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Abstract. Microbiologically induced calcite precipitation, or calcium carbonate
CaCO0:s, is used in remediating cracks and fissures in concrete. Since the micro-
bial activity is pollution-free, natural, that process is extremely desired and may
solve concrete cracking without sacrificing mechanical properties. The effects

of different nutrient on the self-healing process are elucidated. Nutrients provide
the required sources of energy for the bacterial growth and metabolic activities.
A species of bacteria Bacillus sphaericus was added to the cement mix at a ratio
of 0.6% of cement weight with three organic compounds for nutrients (calcium
lactate, yeast extract and peptone) at 0.30% of cement weight. Effects on setting
time, rate of water absorption, compressive strength and flexural strength
were studied. It was found that bacteria nutrition acts as an accelerator for ce-

ment pastes for initial setting time mortar, while acts as a retarder of cement
pastes for final setting time for all bacterial compared to control mortar. Finally,
bacterial mortars with different types of nutrients showed an increase in com-
pressive and flexural strengths with yeast extract showing the most promising
enhancements, resulting in 26.5 and 60% increase in compressive and flexural
strength respectively.
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Hcropus cratbn AHHOTanMst. MUKpOOHOIOTMYECKH UHIYIIMPOBAHHOE OCAKICHUE KAIBLUTA, W Kap-
[ocrynuna B penakuuro: 22 Hosiops 2021 r. Oonara kanbiust CaCQOs, ucnonb3yeTcst Uil YCTPaHEHUs TPEIIMH B OeTOHe.
Jopaborana: 20 staBapst 2021 . MukpoOHast aKTUBHOCTb HE 3aTrpA3HACT OKPY>KAIOLIYIO Cpely, HOTOMY JAaHHBIN
[punsTa k myOmukauu: 28 ssaBapst 2021 r. NPOLIECC OYEHb BAXKEH, a TAK)KE OH MOMOTaeT PeuIuTh NpoliieMy pacTpecKuBa-

HUs OeToHa Oe3 ymepOa I MEXaHWYECKHX CBOMCTB. BhIACHsSETCS BiusHUE pas-
JIMYHBIX NMUTATENBHBIX BEIIECTB Ha MPOLECC CAMOBOCCTAHOBJICHUs. [luTaTebHbIe
BEIIECTBA 00CCIECYMBAIOT HEOOXOAMMBIC HCTOYHHKH YHEPIHH UL pocTa OakTe-
puit u Merabonuyeckoii aesrensHOCTH. Bun O6akrepuit Bacillus sphaericus Obu1
J00aBieH B LIEMEHTHYIO cMech B cooTHomeHuu 0,6 % OT Macchl LIEeMEHTa C Tpe-
MsI OpPraHMYECKMMH COCAMHCHMSIMHU JUIsl NHMTATEIBHBIX BEIIECTB (JAKTAT Kallb-
U, APOXIKEBOH IKCTPAKT U nenToH) B konuuectse 0,30 % OT Macchl LieMEHTA.
VI3y4eHo BIMSHHC HA BPEMsi CXBAaTHIBAHUS, CKOPOCTH BOJOIOMIIOMICHHUS, POY-
HOCTh Ha C)KAaTHE M MPOYHOCTh NpHu u3rude. OOHapykeHO, 4TO OaKTepHaIbHOE
[HUTAaHHUE JCUCTBYET KaK YCKOPHUTENb LIEMEHTHBIX MACT JUI HA4YaJIbHOTO BPEMEHH
CXBATHIBAHMS PACTBOPA M OJHOBPEMEHHO KaK 3aMEIJIMTENb [EMEHTHBIX HACT
JUIsL OKOHYATEJIBHOTO BPEMEHH CXBATBIBAHU UL BCEX OAKTEPHil MO CPAaBHEHUIO

C KOHTPOJIbHBIM pacTBopoM. Hakorer, 6akTepuaibHble PacTBOPBI C Pa3IUYHbBI-
MU TUIIAMHU IIUTATCJIIBHBIX BCLICCTB IMOKAa3aJInu yBeJ’lPI'ieHHC HpO‘iHOCTI/I HpI/l CXKa-
THH U U3THOE, IPU ITOM IPOFIOKEBOI IKCTPAKT MPOJSMOHCTPUPOBAN Hanbosee
MHOTO000EIIAIONINE PEe3YIbTAThI, YTO MPUBEIO K YBEIMYCHHIO MPOYHOCTH MPHU
ckathi U u3rude Ha 26,5 u 60 % cOOTBETCTBEHHO.
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Introduction

