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LIMOHHBIE TECThI, HA OCHOBAaHUM KOTOPBIX BBIMOIHEHO HCCIEA0BAaHUE TOYHOCTH U
CXOJIMMOCTH Pe3YJIbTATOB PacdeTa Pa3IMYHbIX 000JIOYEK C UCIIOIB30BAHUEM THX
KOHEYHBIX 371eMeHTOB. O00I04edHbIe KOHCTPYKIIMH HaXOAAT IMUPOKOE IIpUMe-
HEHHE B Pa3IMYHBIX OOJIACTSIX TEXHUKH — CTPOMTENIHCTBE, MAIIMHOCTPOCHUH,
CaMOJIETOCTPOCHUH, CYyJOCTPOCHUH U T. JI. CIIEHUATUCTHI 110 POSKTUPOBAHUIO 1
pacueTy TakuX KOHCTPYKLHUH HYXIAIOTCS B HAJEKHOM U JIOCTYITHOM HHCTPY-
MEHTE JUIsl pELICHUsI TIPAaKTUYECKHUX 3a1a4. Beruuciaurensubiii komiieke [IPUHC
MOXeT ObIThb OAHMM M3 HHUX. ONHCBHIBAIOTCS KOHEYHBIE HJIEMEHTHl 000JI0YEeK,

peammu3oBanHbie B BhraucauteabHoM komruiekce [IPUHC. Tlomyuenst pesynbra-
ThI BEpU(QHUKALMOHHBIX TECTOB, MOATBEPIKIAIOIINE BHICOKYIO TOYHOCTb U CXO/HU-
MOCTb 3TUX KOHEYHBIX 3JIeMEHTOB. Brrunciurensubiii komiieke [IPMHC moxxer
ObITh 3()()EKTUBHO MCIIOJIb30BAaH MHKCHEPAaMH TPOCKTHBIX M HAy4YHBIX OpraHH-
3alMi JUIsl pelIeHns [UPOKOTo Kilacca HHKEHEPHBIX 3a7ad, CBA3aHHBIX C pacue-
TaMH 000JI0YEYHBIX KOHCTPYKIIUHA.
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Introduction

Shell structures are widely used in various fields of technology — construction engineering, machine-
building, aircraft construction, shipbuilding and so on. Fundamental questions of the shell analysis theory have
been studied in detail in the works of domestic and foreign authors [1-5]. In these works, equations were obtained
that completely describe the stress-strain state of thin shells of arbitrary shape under arbitrary loading. However,
these equations do not have a common analytical solution. Various authors have obtained particular solutions for
shells of a relatively simple form. The search for such solutions is underway at the present time [6—9]. The most
famous of them, tested by long-term practice of their use, are given in reference and educational literature [10; 11].

The finite element method, which appeared in 1956, became a universal tool for calculating shells of arbi-
trary shape [12]. The versatility of the method is provided by the fact that the shell surface is represented as a set
of elements of a simple geometric shape, triangles and/or quadrangles, which can be both flat and curved. At-
tempts were made to construct a curvilinear finite element on the basis of the shell theory [13], but it was impos-
sible to make such element universal. Therefore, at present, for the calculation of shells, either plane finite ele-
ments are used, built on the basis of the plate bending theory [14; 15], or curvilinear ones, built on the basis of
the general theory of elasticity [16].

The finite element method has been implemented in various computer programs. Those, who have been
thoroughly verified, use the confidence of calculators and designers. The subject of research in this article is created
by Professor V.P. Agapov computer program PRINS, the development of which is carried out by Professor
V.P. Agapov together with his followers. The theory and practical implementation of shell finite elements used
in this program is briefly described, and numerous examples of calculation of shells of various shapes are given.

