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the ring with one-dimensional inhomogenuity. Analytical or numerical-analytical
solutions are used in the two-dimensional plane problem of the theory of elastici-
ty in polar coordinates for an inhomogeneous body. Most of these problems con-
sider centrally symmetric circular bodies. As a rule, this is possible when all
unknown functions depend on the radius. These tasks correspond with the major-
ity of ring and cylindrical structures. Pipes are suitable for creating pipeline sys-
tems and civil engineering, they are used for gas pipelines, in heating networks

and water supply systems. The key feature of the work lies in the consideration
of uneven radial and ring loads distribution along the outer surface of the ring.
Comparison of the calculation results obtained by two methods makes it possible
to determine the stressed and deformed states with sufficient accuracy, an indica-
tor of which is the obtaining of the ring stresses.
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MEPHO paclpe/eeHbl BIOJIb BHEUIHEH MOBEPXHOCTH KOJbLA MIPU OJHOMEPHOU
HEOJHOPOJHOCTU. B 1ByMepHOIl IIIOCKOH 3ajade TEOpHM YNPYTOCTH B IOJSAP-
HBIX KOOpAMHATaX AJs HEOAHOPOAHOIO TeJla UCIOJIB3YIOTCS aHAIUTHYECKUE WU
YHCIICHHO-aHATNTHIECKHE pelIeHns. B GombIIMHCTBE TaKMX 3aJad paccMaTpH-
BalOTCS LIEHTPAIbHO CUMMETPHUHBIE KPYIUIble Tesa. Kak mpaBuiio, 310 BO3MOXKHO,
KOTZIa BCE HEM3BECTHBIE (BYHKIIMH 3aBUCST OT pafryca. JTH 3a1a9i COOTBETCTBYIOT
OOJIBIIMHCTBY KOJBLEBBIX U LMIMHIPUUECKUX COOpYxeHUH. TpyObl MpUrogHbl
I71s1 TPYOOTIPOBOAHBIX CHCTEM M CTPOHTEIBCTBA, IPHMEHSIOTCS JUIS Ta30MpOBO-
JI0B, B TEILIOBBIX CETAX U BOAONPOBOAaX. OCOOEHHOCTh PpabOTHI B PACCMOTPEHUU

3a[a4u, KOT/1a paJualibHble U KOJIBIIEBbIC HArpy3Ku HEPaBHOMEPHO paclpejierne-
HBI BJIOJIb BHEIIHEH MOBEPXHOCTH Kojblla. CpaBHEHHE pE3yJbTaTOB pacyera,
MIOJyYEHHBIX JIByMs METOAaMH, MO3BOJISIET C JOCTaTOYHON TOYHOCTHIO OIpese-
JIUTh HaNPSHKEHHOE U JIe(OPMUPOBAHHOE COCTOSIHUS, IIOKA3aTEIEM YeTro sIBJISET-
Cs1 TIOJTyYeHHE KOJIbIIEBBIX HAIIPSKCHUH.
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Introduction

The article considers a plane problem of the theory of elasticity in polar coordinates for a radially inhomo-
geneous disk under the action of variable normal and tangential loads, factoring in the radial inhomogeneity.
The solution of the problem makes it possible to calculate the strength and deformability of pipes under the ac-
tion of internal and external pressure, as well as torsion. The feature of this article is the heterogeneity of
the structure, which significantly expands the scope of solving problems of the mechanics of deformation in solids.

The first articles on the formulation and solution of problems in the mechanics of inhomogeneous bodies
began in the 50s and 60s, when the first computers appeared. A significant contribution to the development of
the mechanics of inhomogeneous bodies was made by Russian scientists: S.G. Mikhlin [1], G.B. Lekhnitsky [2],
V.A. Lomakin [3], G.B. Kolchin [4; 5]. The works of Polish scientists, primarily V. Olshak and his students [6; 7]
should also be mentioned. The author of this article began to pursue this field of mechanics in 1974 [8—11] and
continues to do so with his students and colleagues to the present day [12—15].

The proposed article is dedicated to solving the problem of the stress-strain state of a thin ring under radial
and ring loads factoring in the radial inhomogeneity of the ring.

The problem is a two-dimensional one with one-dimensional inhomogeneity. The author uses the method
of separation of variables, which is based on the development of the generalized solution of J. Michell for
the plane problem in polar coordinates, which was written about in [16]. Two solutions to the problem are given:
an analytical one and a numerical-analytical one, and comparison of the two calculations’ results is shown.

Formulation of the problem

We consider the problem of the equilibrium of a thin ring when forces are applied to its outer surface:
p=po(l+c0s26)/2; q=pysin26/2, €))

and the inner surface is load-free (Figure 1).

Figure 1. Calculation scheme of the problem
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The modulus of elasticity of the ring material changes according to the power law:

E(r)=Eo[§j6, )

Poisson's ratio v = const.

