBBIC CUCTEMbI, MATPUYHBIC METOJIBI PacyueTa, caMo-
5235-2023-19-3-276-284 HarpshKEHUE, SHEprus AehopMaIii, KPUTHIECKHE YPOBHH, TIPEICILHOE COCTOSIHHE

1. Introduction

Nowadays, almost all calculations associated with the estimation of ultimate states reached by a structure
during designing of structures are performed in the Lagrangian form [1-6]. This formulation of the problem allows us
to obtain the design of load-bearing structures of a construction only for specified values of loads. Considering
that the geometrical parameters of the unsafe section are used to design similar structures of the load-bearing
structural system, the building practically always has a significant safety reserve. This is due both to the unifica-
tion of elements carried out by the designer, and to the imperfection of the calculation methods used, which do
not allow taking into account all the features of the behavior of a real structure under the influence of loads.

When choosing a methodology for calculating a structure, the designer is faced with problems beyond
his scope of competency. For example, when determining the rational cross-section of a bending beam, under
the assumption of elastic deformation of the material, it should choose the shape of the cross-section in the form
of an I-beam, where the material is mainly concentrated in the fibers that are the most distant from the beam
axis. At the same time, a similar calculation in the elastic—plastic stage of deformation, leads it to the shape of
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a cross-section in the form of a rhombus. In this case, the material is mainly concentrated near the neutral axis of
the element. The desire to obtain a rational distribution of material in the structure comes into conflict with
the understanding of efficiency from an economic point of view and the construction technology.

Attempts to use the theory of optimal structural design to obtain more efficient projects [7-10], as it was
shown in studies [11], do not provide significant results.

This problem is aggravated by the fact that it is currently impossible to accurately determine the available
reserve of the designed structures using generally accepted calculation methods. No methods are known to us
that allow to determine the full (maximum) load-bearing capacity of designed or already built structures, and this
is the primary task during inspection of their technical condition [12-21]. If trying to find the remaining load-
bearing capacity of a structure after application of the project load, on the basis of the classical Lagrange ap-
proach, then consideration of all possible variants of loading leads to the necessity to solve an endless chain of
tasks, which is impossible to fulfill even with the use of the most modern computational techniques.

To resolve the mentioned difficulties, it is proposed to use the criterion of critical levels of internal energy
of deformation [22]. It can be used to find the maximum possible deformation energy of a structure and based on
it evaluate the remaining load-bearing capacity of the structure [23].

Using the criterion of critical levels of internal deformation energy, it becomes to develop an algorithm
and solve the problem of the progressive limit state of the building's load-bearing structures. The formulation of
the problem proposed in the article allows us, step by step, to find the most loaded element of the structure
(“weak link”), where the limit state will occur first of all, and to exclude it from operation in the calculation
scheme. This process can be continued until a geometrically changeable system of elements is obtained.

This paper studies simple rod systems using the criterion of critical levels of internal deformation energy
based on the equations of the displacement method. The results of determining the residual energy of deformation
of the structure are given. A particular example of the progressive failure process of a structure is considered.

2. Methods

The criterion of critical energy levels is based on the separation of the energy of external influences and the energy
of internal deformations [22]. This criterion can be formulated in the form of equations describing the requirement of
a minimum variation of the deformation energy of a structure, including the condition of orthonormality of the design
parameters of the structure, and boundary conditions for the range of permissible design parameters:

82U (x)=0;, T(x)=0, L

where U(y) — the potential energy of deformation of the structure; y — extremal internal design parameters (ge-
neralized displacements and forces).

The structure may have several levels of critical energy. During the transition from one level to another,
the state of self-stress of the structure changes.

The potential energy of deformation at each loading level of the structure can be decomposed into the sum
of the potential energy balancing the work of external forces Uex and the remaining part of the potential energy
of deformation U (which is in a self-balanced state):

U(x)=U, () +U, (). )

The limit state of the structure is considered to be maintained as long as the work of external forces does
not exceed the potential energy of deformation U(y), and it is balanced by a part of the potential energy of de-
formation Uex. The remaining part of the self-balanced energy U, can be used for further increasing the load.