Method

In the PRINS program, plane triangle and quadrilateral finite elements, implemented in single-layer and
multilayer versions, are used for the calculation of thin shells. Since PRINS is intended for calculations of both
linear and nonlinear deformable structures, the fundamental position in the development of finite elements was
to obtain the simplest mathematical formulations. This circumstance is explained by the need to use rather dense
finite element (FE) grids in the calculations, on the one hand, and the need for multiple recalculation of the stiffness
characteristics of elements in the process of nonlinear problems solving, on the other. Therefore, the simplest
triangle (Figure 1, a) with linear approximating functions for membrane displacements and a function in the form
of an incomplete cubic polynomial for deflections (1) was taken as the basis for the shell elements constructing.

u=0y+a,x+0o3y, v=04 +05x+0ag),

2 2 3 2 3
W=q) +qrX +q3Y +qux” +qsxy+qey” +q7X" +qgxy° +qoy. (1)

A finite element with such displacement functions has well known to specialists disadvantages [14],
the main of which are non-invariance with respect to the local coordinate system and the lack of compatibility of
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rotations of the normal with adjacent elements at the boundaries that do not coincide with the local x,, axis.

However, an advanced triangular finite element can be built on its basis. Two such elements are used in
the PRINS program — multilayered EL34 and single-layered EL36. When developing multilayer element,
the technique proposed by Professor Agapov [17] was used, and in the development of single-layer element
the method described in the work of Clough and Tocher [14], was realised. The main idea in both cases is to use
three so-called subtriangles with approximating displacement functions, taken in the form (1), to obtain the cha-
racteristics of a given triangular FE. Methodology of professor Agapov is illustrated in Figure 2, and the Clough
and Tocher method is shown in Figure 3.

In both cases, the characteristics of subtriangles are initially formed in their local axes, then converted to
axes common for a given triangle, summed and averaged.

a b c
Ym |z arbitrary layer
3(x3, ¥3) \/L\ h., o x o,
2] Tl < i
hy S ———————— - " '_x —_— —— —
i, | EL
w Xm | o~ N 173
™ -~ N i
1(0,0) 2(x, ,0) base layer ¢ Xm Y
Figure 1. To create laminated shell FE:
a — triangular FE in local coordinates x,—y,; b, ¢ — cross section
a b
A
Ym Yms Y1 Ym . Ym
k(X vi) k k k
3 5
Xm 1 Xmy X1 2 Xm Xm
i(0,0) J;,0) i J i yl}/j %,/ i J

given triangle subtriangles

Figure 2. To calculate the bending stiffness matrix:
a — triangular FE with nodes i, j, k; b — subtriangles in local axes

j Xm, xl

o/

Figure 3. R.-W. Clough & J.L. Tocher triangular finite element formation

As shown in [14; 17], the triangular elements thus improved have the property of invariance with respect
to the coordinate axes and complete compatibility of displacements and rotations with adjacent elements at all
boundaries.

The characteristics of a quadrangular FE are obtained by summing and averaging the characteristics of
four triangles according to the scheme shown in Figure 4.
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Figure 4. Forming a quadrangular finite element

A detailed description of the methods for obtaining all the characteristics of flat finite elements necessary
for the calculation of shells can be found in [14; 15; 17]. The purpose of this work is a comparative analysis of
shell FE implemented in PRINS program, as well as analysis of the accuracy and convergence of the results ob-
tained with their help.

Results and discussion

To verify the above-described finite elements, we present a number of numerical calculations performed
in PRINS program.

Single-layer shallow shell. We consider a shallow shell, the middle surface of which is an elliptical pa-
raboloid (Figure 5, a) with the following initial data: ¢ =5 =10m, 4 =10 cm, fi = = 0.5 m, E = 3x10* MPa,
v=0,2, ¢ = 1 kPa. The shell rests on transverse diaphragms that are rigid in its plane and flexible out of plane.

X

Figure 5. To the calculation of a shallow shell

The middle surface of the shell considered is described by equation:

A VLl z_jz_
_f{f(za lj +f(2b 1 1}, ()

This surface is formed by moving a line f; (x) along a line f> (y) .

The authors estimated the accuracy and analyzed the convergence of the calculation results obtained with
using of triangular and quadrangular elements of a single-layer shell (type EL36). For these purposes, a total of
twelve finite element schemes of the considered shell were built (Figure 6) with different mesh densities:
10x10, 14x14, 20%20, 3030, 36x36, 40x40. An analytical solution to this problem is given in the manual [11].
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Figure 6. Finite element models of a shallow shell:
a, b, ¢ — for calculating with rectangular FE; d, e, f— for calculating with triangular FE
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Comparison of the results obtained in the PRINS program with the analytical calculation data was carried
for the vertical displacement and for the total stresses at the upper (c,) and lower (o;) surfaces at the central point

of the shell. Stresses were calculated by the formula

L oM

N

N

)

o=

W
where N and M are the lineal membrane force and the lineal bending moment in the shell section respectively.