Microbiologically induced calcite precipitation (MICP), or calcium carbonate CaCOs, is used in re-mediating
cracks and fissures in concrete. MICP is a method that may be seen in the production of calcite in various geo-
logical settings, such as soils, limestone caves, oceans, and soda lakes. It is part of a larger category of research
known as bio-mineralization [1]. When a fracture forms, the implanted bacteria are activated, and the resulting
calcium carbonate minerals fill the crack, as seen in Figure 1. MICP is extremely desired since the calcite preci-
pitation caused by microbial activity is pollution-free, natural, and may solve concrete cracking without sacrifi-
cing mechanical properties [2]. In comparison to traditional chemical self-healing concrete, the bio self-healing
method using MICP provides a permanent and ecologically benign solution to the cracking issue. The method
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may be utilized to boost the compressive strength and stiffness of fractured concrete samples [3]. The efficiency
of the MICP process is heavily dependent on the concentration of bacteria as well as the amount and quality of
induced minerals.

Concrete cracks
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Figure 1. Overview of the self-healing process in concrete matrix

Bacillus species exhibit greater activity under certain environmental conditions. According to research,
B. sphaericus is the most commonly used bacterium for MICP procedures that use a urea-enriched medium [4].
The concrete cubes are exposed to bacterial precipitation by several bacterial strains (Bacillus pasturii and Bacil-
lus spharicus) for 7, 14, 28, 90, and 120 days. MICP has been shown to enhance compressive strength, fracture
self-healing, and porosity. General concrete cubes were exposed to a compressive strength test with and without
microorganisms in this comparative study. Microbes are shown to be effective in improving concrete characteris-
tics by achieving higher compressive strength than ordinary concrete at the same curing time. Bacterial precipita-
tion of calcium carbonate has filled certain holes and gaps, making the texture denser and more compact. It en-
hances the compressive strength of concrete by making the structure resistant to seepage/water permeability [5].
The water/cement ratio of the matrix is reduced to increase the self-healing ability of cementitious materials.
A large increase in the relative amount of cement or binder in the mixture leads to the creation of a self-healing
buffer, i.e. the existence of non-or only partly reacted binder particles in the material matrix. High strength or
high-performance concrete are typical examples of low water to binder ratio concrete [2]. Continuous healing of
surface fractures reduces the material’s permeability and greatly reduces the danger of early matrix deterioration
and corrosion of the embedded steel reinforcement owing to intrusion of water and harsh chemicals. Because of
the significant energy consumption and associated atmospheric CO, emissions, reducing the quantity of cement
required in a concrete mixture is ecologically favorable [6]. Chemical infiltration and rebar corrosion are pre-
dicted to be reduced by an active and quick crack-healing process, resulting in a considerable improvement in
the lifetime of concrete buildings. Because manual inspection and repair of big buildings is expensive, an auto-
nomous repair or self-healing system is advantageous. However, the self-healing mechanism and/or self-healing
agent in concrete should not have a detrimental impact on the mechanical properties of the original structure.
Non-reacted or partially hydrated cement particles may be used as a repair agent. Water infiltration through fractures
would cause these particles to undergo additional hydration processes. This might result in crack sealing [7].
The permeability of the concrete controls the rate at which water penetrates it. Recent advances in the characte-
ristics of high-performance concrete with low water permeability have grown more evident in order to alleviate
issues and increase resistance to water and other solution permeation, such as freeze-thaw degradation, sulfate/other
chemical assault, and chloride-ion penetration corrosion of embedded reinforcing bars [8]. A bio-based agent
composed of alkali-resistant bacteria and a food supply for the bacteria is proposed to increase the durability of
the concrete repair system and its connection with the concrete substrate. When used in concrete, this bio-based
chemical has the potential to generate calcite-based minerals inside fractures, decreasing concrete permeability [9].
The incorporation of microorganisms into mortar/concrete, resulting in the bio-mineralization process, is current-
ly a promising area of research in concrete technology. The plan was to include microorganisms, which aid in
the precipitation of calcium carbonate from dissolved inorganic carbon. The use of mineral-producing bacteria
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for sand consolidation and monument repair was investigated. Concrete crack and fissure filling has been ex-
plored. Ureolytic bacteria are anaerobic and water-grown bacteria that thrive inside the concrete or mortar matrix
in the absence of oxygen or food. In addition, the technique would significantly cut atmospheric carbon dioxide
emissions since less cement will be required for self-healing fractures in mortar and concrete [10; 11]. Bacillus
sphaericus increases the compressive strength of fissures. This shows the fully formed calcite crystal with de-
fined and sharp edges all over the fracture surface, which acts as a plugging and repair agent. Scanning Electron
Microscopy’s imaging and microanalysis capabilities reveal the existence of calcite precipitation inside fractures.
The development of microbial concrete will give a non-chemical sealing option. As a result, it will be both eco-
nomical and ecologically friendly [12].