Analytical solution

The analytical solution is made on the basis of the method [17], derived from the development of the ge-
neralized J.H. Michell solution [16], for calculating a plane problem in polar coordinates for inhomogeneous
structures. In this method, the solution is obtained in the form:

Uy (Po @1 @2 . P3
(v) = (q’o) + (lpl) 0+ (q’z) 0sinb + (1p3) BcosO +

(O (OF! . Qs Z [(‘-psn) . ((pcn) ]
+ <1p4) (LP3) sin® + <1p5) cosO + , v sin n® + v cos no|, 3)
n=

in which each summand consists of the product of unknown functions (¢;, y;) , multiplied by a certain trigonomet-
ric function. In (3), the indices s and ¢ mean that the corresponding functions are multiplied by sinz0 or cosn6.

The solution is reduced to an infinite partially decomposing system of second-order equations. In the prob-
lem under consideration, the corresponding equations are selected from this system depending on the boundary
conditions and formulas for stresses.

According to (1) the boundary conditions have the form

r=a 0,=T9=0, r=>b; o,=p(0); 1,6 =—q(0). 4)

Comparing the boundary conditions and stresses, it can be assumed that the expressions for stresses should
contain the functions @o, Y1, @ and y,. From the system of differential equations mentioned above, it is neces-
sary to consider the following four equations to determine those functions:

. L0 @) A, A +3 S BV v}
(» +2H)(‘Po +—°——§j+ R =228y 0y 2w o + 5 og +w) =00 (%)
r 7 r 7 r
H[\Vi’ +£—W—2lj + u'(\vi —hj =0; (6)
r Vd r
2t A +3p , Vo W) A +2u 1y .
-2 P2 -2 2 P2 + HE\Vs2 +—25 ; -4 2 V2 __(2@02 —rYso +\Vs2) = O; (7)
r r r r r
* " (P, ® 4” }"* U, }"* +3H *r AP (7\'*)'
(7» +2u)[<pcz +%2—%2j——2@cz M 5 T m +[(k ) +2“:|(P02 +T((Pc2 +2y5)=0. 8)
r r r
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A transition is made in the above equations, from a plane deformed state to a plane stressed state by re-
Ev

1-v?

Considering that the solution of this problem factoring in the unambiguity condition, should not have

placing the parameter A with A" =

terms containing 0, it follows from (3) that ] ~ Y1 _. Given this equality, equation (6) takes the form yj =0.
r

The integral of this equation is a linear function that becomes a constant at » = a, b. Since the boundary
conditions (18) for T,y considering (1) do not contain a constant, we should set y; =0. Then equation (5)
is simplified:

. ' . Y
Q +2u>[<p6+‘p7°—‘P—§j+[<>» '+ 2w oy + 2

7

¢p =0, ©

and can serve to determine the function of @ .

Thus, the problem can be divided into two parts: to determine the axisymmetric component of the solution
using (9) and to use (7), (8) for determination of the component that depends on 0. Substituting formula (2) into
the these equations leads them to the form

@5+(1+6)‘P—r°+(8v—1)‘f—§=0; (10)

" 1 8\“’_’3‘2 _ 9-v 6) Ys2 _ 2(1+V) (P’CZ _(6_2\/ 26) P2 =0:
WS2+( o r (l—v-’- 2 l-v r I-v ’ r2 ’ (an
(p;;2+(1+6)%+(6v—3+2v)‘i022 +(1+v)%—(3—v—25v)“;;2 = 0. (12)

The solution of equation (10) is the following function:

1-a+pB 1-a—f
(0N ZCIV 2 +C2V 2 , (13)

where a =(1+8), [3=\/(1—0c)2 —4(3v-1).
The constants of integration that are used in (13) can be found from the boundary conditions for
the axisymmetric component of the external load:

r=a; 0,=0;, r=b>b; o,=py/2.

The system of two ordinary differential equations (11), (12) can be reduced to one fourth-order equation
as follows. From equation (11) we express Wy, as a function of Wy, , ¢., and its derivatives:

Vo = (W2, 000,01, 02 ). (a)

Using the differentiation of this expression by r and substituting equality (a) into it, we obtain
V2 = /2(002:002: 025925 W2 ) (b)
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Substituting (a) and (b) into (5.40), we find the expression for Yy, :

Yo = f3((l>22,(P22a(P'cza(Pc2 ) ()

By differentiating the last equation once with by », we equate the obtained expression with (a) by substi-
tuting (¢) in it. As a result, we obtain a fourth-order equation with respect to the function @5 :

ol +(6+28) ol +(55+8% +V8—3)r @l +(v8® +v5-98-9)rgL, +(3v8 +3v8-35+9)p,, =0. (14)

The resulting equation can be reduced to a differential equation with constant coefficients by introducing
a variable ¢ with the dependence r = ¢

d’ d
02 4 w2 -2 —108)% +(3v8” +3v5-38+9)p.o =0.

d* d°
%2 12 “’302 + (2 +v8—5-10)
df dt dt

The characteristic equation corresponding to the resulting equation will be
14281 +(8% +v8——10)1% +(v8* 8% —108)1 +3v3> +3v5—35+9=0.
Using the substitution n =/ 24581 , this equation can be reduced to a quadratic one:
n% +(v8—8-10n+3v8% +3v6—-38+9 =0.