The orientation of the shell surfaces is determined by the direction of the local z,, axis of finite elements,
the positive direction of which at the central point coincides with the direction of the global z axis in Figure 5.

The results of the numerical calculation of the shallow shell are presented in Table 1.

Table 1

Stresses at the upper and lower surfaces
at the center point of the shell
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Calculation results of the shell

Vertical displacement
at the center point of the shell w, m

6.33
0.45
4.07
0.45
0.22

—0.000221

FEM solution | Analytical solution | A, %

—-0.000235
—0.00022
—0.00023

—0.000222

—0.0002215

FE mesh

14x14 (3)
30x30 (3)
14x14 (4)
3030 (4)
40%40 (4)

stress fields in the shell are shown in Figure 7.

The displacement and
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Figure 7. Calculating results of a shallow shell:
a — deformed shell scheme, total displacement fields, m; » — normal stress fields o,,, kPa; ¢ — normal stress fields o,,, kPa ; d — shear stress fields t,,, kPa

As you can see from the Table 1, PRINS program provides an equally stable solution using both triangular
and quadrangular FE. With a relatively coarse FE mesh, the calculation error is less than 6%. The displacement
convergence graph is shown in Figure 8.

+10
°\°.‘ 0 &
=
9]
5 -10 el

V
-20
10x10 20%20 30x30 40%40
FE mesh parameter
Figure 8. Convergence graph of calculation results for displacements Figure 9. To the calculation of a spherical shell

Spherical shell under uniform pressure. The spherical shell clamped at the edges and loaded with
the uniform load (Figure 9) is considered. The initial data are as follows: R = 2.28 m, o = 35°, A = 7.6 cm,
E=3%10* MPa, v=0,167.

An analytical solution of this problem by the Steuermann — Geckeler method is given in [11]. The shell
verification calculation was performed by a shell finite element (type EL36) at different FE mesh densities:
8x32, 12x48, 16x64, 32x128 (Figure 10).

The results of the spherical shell analysis, obtained with the aid of PRINS program, are shown in Figure 11.

The graphs of the convergence of the calculation results for meridional bending moments and circumfe-
rential normal stresses are shown in Figures 12 and 13 respectively.

The data presented in these figures show the high accuracy of the finite elements used for calculations.
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Figure 13. Convergence graph of calculation results for circumferential stresses oy

Tank consisting of a cylindrical part and a spherical dome. Let us consider a dome-shaped shell, turning
into a cylindrical one, under the action of uniform pressure (Figure 14). The initial data are as follows:
Rn=R;=20m, h =50 cm, E =3x10* MPa, v=0,2. The tank is rigidly fixed in the base.

Figure 14. To the calculation of a tank

The finite element schemes of the reservoir were constructed using triangular and quadrangular shell ele-
ments (type EL36) and had the following parameters: 12x24, 18x36, 24x48, 30x60 (Figure 15).

I

RN

T

RRRERE
T

ARRNNANANRARERA

L]

A

[RRNRRRRRNRANY
AN
.

ALRERTANERERERRERERRRNRNAN

FEAEE A

\
\
7
[T T 177 ] ],

|
P
YT

RRERRRN

-

Figure 15. Tank finite element models

The stress state of the reservoir under consideration can be determined using the membrane theory of
shells (the edge effect is not considered).
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Normal stresses in the cylindrical part are equal:

R R
. =Pt pr 3)

=—, O,="—.
"o g

The stresses in a spherical dome are determined by the equation:

PR
6, =0, =—. 4
(=0 ="t O
The results of the reservoir analysis with the aid of PRINS program are presented in Table. 2.
Table 2
Tank calculating results
Cylindrical shell Spherical shell
FE mesh FEM solution Analytical solution FEM solution Analytical solution
om, kKPa o1, kPa om, KPa o:, kPa om, kPa o:, kPa om, kPa o1, kPa
12x24 9900 19 800 9950 9990
18%36 9960 19 900 9960 10 000
10 000 20 000 10 000 10 000
24x48 9980 20 000 9980 10 000
30%60 9990 20 000 9990 10 000

The displacement and stress fields in the tank are shown in Figure 16.