As aresult, a realistic strategy is necessary. Biotechnological techniques for the production of a new gene-
ration of self-healing concrete have been proposed, inspired by microorganisms’ inherent capacity to cause cal-
cium carbonate precipitation [6].

Among the most essential dietary requirements are carbon and nitrogen supplies, which serve as energy
sources and heterotroph survival respectively [13]. Different nutrients must be supplied in the reaction medium
depending on the metabolic route. For example, bacteria in the non-methylotrophic methanogenesis pathway
employ CO, for energy production and carbonate biosynthesis [14].

It’s also worth noting that, in order to get the most calcium carbonate, the reagent concentrations must be
kept within safe limits to prevent inhibiting microbial development.

Physical cause Chemical causes Mechanical causes
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Figure 2. Possible causes of self-healing concrete: swelling of the cement matrix, continued hydration,
formation of calcium carbonate or calcium hydroxide and sedimentation of particles [14]

An overview was presented in [15] of natural sources of self-healing processes in concrete (physical,
chemical, and mechanical). The physical reason, especially expansion of hydrated cement particles, results in
a small crack blockage, as illustrated in Figure 2. Chemical treatments can also help to partially repair the frac-
ture. The chemical process of hydrating unhydrated cement particles aids in the closure of tiny fractures. Its suc-
cess, however, is greatly dependent on the availability of unhydrated cement, and it can be useful for new con-
crete with modest crack widths. The production of calcium carbonate on the fracture face is another chemical
reaction that happens. This process is the most effective method for autogenous concrete healing [16; 17].

Materials and methods

Distilled water (1000.0 ml), peptone, yeast extract, and agar [18] were used to grow bacteria with the pH
set to 7.0. The addition of 10.0 mg MnSO4 H,O to Bacillus strains is advised for sporulation. The conical flask is
filled with media. The flask is then sealed with paper and a rubber band to make it airtight. The solution is then
sterilized for 10-20 minutes using a flame burner. Before adding the bacteria, the solution should be devoid of
impurities and a clear orange color [18]. Later, the flasks are opened, and 1 ml of the bacteria is added to each
sterilized flask, which is then shaken at 150-200 rpm overnight at 30 °C. The bacterial solution was discovered
to be a pale-yellow turbid solution after 24 hours.

Materials selection and cultivation of calcite-producing bacteria: here microbiologically the efficiency of
the MICP process is heavily dependent on the concentration of bacteria as well as the amount and quality of in-
duced minerals.
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Fine aggregates: medium well-graded sand of fineness modulus 2.2 was used for mortar.

Cement: ordinary portland (type I) cement with grade 42.5 N.

Water: fresh tap water was used with water/cement ratio 0.45.

Calcium lactate: calcium lactate powder is produced by reacting lactic acid with calcium-based water-
soluble compounds such as calcium carbonate or calcium hydroxide. The chemical formula is C6H10CaO6 and
it is a white powder and it possesses an efflorescent odor. It is also known as calcium salt pent hydrate and
the chemical formula of the powder is CaO,. Jonkers et al. [9; 19] proposed the utilization of calcium lactate as
the only source of carbon and energy for microbial productivity and mineral precipitation and concluded that
the only calcium mineral compound that can be added to concrete without causing any loss in strength is calcium
lactate and may increase the compression strength when adding up to 2% of cement mass [20].