The final solution of equation (14) has the form

2 It

(pc2 = Zl)ze s
i=1

its constants D; are determined from the boundary conditions for the non-axisymmetric component:
r=a; 6, =T =0; r=>b; 0, = p,c0s20/2; T,.9 =—p,Sin20/2.

The function Y, can be found from equality (c).

Below is an example of a calculation performed for the following initial data: & = —1; b/a = 2; v = 1/3;
E=2-10* MPa.

Figure 2 shows the stress diagrams along the three radius directions. It can be concluded from the graphs
shown above that the consideration of heterogeneity in this case does not lead to a qualitative change in the cha-
racter of the diagrams. Numerical differences in some cases amount to approximately 20%. It is logical to as-
sume that with more substantial heterogeneity, the differences in the results for homogeneous and heterogeneous
materials may be more significant.

In this case, it is simple enough to trace the dependence of displacements on the inhomogeneity of the ma-
terial. Figure 3 shows the diagrams of the displacements of the points along the angular coordinate of the inner
contour of the ring. It can be noticed that the displacements in the inhomogeneous ring are larger than in the ho-
mogeneous ring. This fact is explained by the fact that when 6 = —1 then the modulus of elasticity decreases from
the inner contour to the outer contour twice, and this leads to a decrease in the stiffness of the ring as a whole.
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Figure 2. Stresses o in the ring:

Figure 3. Displacements of points on the inner contour of the ring:
— — inhomogeneous material; — - — - homogeneous material

— — inhomogeneous material; - — - — homogeneous material

Solution using numerical-analytical method

In this section we consider the problem, the analytical solution of which was obtained in item 3.
By the example of this problem the application of numerical-analytical method will be demonstrated, including
numerical solution of systems of ordinary differential equations [6; 7]. At the same time it is possible to deter-
mine the accuracy of the method under consideration.

As it was shown above, in order to satisfy the boundary conditions (4) considering (1), it is sufficient to

restrict formulas (3) to the summands @o, P.c0s20 and y,sin20. The expressions for the stresses o, and T
in the boundary conditions will have the form

B E O , P2 + 2%,
Gr—m[(@ +VT)+<(pC2+Vf>COSZG],
I Lpsz + Z(PCZ

E .
Trg = m(lpsz fsm 29) (15)

Equations (10)—(12) are valid for the functions o, @2 and s, for the law of changing for the modulus
of elasticity (2).

Equation (10) is reduced to a system of two first-order equations, introducing the following notations
Y1 =00,Y2 =Pp:

V=2 y'z=—(1+5)y72—(5v—1)y—§. (16)
r

Boundary conditions (4) for the axisymmetric component of stresses will take the form:

Vi i pod+v)1-v)
]/:a’ +V—:O; l":b, +V = .
b%) . b)) 2E(D) (17)
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Equations (11), (12) with introduction of notations y; = ¢.2, ¥3 = @La, Y3 =W, Y4 = W, are

transformed to a system of four equations of the first order. Adding the boundary conditions (4) for the non-
axisymmetric component to these equations, we obtain the boundary task for functions ¢ ., and v _, .

The calculation was carried out on the interval (a, b) with an equal division into 100 steps for the same
initial data as in item 3. Table shows comparative values of stresses in the inhomogeneous ring at 6 = 45°,
obtained as a result of analytical and numerical calculations.

Stresses in the ring

Analytical solution Numerical solution
a Gr T or 0
1.0 0 0 0 0
1.2 0.252 -1.266 0.263 -1.296
1.4 0.377 -1.338 0.378 -1.363
1.6 0.444 —-1.108 0.444 -1.121
1.8 0.480 —-0.807 0.480 -0.813
2.0 2.000 —-0.500 2.000 —-0.500

Comparison of the results obtained by the two methods allows us to conclude that the accuracy of the nu-
merical-analytical method is sufficiently high.

If we consider a ring with sufficiently large ratio of outer and inner radii, then we can obtain the solution
of the problem of tension-compression of a plate with a small circular hole using the calculation method shown
above. The solutions for tension of an inhomogeneous plate with a hole in one direction, tension-compression
in two directions, and shearing of a plate with a hole were obtained in [8]. It was demonstrated on the basis of
numerical-analytical calculation of a homogeneous plate and comparison of the results with the solution of
the Kirsch problem [4] that satisfactory accuracy can be achieved when the ratio of the plate dimensions to
the hole radius is more than 10.

Conclusion

The problem considered in the paper is an example of using a generalized method for calculating a plane
two-dimensional problem for a radially inhomogeneous ring. The possibility of obtaining an analytical solution
to such problems largely depends on the inhomogeneity of the material, i.e., first of all, on the dependence of
the modulus of elasticity of the material on the radius. The degree dependence of the modulus of elasticity on
the radius selected in the paper is the simplest one.

The second solution obtained by the numerical method shows good compliance with the analytical solu-
tion and may be used for calculations of two-dimensional planar problems with radial inhomogeneity at any con-
tinuous dependence of the modulus of elasticity on the radius.
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