M 2070 B o
B 190811 O
9967
[ 18022
B o.01419 [ e
[ 18033 B 9945
B o.01277
: B 17144 W 9934
B o,01135 B 16255 B 9023
[ 0,00993 B 15366 B o012
I 0,00851 B 14477 B 9901
B o0.00709 [ 13588 9890
M 0.00567 12699 [ 9879
0,00425 | 11810 [ o368
0,00283 [ 10021 [T 9857
B o.0011 7 10032 [ 9846

Figure 16. Tank calculating results:
a — deformed tank scheme, total displacement fields, m; b — normal stress fields in the meridional direction c,,, kPa;
¢ —normal stress fields in the circumferential direction c,, kPa

As you can see from the Table 2, the results obtained using the PRINS practically coincide with the ana-
lytical solution according to the membrane theory.

Flat layered cylindrical panel. The calculation of a flat layered cylindrical panel rested on transverse dia-
phragms that are rigid in its plane and flexible out of plane (Figure 17, a) is presented. Panel dimensions: a; = 1 m,
a> =2 m, Ry = 3 m. The cross-section of the panel consists of five layers symmetrically located relative to
the middle surface (Figure 17, b).

The characteristics of the layers are as follows: #; = 0.5 cm, &, = 1.5 cm, &3 = 1.6 cm, E; = 7x10* MPa,
E>=2.6x10* MPa, E3 = 195 MPa, v; =0.3, v,=0.13, v;=04, q =35 kPa.

The calculations were carried out using a triangular multilayer FE (EL34). Four different finite element
meshes were used: 6x12, 9x18, 12x24, 15x30 (Figure 18).
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Figure 17. To the calculation of a laminated cylindrical panel:
a — general view; b — cross-section of the panel

O

i

il

HH0H408
A

G0

Figure 18. Finite element models for calculating a laminated panel

Table 3
Calculation results of laminated cylindrical panel
Vertical displacement Forces in the middle of tl.le panel
FE mesh at the center point of the shell w, m FEM solution Analyf:lcal
solution Error, Ay, %
FEM solution Analytical solution | My, KNm/m | N, kN/m | My, kNm/m | Ny, kN/m
6x12 0.000459 3.086 -15.8 0.88
9x18 0.000458 0.000455 3.08 -15.5 3.05 -15.29 0.65
12x24 0.000456 3.075 -15.4 0.2

B 0.000456
B 0.000410
B 0.000365
I 0,000319
B 0,000273
B 0.000228
B o0.000182
I 0,000136

O B »
] B s
| | BU
[ -
o | K
O o
BN -

I -20

-26

29

Figure 19. Calculating results of a laminated cylindrical panel:
a — deformed shell scheme, total displacement fields, m; » — normal force fields Ny, kKN/m;
¢ —normal force fields N,, kN/m; d — shear force fields Ny, kKN/m
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An analytical calculation of the problem under consideration is given in the book [18].

The results of numerical calculations are presented in Table 3.

The displacement and stress fields in a laminated panel are shown in Figure 19.

The calculation error ranges from 3.5 to 0.2%, depending on the dimension of the FE mesh.

Conclusion

The principles of the shell finite elements constructing described in this article were implemented in
PRINS program.

On the basis of numerous verification tests, it has been established that the finite elements (type EL36 and
type EL34) used for single-layer and multilayer shell analysis have a fast convergence and have a sufficiently
high accuracy. For rectangular planar shallow shells with side length /, the optimal size of the finite element that

provides the required solution accuracy with significant savings in computing resources is (L - L][ . For the
24 36

calculation of cylindrical and spherical shells, the size of the finite element is recommended to be taken within

LR
16 24

PRINS program can be effectively used by specialists from design and scientific organizations to solve
a wide class of engineering problems.
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