Yeast extract: yeast extract is the primary carbon source for the urea hydrolysis process [21] as well as
a nitrogen supply for the metabolic process. Other important minerals can also be found in it. The addition of
yeast extract to the concrete mixture prevents the cement from setting and the concrete from hardening [21].
The inclusion of yeast extract, at 1% by mass of cement, reduces the strength of the concrete [19]. Furthermore,
Jonkers et al. [19] discovered that adding yeast extract (1% by mass of cement) to concrete reduces the strength
of the concrete. Paine’s study [22] contradicts this. It has no influence on the strength of the mortar when it is
less than 0.5% by mass of cement.

Proteins (peptone): peptone, tryptone, tryptone peptone, trypticase, and trypticase peptone are partly di-
gested proteins that are widely utilized as a source of amino acids, peptides, proteins, and nitrogen in growth
medium. Complex proteins are broken down either enzymatically or chemically to create them. Peptone applied
to concrete at 1% by mass of cement has been demonstrated in studies to diminish concrete strength [19].

Bacterial suspension preparation: bacterial cultures were cultured for 7 days to guarantee sporulation be-
fore being placed in a falcon tube 50 mm and centrifuged at 10 000 rpm for 10 minutes before being added to
the cement mortar. Finally, the vegetative cells and spores were harvested by re-suspending the cell pellets in
a sterile 0.9% NaCl solution. The pure plate count technique and optical density of bacterial cultures were em-
ployed to create culture suspensions with a final cell density of 2x10° CFU/mL, which were subsequently uti-
lized in 0.5% concentration of the cement weight.

Mortar mixes: the mortar mixture was weighed and stirred for five minutes using a mechanical mixer.
After that, water was poured, and the mixing procedure took 10 minutes. By weight, the sand/cement ratio was
1:3. The ratio of water to cement was 0.45. To test the effect of adding bacteria to the mortar mix, a control
mortar mix was made. Specimens were prepared for mortar mixing with the addition of calcite-producing Bacil-
lus sphaericus (bacterial mortar). Bacteria were added at a rate of 0.6% of the cement’s weight. At a ratio of
0.5 bacteria by weight, three organic bio-mineral precursor chemicals, calcium lactate (CL), peptone (P), and
yeast extract (Y), were added. Table 1 shows the proportions of experimental mortar mixtures. For several testing,
the mortar was cast in molds. Remolded test specimens were stored in a damp towel. Every day, the specimens
were sprayed with water to keep them wet [23].

Table 1
Experimental mortar mixes proportions
. . Bacteria Organic
Code Bacteria Nutrition Sand/cement Water/cement o
addition/cement compound/cement
C Control 0.0 0.0 0.0
BSCL ) Calcium lactate 31 0.45
BSP Bacillus Peptone ' ' 0.6% 0.3%
sphaericus
DSYE Yeast extract

Setting time: Vicat equipment for cement paste was used to conduct initial and final setting time tests [24].
There was no increase to the cement. Only before the setting time experiments, a standard water/cement ratio
was tested on cement. To examine the influence of bacteria and organic additives on setting time, cement pastes
were mixed with three organic additives as given in Table 2.

The rate of water absorption. speed of water absorption is a measure of the capillary forces exerted by
the pore structure causing fluids to be drawn into the body of the material. In this experiment, the speed of water
increases in the mass of samples due to water absorption at certain times when only one surface of the specimen
is exposed to water. Mortar samples were dried in an oven at 70 °C for 3 days and then cooled for ages 3, 7, 28,
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90 and 120 days of casting. The method of curing was moist curing. The sides of the mortar samples were cove-
red with epoxy resin in order to allow the flow of water in one direction [25]. The end of the samples was sealed
with tightly attached plastic sheet and protected in position by an elastic band. The initial mass of the samples
was taken after which they were kept partly immersed to a depth of 10 cm in water. The readings were started
with the initial mass of the sample for a period of 2 hours from first contact with water. Also, the readings were
started with the initial mass of the sample at selected times after first contact with water (typically 1, 5, 10, 20,
30, 60, 110 and 120 min). Samples were removed and excess water was blotted off using paper towel and then
weighed. The gain in mass (m, kg/s) at time (¢, s), exposed area of the specimen (a, m?), and density of water (d),
were used to obtain the rate of water absorption (7, m/s*%) as per the equation:

_Am

2% 1
! ad )

Compressive strength test: the compression test was conducted of the prepared mortar. Test specimens
with dimensions of 70x70x70 mm were cast. All specimens were provided with sufficient time for hardening
and cured. Three specimens were prepared for each age. After the specified period (3, 7, 28, 90 and 120 days) all
the specimens were tested for its maximum load in the compression testing machine. The cubes were tested on
hydraulic machine with a 3000 kN capacity as according to code specifications.