Further we will investigate the critical deformation energy of the structure Ue. For this purpose, we will
create a small perturbation of the internal field of forces or deformations. At the same time, we consider that ex-
ternal forces (or displacements) do not perform any actual work, since they are compensated by the internal forces.

From the variational principle (1), we obtain the condition of the crucial state of the structure in the form
of the displacement method [23-25]:

[K]{sz}=[2" J{52}, ®3)
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where [K] — is the stiffness matrix of the structure; {3Z} — the vector of generalized displacements in the nodes

of the structure for the state of self-stress, which is represented by a set of orthonormal functions; [XR] -

the matrix of eigenvalues, which has the meaning of single nodal reacting forces.
The vector of maximum nodal reacting forces in the nodes of the structure [C] is calculated as:

(@0} =[ Min {82, }- @)

The algorithm for determination of the potential energy of deformation is formulated through the well-
known matrix procedures of structural mechanics.

For example, the stiffness matrix can be obtained from the internal stiffness matrix of the structure
and the static matrix of the task:

[K]=[A]'[C][A]. (5)

Having constructed the matrix, we solve the eigenvalue problem (3) and find the vector of nodal reacting
forces (4). This vector is used to determine the forces N in each of the rods.

The potential energy of deformation of the structural elements is found from the vector of forces {N}
in the rods as:

U={N}[L]{N}/2. (6)

The work of external forces (for which the design of the structure was carried out) is calculated using clas-
sical methods of structural mechanics.

3. Results and discussion

The proposed methodology is applied to the calculation of a statically indeterminate truss. The rod design
scheme helps to describe the possible limit states in the simplest way and to demonstrate the self-stressing states
of the structure.

The inequalities describing the limit state of the structure are as follows:

U(q)ia)guult; {q)max}g{q)ult}; {amax}g{éult}’ (7)

where {CD} is a vector of generalized forces; {&} is a vector of generalized displacements.
The indexes correspond to the maximum and ultimate values.
The extremal values of energy of deformation U (®, &), generalized forces {CD} and displacements {&} :

including their values at the boundary of the range of admissible parameters, are determined from the task on
the eigenvalues (3). They depend only on the geometric and mechanical characteristics of the structure, as well
as on the conditions of supporting.

We consider that structural elements can no longer resist external influences at the occurrence of the ulti-
mate state (violation of one of the conditions (7)) in one or more rods. This may be, for example, due to the oc-
currence of yielding state of the rod’s material. In such cases, we will speak hereinafter about “rod deletion.”

We will consider the simplest case, when the dimensions of the rods are selected in such a way that they
do not lose their stability under compression. We assume that the constraints on displacements at all points of
the structure are not violated. Then we deal only with limitations on strength. Moreover, these conditions are
formulated uniformly for tensile and compressed rods.

Consider the truss shown in Figure 1. We assume that all rods have the same stiffness EA = 1. The length
and width of all panels of the truss are the same. Figure 1 also shows the numbering of elements and nodes of
the farm, in straight and oblique font respectively.

PACYET V1 MPOEKTUPOBAHVE CTPOUTENEHBIX KOHCTPYKLWIA 279



Stupishin L.Yu., Nikitin K.E., Moshkevich M.L. Structural Mechanics of Engineering Constructions and Buildings. 2023;19(3):276-284

Figure 1. Design scheme of a statically indeterminate truss

Using the proposed methodology, we will find the first self-stress state of the structure. The calculations
will be carried out in the software complex for the analysis of structures by the method of critical levels of
energy “CLE,” which implements this methodology [26].

The forces in the truss rods will be obtained from the unit vectors of displacements applied in the direction
of the degrees of freedom indicated in Figure 1 by arrows. The results of determining the forces in the rods
are shown in Figure 2. Figure 3 contains the extreme values of forces calculated from the maximum nodal dis-
placements.