Flexural strength test: test specimens with dimensions of (160x40x40 mm) were cast cured using mois-
turized wet cloth. The flexural specimens were subjected to three-point loading test. The flexural strength was
determined for 28, 90 and 120 days, using a flexural testing machine with a capacity of 15 ton to determine
the maximum load before failure.

Average of three tested specimens for each age was taken. The flexural strength is calculated using fol-
lowing formula [26; 27]:

3PL
Flex.Strength = - (2)

172

where P — the maximum applied load to the specimen, N; d; — the width of the specimen, mm; d, — the depth of
specimen, mm.

Results and discussion

Setting times: the obtained results from the initial and final setting times of control and bacterial cement
paste are shown in Table 1 and illustrated in Figure 3. The initial setting times for all specimens achieved
the limits of ASTM C403. Each specimen has different initial setting time and final setting time according to
nutrition. The final setting times for all specimens achieved the limits of ASTM C403 except for BSCL and BSY.
When nutrition addition was calcium lactate or yeast extract, the final setting time exceeds the code limits
(10 hours). Final setting times for BSCL and BSY were 120 and 121% compared to the code limit [24]. Calcium
lactate and yeast extract contain of calcium phosphate and zinc in its raw materials respectively, which they can
retard setting times.

The rate of water absorption: the influence of bacteria and different nutrients on the water absorption of
mortar after 2 hours was investigated. It was observed that with the inclusion of bacteria, the rate of water ab-
sorption of mortar decreased as shown in Table 3 and Figure 4. Noting that the use of calcium lactate as a nutri-
ent resulted in further reduction in the rate of water absorption. At the ages of 3, 7 & 28 days, it was observed
that the rate of water absorption of all bacterial specimens have smaller gain of water absorption than that of con-
trol mixture, almost cutting it by half, which aligns with what previous literature. At 90 days the specimens with
yeast extract and peptone for nutrients had a smaller gap in water absorption compared to the control specimen,
while the specimen containing yeast extract continued to cut the gain of water absorption by half. At the age of
120 days, it was observed that the rate of water absorption of all bacterial specimens after 2 hours has smaller
gain of water absorption than that of control mixture and became semi-impermeable. Microbial induced calcite
precipitation is responsible for filling up the pores in mortar and hence decreasing water absorption of bacterial
mortar specimens.
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Table 2
Initial and final setting times for different specimens
Sample name Initial time Final time
Control sample 135 345
BSCL (calcium lactate) 101 595
BSY (yeast extract) 99 399
BSP (peptone) 168 384
450 :
395 399
400 VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV ei—— 384
E‘ 350 S—— — - E—
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Figure 3. Initial and final setting times for different specimens
Table 3
Rate of water absorption for bacterial and control mortar after 2 hours
Rate of water absorption/10~7, m/sec®3
Age, days
Sample name
3 7 28 90 120
Control sample 2.2 1.55 0.8 0.3 0.25
BSCL (calcium lactate) 1.4 0.65 0.3 0.12 0.03
BSY (yeast extract) 1.2 1.1 0.3 0.21 0.16
BSP (peptone) 1.34 1.05 0.37 0.26 0.21
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Figure 4. Rate of water absorption for bacterial and control mortar after 2 hours
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Compressive strength: the results from the compressive strength test have shown an increase in strength
for the bacterial mortar when compared to control mortar. Table 4 and Figure 5 showed a significant increase in
strength of control and bacterial mortar over time. At the age of 3 days, the compressive strength value of BSY
was equal to that of control specimen, but the compressive strength of BSCL and BSP became 108 and 108.39%
of the compressive strength of the control sample.

At 7 days of age BSCL, BSY and BSP starts to show an increase in compressive strength by achieving
106.33, 116.37 and 113.7% of the compressive strength for the control specimen respectively.

At 28 days of age BSY and BSP showed a decrease in compressive strength by 8.3 and 13.29% while
BSCL showed an increase of 0.9% in comparison to the control specimen.