Comparing the forces in the rods of the truss shown in Figures 2 and 3, we note that the forces arising
from the maximum values of node displacements are much greater than the forces from the action of single
nodal displacements. The unit nodal displacements in this case are one of the possible cases of external actions
on the truss. The main values of forces in the rods are always larger than from possible external impacts, as de-
monstrated by the obtained results.

The value of the maximum possible potential energy of deformation for this truss is equal to:

U™ =30.07EA/I. This value is calculated from the main (maximum) forces in the truss rods. The ratio of
work of external unit forces to the maximum possible energy of deformation for the truss is:W_ /U™ =0.055.
The relative residual value of the deformation energy of the truss is equal to:
UL iyt = —w_ )/Ur™" =0.94. It means that the residual resource of the truss load-bearing capa-

city is a significant part of its maximum value.

0.0000 0.0000

1.0000 0.0000 0.0000 0.0000 1.0000
0.0000 0.5000

1.0000 0.0000

Figure 2. Self-stressing forces in the rods of a statically indeterminate truss from unit variations of displacements in the nodes
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0.0138 0.0009
0.0020 0.0182 0.0066 0.0194
0.0023 0.0183
0.0503 0.0263

Figure 3. Main values of self-stress forces in the rods of a statically indeterminate truss from maximal nodal displacements

0.0166

The maximum values of the main forces in the rods indicate which rod (or rods) is the “weak link” and will

be removed due to violation of one of the ultimate limit state conditions. At this stage, this is rod 4 (Figure 3).

To find out which of the rods will be out of action at the next stage of loading of the truss, we remove this
rod from the calculation scheme, and perform the calculation again. The results of the calculation are shown
in Figures 4 and 5. Comparing the values of forces in Figures 4 and 5, we can see that the main (maximum) no-
dal forces also have larger values than from the single forces in the nodes that model the possible external load.

In a similar way, we continue the calculations until the structure becomes geometrically changeable.
As a result, we investigate the process of progressive destruction of the structure step by step.

0.0000

1.0000 0.0000
0.0000

0.0000

0.0000
0.5000

0.0000

1.0000

Figure 4. Self-stress forces in the rods of a statically indeterminate truss from unit variations of displacements
in the nodes at the second stage of self-stressing

0.0018

0.0001

0.0015 0.0025
0.0020

0.0015

0.0003
0.0006

0.0009

0.0002

Figure 5. The main values of self-stressing forces in the rods of a statically indeterminate truss
from the maximum nodal displacements at the second stage of self-stressing
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At the second stage of self-stressing, the potential energy of deformation of the truss is equal to:
U =26.94EA/1. The ratio of the work of nodal displacements at the second stage of self-

stressing to the maximum potential energy of deformation: W, /UM™" =0.043. The relative residual

potential energy of deformation, which characterizes the residual resource at this stage, is equal to:
uluret =gt —w ) /ur®! =0.96.
In the second stage, the maximum values of the main forces appear in the rod 8. This rod is excluded

from the load operation, and then the design scheme of the truss becomes geometrically changeable. The calcula-
tion is completed at this stage.

4. Conclusion

The authors propose a methodology based on the variational principle of critical energy levels of a de-
formable structure, which allows to solve a number of problems that cannot be solved on the basis of the mini-
mum total energy principle for a structure.

A single criterion describing the limit state of a structure, based on the principle of change in the self-
stress of the structure when passing through the critical level of the deformation energy of the structure, is used
to solve the tasks of calculation for structures.

The example of the solution of the truss calculation problem is used to demonstrate the possibility of cal-
culating the value of the structure's maximum possible potential deformation energy and, on its basis, the residu-
al potential deformation energy of the structure after the application of external loads. A significant reserve of
residual bearing capacity of the structure is revealed.

The method of detection the “weak link” of the structure in the form of displacement method is given,
that allows to investigate the process of progressive ultimate limit state of the structure.
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