At 90 days of age BSCL, BSY and BSP starts to show an increase in compressive strength by achieving
104.64, 122.68 and 125.7% of the compressive strength for the control specimen respectively.

At 120 days of age BSCL, BSY and BSP starts to show an increase in compressive strength by achieving
111.97, 137.1 and 126.5% of the compressive strength for the control specimen respectively.

This proved significant activity of bacteria until age of 120 days. Calcite precipitation induced by bacteria
is responsible for filling up the pores in mortar and hence increasing bonds in the microstructure which resist
loads significantly and hence compressive strength was increased compared to of control mortar. After 120 days,
bacterial mortar with yeast extract proves to have higher compressive strength.

Table 4
Compressive strength for bacterial and control mortar specimens, N/mm?
Age, d
Sample name ge, Cays
3 7 28 90 120
Control sample 20.5 26.2 349 43.5 50.1
BSCL (calcium lactate) 22.14 27.86 35.23 45.52 56.11
BSY (yeast extract) 20.5 30.49 32 53.37 68.69
BSP (peptone) 22.22 29.79 30.26 54.65 63.36
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Figure 5. Compressive strength for bacterial and control mortar specimens
Table 5
Flexural strength for bacterial and control mortar specimens, N/mm?
A
Sample name ge, days
28 920 120
Control sample 6.13 6.56 7.31
BSCL (calcium lactate) 7.88 8.75 11.81
BSY (yeast extract) 11.09 11.15 11.8
BSP (peptone) 10.5 10.71 11.4
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Figure 6. Flexural strength for bacterial and control mortar specimens

Flexural strength: bacterial and control mortar were tested. It was noticed that flexural strength value of
BSP was higher than that of flexural strength value of BSCL at age of 28 and 90 but it decreased at the age of
120 days as illustrated in Figure 6 and Table 5.

Results of flexural strength test revealed that there is an increase in the strength for the bacterial mortar
when compared to the control mortar as illustrated in Figure 6. At the age of 28 days, the flexural strength value
of BSCL, BSY and BSP were 128.54, 180.91 and 171.28 % of flexural strength of control mortar respectively.
At the age of 90 days, the flexural strength value of BSCL, BSY and BSP were 133.38, 169.96 and 163.26 % of
flexural strength of control mortar respectively. At the age of 120 days the flexural strength value of BSCL, BSY
and BSP were 161.55, 161.42, and 155.95% of flexural strength of control mortar respectively. Microbial in-
duced calcite precipitation is responsible for filling up the pores in mortar and hence increased the flexural
strength as observed in previous research. Generally, bacterial mortar proved to have a higher flexural strength.

Conclusion

Several conclusions could be derived from the results obtained in this investigation as follows:

1. The bacteria nutrition acts as an accelerator for cement pastes for initial setting time for all bacterial
mortar compared to control mortar, while acts as a retarder of cement pastes for final setting time for all bacterial
mortar. With yeast extract acting as the strongest accelerator of the initial setting times and retarders for the final
setting times. Initial and final setting for all mortar were within limit according to the American code for design
and construction of concrete structures ASTM C403.

2. The rate of water absorption of all bacterial specimens with different types of nutrients after 2 hours has
smaller gain of water absorption than that of control mixture and specimen BSCL became semi-impermeable
after 120 days which aligns with previous results that showed a decrease in water absorption.

3. Significant activity of bacterial mortar, biochemically induced calcium carbonate precipitation is re-
sponsible for filling up the pores in mortar which in turn decreases rate of water absorption of bacterial mortar
and decreases permeability.

4. Compressive strength for all bacterial mortar increased compared to the control specimen’s compressive
strength. Compressive strength of specimen containing yeast extract achieved the highest compressive strength
at 120 days age with an increase of 126.5% compared to the control specimens

5. Compressive strength for BSY and BSP showed a decrease by 8.3 and 13.29% while BSCL showed
an increase of 0.9% in comparison to the control specimen at 28 days of age.

6. All bacterial mortar specimen showed a similar increase in flexural strength of about 160% under dif-
ferent types of nutrients

Therefore, the calcium-producing microbes are responsible for filling the pores in the cement mortar, thus
reducing the rate of water absorption and increasing the compressive strength and flexural strength of the bacterial
cement mortar, with yeast extract being the best option for increasing both compressive and flexural strength.
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